61,849 research outputs found

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    Pembangunan Modul Pengajaran Kendiri (MPK) keusahawanan dalam topik isu keusahawanan bagi pelajar diploma di politeknik

    Get PDF
    Terdapat pelbagai kaedah pembelajaran yang telah diperkenalkan termasuklah kaedah pembelajaran yang menggunakan pendekatan pembelajaran bermodul secara kendiri. Kajian ini adalah bertujuan untuk mengkaji kesesuaian Modul Pengajaran Kendiri Keusahawanan dalam topik Isu Keusahawanan yang telah dihasilkan bagi pelajar yang mengikuti pengajian Diploma di Jabatan Perdagangan Politeknik. Antara aspek yang dikaji ialah untuk menilai sama ada rekabentuk modul yang dihasilkan dapat memenuhi ciri-ciri modul yang baik, MPK yang dihasilkan dapat membantu mencapai objektif pembelajaran, MPK ini bersifat mesra pengguna dan MPK yang dihasilkan membantu pensyarah menyampaikan pengajarannya dengan lebih berkesan. Kajian ini dilakukan ke atas 110 orang pelajar semester en am yang mengikuti pengajian diploma dan 4 orang pensyarah yang mengajar subjek Keusahawanan di Jabatan Perdagangan Politeknik Sultan Salahuddin Abdul Aziz Shah, Selangor. Kaedah analisa data yang digunakan dalam kajian ini ialah skor min dan peratus. Hasil daripada kajian ini menunjukkan bahawa rekabentuk modul yang dihasilkan memenuhi ciri-ciri modul yang baik, MPK ini membantu untuk mencapai objektif pembelajaran, MPK ini bersifat mesra pengguna dan MPK yang dihasilkan dapat membantu pensyarah menyampaikan pengajarannya dengan lebih berkesan. Ini bermakna secara keseluruhannya, hasil kajian menunjukkan bahawa modul yang dihasilkan oleh pengkaji adalah sesuai digunakan oleh pelajar-pelajar semester enam yang mengikuti pengajian diploma di Jabatan Perdagangan peringkat politeknik. Seterusnya, beberapa pandangan telah dikemukakan bagi meningkatkan rnutu dan kualiti MPK yang dihasilkan. Semoga kajian ini dapat memberi manfaat kepada mereka yang terlibat dalam bidang pendidikan

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Security aspects in cloud based condition monitoring of machine tools

    Get PDF
    In the modern competitive environments companies must have rapid production systems that are able to deliver parts that satisfy highest quality standards. Companies have also an increased need for advanced machines equipped with the latest technologies in maintenance to avoid any reduction or interruption of production. Eminent therefore is the need to monitor the health status of the manufacturing equipment in real time and thus try to develop diagnostic technologies for machine tools. This paper lays the foundation for the creation of a safe remote monitoring system for machine tools using a Cloud environment for communication between the customer and the maintenance service company. Cloud technology provides a convenient means for accessing maintenance data anywhere in the world accessible through simple devices such as PC, tablets or smartphones. In this context the safety aspects of a Cloud system for remote monitoring of machine tools becomes crucial and is, thus the focus of this pape

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care
    corecore