7,148 research outputs found

    Special Libraries, Winter 1986

    Get PDF
    Volume 77, Issue 1https://scholarworks.sjsu.edu/sla_sl_1986/1000/thumbnail.jp

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture

    The Impact of the Internet on Telecommunication Architectures

    Get PDF
    The ever-growing popularity of the Internet is dramatically changing the landscape of the communications market place. The two separate worlds of the Internet and Telecommunications are converging. The respective advantages of the two environments are being integrated to fulfill the promise of the information super-highways. In this paper, we examine the impact of the Internet on the main telecommunication architectures, namely the IN, the TMN and TINA. There are two new tendencies for implementing telephony services in combination with the Internet: running part of the control sys tem over the Internet, or conveying both the user data and the control information over the Internet. We examine these two trends, and elaborate on possible ways of salvaging the best parts of the work achieved by the TINA-Consortium in the Internet context

    A programmable architecture for the provision of hybrid services

    Get PDF
    The success of new service provision platforms will largely depend on their ability to blend with existing technologies. The advent of Internet telephony, although impressive, is unlikely to make telephone customers suddenly turn in favor of computers. Rather, customers display increasing interest in services that span multiple networks (especially Internet Protocol-based networks and the telephone and cellular networks) and open new vistas. We refer to these services as hybrid services and propose an architecture for their provision. This architecture allows for programming the service platform elements (i.e., network nodes, gateways, control servers, and terminals) in order to include new service logics. We identify components that can be assembled to build these logics by considering a service as a composition of features such as address translation, security, call control, connectivity, charging and user interaction. Generic service components are derived from the modeling of these features. We assure that our proposal can be implemented even in existing systems in return for slight changes: These systems are required to generate an event when a special service is encountered. The treatment of this event is handled by an object at a Java Service Layer. Java has been chosen for its platform-neutrality feature and its embedded security mechanisms. Using our architecture, we design a hybrid closed user group service

    Artificial intelligent system for multimedia services in smart home environments

    Full text link
    [EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially founded by the Universitat Polite`cnica de Vale`ncia through the postdoctoral PAID-10-20 program.Rego Mañez, A.; Gonzalez Ramirez, PL.; Jimenez, JM.; Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing. 25(3):2085-2105. https://doi.org/10.1007/s10586-021-03350-zS2085210525
    corecore