245,616 research outputs found

    Intelligent Queries over BIRN Data using the Foundational Model of Anatomy and a Distributed Query-Based Data Integration System

    Get PDF
    We demonstrate the usefulness of the Foundational Model of Anatomy (FMA) ontology in reconciling different neuroanatomical parcellation schemes in order to facilitate automatic annotation and “intelligent” querying and visualization over a large multisite fMRI study of schizophrenic versus normal controls

    Autonomous Ground Vehicle

    Get PDF
    WildCat is an autonomous ground vehicle (AGV). AGVs were first developed for military purposes: Intelligent Transportation Systems (ITS), Manufacturing, Search and Rescue operations, Mining, etc. WildCat will be entered in the Intelligent Ground Vehicle competition (IGVC) held in June 2016 at Oakland University in Rochester, Michigan. Teams from major universities not only in the U.S., but also India, France, the UK, China, and around the world will be competing. The IGVC offers a design experience that is at the very cutting edge of engineering education. It is multidisciplinary, theory-based, hands-on, team implemented, and outcome assessed competition. It encompasses the very latest technologies impacting industrial development and taps subjects of high interest to students. The objective of the competition is to challenge students to think creatively as a team about the evolving technologies of vehicle electronic controls, sensors, computer science, robotics, and system integration throughout the design, fabrication, and field testing of autonomous intelligent mobile robots. The vehicle will compete to: 1) autonomously navigate an outdoor obstacle course as quickly as possible, keeping within the speed limit and reaching all GPS waypoints, 2) complete a course with remote (user) control, and 3) have ingenuity and uniqueness in design

    Introduction to Advanced Engine Control Concepts

    Get PDF
    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas

    Autonomous power system: Integrated scheduling

    Get PDF
    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis, isolation, and recovery (FDIR), the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space-based power system. Faults can be introduced into the Brassboard and in turn, be diagnosed and corrected by APEX and AIPS. The Autonomous Intelligent Power Scheduler controls the execution of loads attached to the Brassboard. Each load must be executed in a manner that efficiently utilizes available power and satisfies all load, resource, and temporal constraints. In the case of a fault situation on the Brassboard, AIPS dynamically modifies the existing schedule in order to resume efficient operation conditions. A database is kept of the power demand, temporal modifiers, priority of each load, and the power level of each source. AIPS uses a set of heuristic rules to assign start times and resources to each load based on load and resource constraints. A simple improvement engine based upon these heuristics is also available to improve the schedule efficiency. This paper describes the operation of the Autonomous Intelligent Power Scheduler as a single entity, as well as its integration with APEX and the Brassboard. Future plans are discussed for the growth of the Autonomous Intelligent Power Scheduler

    Towards intelligent distributed computing : cell-oriented computing

    Get PDF
    Distributed computing systems are of huge importance in a number of recently established and future functions in computer science. For example, they are vital to banking applications, communication of electronic systems, air traffic control, manufacturing automation, biomedical operation works, space monitoring systems and robotics information systems. As the nature of computing comes to be increasingly directed towards intelligence and autonomy, intelligent computations will be the key for all future applications. Intelligent distributed computing will become the base for the growth of an innovative generation of intelligent distributed systems. Nowadays, research centres require the development of architectures of intelligent and collaborated systems; these systems must be capable of solving problems by themselves to save processing time and reduce costs. Building an intelligent style of distributed computing that controls the whole distributed system requires communications that must be based on a completely consistent system. The model of the ideal system to be adopted in building an intelligent distributed computing structure is the human body system, specifically the body’s cells. As an artificial and virtual simulation of the high degree of intelligence that controls the body’s cells, this chapter proposes a Cell-Oriented Computing model as a solution to accomplish the desired Intelligent Distributed Computing system

    Control charts for the on-line diagnostics of CMM performance

    No full text
    The quality of a production process is increasing its dependence on both the manufacturing technology, and the production control. In most applications controls are operated by relying on intelligent instrumentation to 'automatically' perform the programmed checks. However, the performance systems that verify the product's quality can deteriorate, as can the production process. This paper presents a method for the on-line verification of the performance of a coordinate measuring machine (CMM) using statistically based control charts. The method is automated and performed on-line during a normal measurement cycle. Some experimental results are then presented and discussed

    TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    Full text link
    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK

    High Flux Commercial Illumination Solution with Intelligent Controls

    Get PDF
    This report summarizes the work performed at OSRAM SYLVANIA under US Department of Energy contract DE-EE0003241 for developing a high efficiency LED-based luminaire. A novel light engine module (two versions: standard and super), power supply and luminaire mechanical parts were designed and tested. At steady-state, the luminaire luminous flux is 3156 lumens (lm), luminous efficacy 97.4 LPW and CRI (Ra) 88 at a correlated color temperature (CCT) of 3507K. When the luminaire is fitted with the super version of the light engine the efficacy reaches 130 LPW. In addition, the luminaire is provided with an intelligent control network capable of additional energy savings. The technology developed during the course of this project has been incorporated into a family of products. Recently, the first product in the family has been launched
    corecore