7,009 research outputs found

    Reduced pattern training based on task decomposition using pattern distributor

    Get PDF
    Task Decomposition with Pattern Distributor (PD) is a new task decomposition method for multilayered feedforward neural networks. Pattern distributor network is proposed that implements this new task decomposition method. We propose a theoretical model to analyze the performance of pattern distributor network. A method named Reduced Pattern Training is also introduced, aiming to improve the performance of pattern distribution. Our analysis and the experimental results show that reduced pattern training improves the performance of pattern distributor network significantly. The distributor module’s classification accuracy dominates the whole network’s performance. Two combination methods, namely Cross-talk based combination and Genetic Algorithm based combination, are presented to find suitable grouping for the distributor module. Experimental results show that this new method can reduce training time and improve network generalization accuracy when compared to a conventional method such as constructive backpropagation or a task decomposition method such as Output Parallelism

    Multi-learner based recursive supervised training

    Get PDF
    In this paper, we propose the Multi-Learner Based Recursive Supervised Training (MLRT) algorithm which uses the existing framework of recursive task decomposition, by training the entire dataset, picking out the best learnt patterns, and then repeating the process with the remaining patterns. Instead of having a single learner to classify all datasets during each recursion, an appropriate learner is chosen from a set of three learners, based on the subset of data being trained, thereby avoiding the time overhead associated with the genetic algorithm learner utilized in previous approaches. In this way MLRT seeks to identify the inherent characteristics of the dataset, and utilize it to train the data accurately and efficiently. We observed that empirically, MLRT performs considerably well as compared to RPHP and other systems on benchmark data with 11% improvement in accuracy on the SPAM dataset and comparable performances on the VOWEL and the TWO-SPIRAL problems. In addition, for most datasets, the time taken by MLRT is considerably lower than the other systems with comparable accuracy. Two heuristic versions, MLRT-2 and MLRT-3 are also introduced to improve the efficiency in the system, and to make it more scalable for future updates. The performance in these versions is similar to the original MLRT system

    Task decomposition using pattern distributor

    Get PDF
    In this paper, we propose a new task decomposition method for multilayered feedforward neural networks, namely Task Decomposition with Pattern Distributor in order to shorten the training time and improve the generalization accuracy of a network under training. This new method uses the combination of modules (small-size feedforward network) in parallel and series, to produce the overall solution for a complex problem. Based on a “divide-and-conquer” technique, the original problem is decomposed into several simpler sub-problems by a pattern distributor module in the network, where each sub-problem is composed of the whole input vector and a fraction of the output vector of the original problem. These sub-problems are then solved by the corresponding groups of modules, where each group of modules is connected in series with the pattern distributor module and the modules in each group are connected in parallel. The design details and implementation of this new method are introduced in this paper. Several benchmark classification problems are used to test this new method. The analysis and experimental results show that this new method could reduce training time and improve generalization accuracy

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal
    corecore