
 1

Task Decomposition Using Pattern Distributor

Sheng-Uei Guan*, TseNgee Neo and Chunyu Bao

Department of Electrical and Computer Engineering
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
*sg_1_1@yahoo.com/eleguans@nus.edu.sg

Abstract In this paper, we propose a new task decomposition method for multilayered

feedforward neural networks, namely Task Decomposition with Pattern Distributor in order

to shorten the training time and improve the generalization accuracy of a network under

training. This new method uses the combination of modules (small-size feedforward network)

in parallel and series, to produce the overall solution for a complex problem. Based on a

“divide-and-conquer” technique, the original problem is decomposed into several simpler

sub-problems by a pattern distributor module in the network, where each sub-problem is

composed of the whole input vector and a fraction of the output vector of the original

problem. These sub-problems are then solved by the corresponding groups of modules, where

each group of modules is connected in series with the pattern distributor module and the

modules in each group are connected in parallel. The design details and implementation of

this new method are introduced in this paper. Several benchmark classification problems are

used to test this new method. The analysis and experimental results show that this new

method could reduce training time and improve generalization accuracy.

Keywords Task decomposition, multilayered feedforward neural network, pattern

distributor

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

Multilayered feedforward neural networks have been used extensively in solving

classification problems. However, the concomitant disadvantages of building multilayered

feedforward networks are the long training time and unsatisfactory generalization accuracy.

One of the main reasons that cause these disadvantages is because large networks tend to

introduce high internal interference due to the strong coupling among their hidden-layer

weights (Jacobs et al., 1991). During the weight-updating (training) process, the influences

(desired outputs) from two or more output units could cause the hidden-layer weights to

compromise to non-optimal values due to the interference in their weight-updating direction.

In order to overcome this drawback, various task decomposition methods based on “divide-

and-conquer” have been proposed. Instead of using a single, large feedforward network

(classic non-modular network), these task decomposition methods use a modular network,

which is formed by integrating several modules (each module is a small size feedforward

network) to solve the given problem. In the following section, several task decomposition

methods are discussed.

2. Task decomposition methods

The method proposed in “Efficient classification for multiclass problems using modular neural

networks” presented by Anand, etc. in 1995 divides a K -class original problem into K two-

class sub-problems and each sub-problem is solved by a single-output module (small size

feedforward network) respectively. Therefore, each module is used to discriminate one class

of patterns from patterns belonging to the remaining classes. The collection of all the

modules produces the overall solution for the original problem. Another method proposed in

“Task decomposition and module combination based on class relations: A modular neural network for

 3

pattern classification” splits the K -class original problem into

2

K
 two-class sub-problems.

Each sub-problem is learned independently by a module while training patterns belonging to

the other 2−K classes is ignored (Lu and Ito, 1999). The final overall solution is obtained

by integrating all of the trained modules into a min-max modular network. The output

parallelism method decomposes the original complex problem into a set of simpler sub-

problems without any prior knowledge concerning the decomposition of the problem (Guan

and Li, 2000 and Guan and Li 2002). Each sub-problem is composed of the whole input

problem space and a fraction of the output problem space as illustrated in figure 1:

“Figure 1 near here”
“Figure 2 near here”

Each sub-problem is then solved by building and training a module. A collection of

these modules (in parallel) is the overall solution of the original problem. The overview of the

final network architecture is illustrated in figure 2.

Instead of decomposing the problem with high dimensional output space into several

sub-problems with low dimensional output space, the method proposed in “A multisieving

neural-network architecture that decomposes learning tasks automatically” by Lu et al. in 1994

decomposes the size (number of patterns) of the problem into several smaller size sub-

problems. Patterns are classified by a rough sieve module (non-modular network) at the

beginning and those patterns that are not classified successfully will be presented to another

sieve module. This process continues until all the patterns are classified correctly. The sieve

modules are added into the network adaptively with progress of training.

The training time of these methods is shorter and the generalization accuracy is better

as compared to the classic non-modular network. However, these methods still have some

drawbacks. Firstly, for the methods proposed by Anand et al. in 1995 and Guan and Li in 2002,

although the dimension (number of output class) of each sub-problem is smaller than the

 4

original problem, the size of each sub-problem’s training pattern set is still as large as the

original problem. Therefore, each module will have unnecessarily long training time and

ineffective learning especially when the original problem is very large. Secondly, the

methods proposed by Anand et al. in 1995 and Lu and Ito in 1999 usually split the problem

into a set of two-class sub-problems. When the original K-class problem is very complex (K

is very large), a very large number of modules will be needed to learn the sub-problems and

thus resulting in excessive computational cost. Thirdly, the methods proposed by Anand et al.

in 1995, Lu and Ito in 1999 and Guan and Li in 2002 integrate all the modules together at the

final stage in order to produce the overall solution for the original problem. This allows error

from any of the modules affecting the performance (accuracy) of the other modules and thus

causing interferences among the modules. During the classification process for each input

pattern, all the modules have to classify that input pattern correctly. Any module classifies the

input pattern wrongly may cause the overall classification process to be incorrect. Lastly, the

method proposed by Lu et al. in 1994 only reduces the size of the problem but not the

dimension of the problem. The internal interferences (that exists within each module due to

the coupling of output units) are not reduced.

In this paper, we propose a new task decomposition method called Task

Decomposition with Pattern Distributor to overcome the drawbacks as mentioned above. In

section 3, the design details and overview of the proposed modular network architecture will

be introduced. In section 4, a simple model is introduced to analysis the PD network. In

section 5, modular PD is introduced to improve the performance of PD network. In section 6,

the experimental results are shown and analyzed. Discussion and conclusion will be

presented in section 7.

3. Design details for the pattern distributor network

 5

In order to reduce effectively the size of the training pattern set presented to each module

(small-size feedforward network) in the modular network, an additional module is

incorporated into the network and it acts as a pattern distributor. This pattern distributor has a

higher position (level) as compared to the other modules in the network. The overview of the

new network architecture is shown in figure 3(a) whereas the specific training algorithm for

the pattern distributor module is illustrated in figure 3(b) and the following section.

“Figure 3 near here”

3.1 Training of the pattern distributor network

To implement the new modular network, the first step is to decompose a complex

classification problem with a large number of output classes into a set of sub-problems, each

with a small number of output classes. To train the pattern distributor (module 0 as shown in

figure 3(a) & (b)) that has r output units, first, instead of having all N output classes of the

original training patterns presented to this module, training patterns (from N output classes)

are first grouped together and classified into nr classes (where nr < N), namely Class n1

patterns (patterns belonging to the original “class 1 to class N/r” are grouped and classified

into this class), Class n2 patterns (patterns belonging to the original “class N/r+1 to 2N/r” are

grouped and classified into this class), …, to Class nr patterns(patterns belonging to the

original “class (r-1)N/r+1 to class N” are grouped and classified into this class). This set of

“manually modified training patterns” (with a smaller number of output classes) is then

presented to the pattern distributor to train and help it learn.

It should be mentioned that the “equally” grouping of the output class as illustrated

earlier or as shown in figure 3(a) is just to serve as a clearer example. In fact, the grouping

process is flexible (based on the user’s decision). Different grouping of the output classes will

 6

cause the new modular network to have different training time and generalization accuracy.

The remaining modules (module 1 to module r as indicated in figure 3(a)) in the network are

trained by using the corresponding training patterns only (for example, training patterns

belonging to “class 1 to class N/r” are used to train module 1). This process continues until all

the modules are well trained. Therefore, the size of training patterns presented to each module

is reduced significantly as compared to the task decomposition methods mentioned in section

2.

It should be mentioned that these modules can be further decomposed (based on

output parallelism) into smaller sub-modules. Thus, each module can be viewed as a group of

sub-modules that are connected in parallel. The modified version of figure 3(a) is shown in

figure 4:

“Figure 4 near here”

3.2 Operation of the pattern distributor network

After the training process is completed, when a new, unseen input pattern (for example

pattern that belongs to “class 1 to class N/r”) is presented to the modular network, the pattern

distributor will first accept this pattern, classify it correctly and the corresponding output unit

in the pattern distributor (for this example, output unit 1) will have the largest value among

all the other output units. Thus only the corresponding module (for this example, module 1)

will be activated and used. After that, the input pattern is presented to this module (module 1)

only and then this module will complete the classification process. Only two instead of all

modules are used in each classification process, this is likely to reduce errors.

 Constructive Backpropagation (CBP) algorithm was used to train the network in the

experiments (Lehtokangas, 1999). CBP is briefly introduced in Appendix I. CBP can reduce

 7

the excessive computational cost significantly and also it does not require any prior

knowledge concerning decomposition.

In this paper, RPROP is used with the following parameters: η+ = 1.2, η- =0.5, ∆0 = 0.1, ∆max

= 50, ∆min = 1.0e-6, with initial weights selecting from –0.25… 0.25 randomly (Riedmiller and

Braun, 1993).

In order to avoid large computational cost and overfitting, a method called early stopping

using validation set is used as the stopping criteria. The details and various definitions of the

stopping criteria are presented in Appendix II.

The set of available patterns is divided into three sets: a training set is used to train

the network, a validation set is used to evaluate the quality of the network during training and

to measure overfitting, and a test set is used at the end of training to evaluate the resultant

network. The size of the training, validation, and test set is 50%, 25% and 25% of the

problem’s total available patterns.

4. Analysis of the pattern distributor network

The performance of PD module greatly affects the performance of the whole network. When

this pattern distributor classifies a pattern wrongly, the remaining classification process will

also be wrong. In our design, we hope PD networks could have little or no error compared

with ordinary TD networks. So the error of PD module could not be very large. We present a

simple model to discuss what condition a PD network should satisfy for it to outperform an

ordinary TD network.

 8

“Figure 5 near here”

Referring to figure 5, assume the PD module has two outputs, and the number of the output

classes is K. Both Module 1 and Module 2 have K/2 output classes (assume K is a even

number here). The network has been further divided into some sub-modules. The network is

divided into the same sub-modules using an ordinary TD network (here we have chosen an

output parallelism network (Guan and Li, 2000 and Guan and Li 2002)) in order to compare

the results (figure 6).

“Figure 6 near here”

Consider the course of testing. In the following, we assume that each corresponding module

in these two network models has the same probability of error as they are implemented in the

same way. Then the error incurred from the PD network model will be the error from the

pattern distributor module plus the error from the module involved, while the error from the

TD network model will be the sum of errors from all the modules that respond with some

incorrect results.

Assume the probability of error in the above TD network is pe. And for each test example, the

probability of error in either Module 1 or Module 2 is pe/2. To those examples which could

enter Module 1 of the PD network, the probability of error in Module 1 is equal to that in Part

1 of the TD network. In other words, probability of error in Module 1 is pe/2. Also, the

probability of error in Module 2 is pe/2. Assume the probability of error in the PD module is

pePD.

Assume the number of the test examples is N, and the number of examples belonging to

Module 1 of the PD network is N/2.

 9

The number of examples classified or recognized wrongly by the TD network is:

eTD pNN ⋅= (1)

The number of examples dispatched wrongly by the PD network is:

222
)(

2

1
2 e

ePD
e

ePD
e

ePDePDPD

p
pN

p
NpN

p
pNNpNN ⋅⋅−⋅+⋅=⋅⋅−⋅⋅+⋅= (2)

If the PD network has better result than the TD network, then TDPD NN < must be satisfied.

Notice in Equation (2), the last term is much smaller than the other two.

TDe
e

ePD
e

ePD
e

ePDPD NpN
p

NpN
p

pN
p

NpNN =⋅<⋅+⋅<⋅⋅−⋅+⋅=
222

 (3)

So

eePD pp ⋅<
2

1
 (4)

If the above relationship could be satisfied, the error of the PD network will be smaller than

that of the TD network.

Discussions:

In the above analysis, K is considered as an even number. Here we discuss the situation that

K is odd. Assume that PD has two outputs, and each output corresponds to a module. Module

1 has (K+1)/2 output classes and Module 2 has (K-1)/2 output classes. Still, assume the

probability of error in the corresponding TD network is pe. And for each test example, the

probability of error in either Module 1 or Module 2 is pe/2.

Assume the number of the test examples is N, and the number of examples belonging to each

output class N/K. The number of examples dispatched wrongly by the PD network is:

2
)(

2
)(

2

11

2
)(

2

11

e
ePDePD

e
ePD

e
ePDePDPD

p
pNNpN

p
pNN

K

K

p
pNN

K

K
pNN

⋅⋅−+⋅=

⋅⋅−⋅−+⋅⋅−⋅++⋅=
 (5)

 10

Under this assumption, if the relationship in Eq. (4) is satisfied, the PD network still could get

better results.

This simple model shows if the error of PD module is small enough, the PD network could

have better results than the ordinary TD network. The same analysis can be easily extened to

the case when the number of modules considered is more than two.

5. Improvement on the pattern distributor network– modular

pattern distributor

Results in “Parallel growing and training of neural networks using output parallelism” showed that

the training time and generalization accuracy of modular networks based on output

parallelism are better than classic non-modular networks (Guan and Li, 2002). Thus, instead

of using a non-modular pattern distributor module (as indicated in figure 3(a)) in the network,

the performance can be further improved by using a modular pattern distributor module. The

output parallelism method is applied to the non-modular pattern distributor module by

decomposing it into several sub-modules. An overview of the modular pattern distributor

architecture is shown in figure 7:

“Figure 7 near here”

In figure 7, the pattern distributor is decomposed into 2 modules only (to simplify the figure).

In fact, the number of modules is determined by the user. The performance of the modular

network is expected to be better if the number of modules used is larger.

 11

6. Experimental results and analysis

6.1 Experiment scheme

Four benchmark classification problems, namely Vowel, Glass, Segmentation, and Letter

Recognition were used to evaluate the performance of the new modular network – Task

Decomposition with Pattern Distributor. These classification problems were taken from the

PROBEN1 benchmark collection (Prechelt, 1994) and University of California at Irvine (UCI)

repository of machine learning database. In the set of experiments undertaken, the first three

classification problems were conducted 10 trials and the Letter Recognition problem was

conducted 5 trials (due to the long training time). All the hidden units and output units use the

sigmoid activation function and Eth is set to 0.1. When a hidden unit needs to be added, 8

candidates are trained and the best one is selected. All the experiments were simulated on a

Pentium IIII – 2.4GHZ PC. The sub-problems were solved sequentially and the CPU time

expended was recorded respectively.

6.2 Experimental results and analysis

Three important metrics, namely, training time, generalization accuracy, and network

complexity will be used as the criteria to judge the performance of the new modular network.

Guan and Li’s (2002) results showed that the performance (in terms of the three important

issues as mentioned earlier) of output parallelism is better than the classic non-modular

neural network. In this paper, the performance of output parallelism will be used as a

yardstick and the performance of the new modular network will be compared to it.

 For training time, the CPU time spent to train the modules will be compared. It should

be noted that the number of training patterns presented to each module is different. Therefore,

the computational cost of one training epoch can differ significantly. Comparing the number

of epochs solely will lead to unfair comparison and thus training epoch will not be used as the

 12

judging criteria. For generalization accuracy, classification error instead of test error will be

compared as all the problems used are classification problems. For network complexity, the

number of hidden units and independent parameters (the number of weights and biases) in the

network will be compared.

A. Glass

This data set is used to classify glass types. The results of a chemical analysis of glass

splinters (percentage of 8 different constituent elements) plus the refractive index are used to

classify a sample to be either float processed or non-float processed building windows,

vehicle windows, containers, tableware, or head lamps. This data set consists of 9 inputs, 6

outputs, and 643 patterns (they are divided into 321 training patterns, 161 validation patterns,

and 161 test patterns). The patterns were normalized and scaled so that each component lies

within [0, 1]. This problem was divided into two outputs by PD module. Each output of the

PD module consisted of 3 outputs. Then this problem was divided into 6 sub-modules and

each module has one output unit.

“Table 1 near here”

From Table 1, it is observed that the classification error using ordinary TD network (here

output parallelism) was 14.2236%, and that using a non-modular PD network was 7.82609%.

The classification error of a non-modular PD module was 2.422358%. According to our

analysis, if Equation (4) could be satisfied, in other words, if the error of PD module was

smaller than half of the error of TD network, the PD network will have better results.

Equation (4) was apparently satisfied, and using the PD network had smaller classification

error. It matched with our analysis. It could be also found that the classification error was

further reduced when using a modular PD network compared with a non-modular network.

The modular PD module’s classification error was 2.36026% which was small than the non-

 13

modular PD module. Our analysis suggests that the better performance of PD module could

get better performance of the whole PD network. The overall classification error is reduced to

7.63975% when using the modular PD network.

From Table 1, it is also seen that the training time using ordinary TD network is 63.7 s in

parallel and 197.7 s in series, and that using non-modular PD network is 82.9 s in parallel and

194.3 s in series. It is not have much difference. The number of hidden units and the number

of independent parameters using ordinary TD network is 253.5 and 2848.5 respectively,

while those using non-modular PD network is 391.2 and 4413.8 respectively. The PD

network has more hidden units and independent parameters than ordinary TD network. If

modular PD network is used, there are more the hidden units and independent parameters

compared with non-modular PD network, but the training time in parallel is reduced.

B. Vowel

The input patterns of this data set are 10 element real vectors representing vowel sounds

which belong to one of 11 classes. It has 990 patterns in total (they are divided into 495

training patterns, 248 validation patterns, and 247 test patterns). The patterns were

normalized and scaled so that each component lies within [0, 1]. This problem was divided

into three outputs by the PD module. The first output of PD consisted of 3 outputs, the second

output of PD consisted of 4 outputs, and the last output of PD consisted of 4 outputs. Then

this problem was divided into 11 sub-modules and each sub-module has only one output unit.

Table 2 shows that the classification error using an ordinary TD network (here output

parallelism) is 25.54955%, and that using a non-modular PD network is 18.70445%. The

classification error of the non-modular PD module is 6.680157%. Compared to the

classification error of TD network, the PD module’s classification error is very small. So the

PD network produced better results. It can also be found that the classification error could be

 14

further reduced when using a modular PD network compared with a non-modular network.

The overall classification error is reduced to 18.3% when using the modular PD network.

“Table 2 near here”

From Table 2, it is also seen that the training time using ordinary TD network is 58.7 s in

parallel and 418.9 s in series, and that using non-modular PD network is 117 s in parallel and

245.6 s in series. Though the training time in parallel increases using PD network compared

with ordinary TD network, the training time in series greatly decreases. The number of

hidden units and the number of independent parameters using ordinary TD network is 184.4

and 2333.5 respectively, while those using non-modular PD network is 229.4 and 2955.8

respectively. The PD network has more hidden units and independent parameters than

ordinary TD network. If modular PD network is used, there are more the hidden units and

independent parameters compared with non-modular PD network, but the training time in

parallel is reduced.

C. Segmentation

This data set consists of 18 inputs, 7 outputs, and a total of 2310 patterns (1155 training

patterns, 578 validation patterns, and 577 test patterns). The patterns were normalized and

scaled so that each component lies within [0, 1]. This segmentation problem was divided into

two outputs by PD module. One of the PD’s outputs consisted of 3 outputs while the other

consists of 4 outputs. And the problem was divided into 7 sub-modules.

“Table 3 near here”

Table 3 shows that the classification error using an ordinary TD network (here output

parallelism) is 5.181979%, and that using a non-modular PD network is 4.61005%. The

classification error of the non-modular PD module is 1.03986%. According to our analysis, if

Equation (4) could be satisfied, in other words, if the error of PD module was smaller than

 15

half of the error of TD network, the PD network will have better results. Equation (4) was

apparently satisfied, and using the PD network had a smaller classification error. It matched

with our analysis. Compared to the classification error of TD network, the PD module’s

classification error is very small. So the PD network produced better results. It can also be

found that the classification error could be further reduced when using a modular PD network

compared with a non-modular network. The overall classification error is reduced to

4.57539% when using the modular PD network.

From Table 3, it is seen that the training time using ordinary TD network is 610.2 s in parallel

and 1719.6 s in series, and that using non-modular PD network is 213.4 s in parallel and

706.9 s in series. Both the training time in parallel and in series greatly decreases using PD

network compared with ordinary TD network. The number of hidden units and the number of

independent parameters using ordinary TD network is 152.1 and 3175 respectively, while

those using non-modular PD network is 128.9 and 2762.9 respectively. The PD network has

less hidden units and independent parameters than ordinary TD network. If modular PD

network is used, there are more the hidden units and independent parameters compared with

non-modular PD network, but the training time in parallel is reduced.

D. Letter recognition

The goal of this data is to recognize digitized patterns. Each element of the input vector is a

numerical attribute computed from a pixel array containing the letters. This data set consists

of 16 inputs, 26 outputs, and total of 20000 patterns (10000 training patterns, 5000 validation

patterns, and 5000 test patterns). All the patterns were normalized and scaled so that each

component lies within [0, 1]. The problem was divided into 14 sub-modules. 12 of them are

solved by sub-modules with 2 output units while the remaining is solved by modules with 1

output unit. The PD module has 4 outputs. The first output of PD module has 4 sub-modules

(7 original output classes), the second output of PD module has 4 sub-modules (7 original

Deleted: ¶
¶

 16

output classes), the third output of PD module has 3 sub-modules (6 original output classes)

and the last output of PD module has 3 sub-modules (6 original output classes).

“Table 4 near here”

Table 4 shows that the classification error using an ordinary TD network (here output

parallelism) is 15.784%, and that using a non-modular PD network is 19.369%. Such a PD

network did not produce better results. According to our former analysis, the network could

not have better performance if the classification error of PD module is too large. Here the

classification error of the non-modular PD module is 17.872%, and this value is very large

compared to the classification error of TD network. It could explain why the non-modular PD

network did not get better performance. We also notice that when using the modular PD

network, the PD network produced lower classification error which is 15.444%. The possible

reason may be that the PD module’s performance is improved when using the modular PD.

7. Discussions and conclusions

7.1 Discussions

From the earlier section, it is shown that if the classification error of PD module is not

very large, the performance of Task Decomposition Pattern Distributor method is better than

the output parallelism method, which on the other hand has been shown to be better than the

classic non-modular network method (that uses a single, large network to solve the problem)

(Guan and Li, 2002). Therefore, the performance of a modular pattern distributor network is

generally better than that of a classic non-modular network. However, the question is: How

much is the improvement over a non-modular network? The performance comparison for

these two networks is presented here. The Vowel and Letter recognition data sets were used

in the experiments. Table 5 shows the experimental results for the three methods (non-

modular network, output parallelism and Modular Pattern Distributor method) by using the

 17

Vowel data set. From Table 5, it is observed that the classification error reduction by the Task

Decomposition with Modular Pattern Distributor (18.3) vs. Classic Non-modular Network

(34.737) is 47.32%. The percentage of training time reduction by the Task Decomposition

with Modular Pattern Distributor (51.8) vs. Classic Non-modular Network (197.93) is

73.83%.

“Table 5 near here”

Table 6 shows the experimental results by using the Letter recognition data set:

“Table 6 near here”

From Table 6, it is observed that the classification error reduction by the Task

Decomposition with Modular Pattern Distributor (15.444) vs. Classic Non-modular Network

(21.672) is 28.74%. The percentage of training time reduction by the Task Decomposition

with Modular Pattern Distributor (2293.6) vs. Classic Non-modular Network (20845.05) is

89.0%.

1. From Table 5 and 6, it is observed that the performance (in terms of training time and

classification error) of a modular pattern distributor network is much better than that

of a classic non-modular network. The reduction in training time is especially

significant (>73%).Lastly, all the experimental results showed that the new modular

network inherits the advantages provided by the output parallelism method.

Besides these advantages, the new modular network provides more advantages (as

compared to the output parallelism method):

1. Training time is further reduced since each module in the network only need to solve

a smaller and simpler sub-problem. The reduction is significant when the size of the

original training pattern set is large.

2. Generalization accuracy is further improved since all the modules in the new modular

network can solve the sub-problems better.

 18

3. Although the total number of independent parameters in the new modular network

exceeds that in the output parallelism method, the new modular approach yields faster

convergence.

4. Various combinations of modules (in parallel and in series) allow more useful and

flexible problem solving as compared to the output parallelism method, which only

uses parallel combination.

In order to further improve the PD method, we could also apply the Pattern Distributor

method to the PD module. In other words, multi-level pattern distributors (performing task

decomposition by applying the pattern distributor method to the pattern distributor module)

could be considered.

7.2 Conclusions

This paper presented a better (as compared to the output parallelism approach or conventional

non-modular approach) task decomposition approach called Task Decomposition with

Pattern Distributor to build a new modular network. This new approach not only inherits the

advantages provided by the output parallelism method but also provides more advantages. Its

performance can be improved further by incorporating additional pattern distributor modules

into the network. Based on this method, a problem can be divided flexibly into several sub-

problems by the pattern distributor module, where each sub-problem is composed of the

whole input vector and a fraction of the output vector. The combinations (in parallel and in

series) of modules in the new modular network were used to solve each sub-problem

respectively. This new method could not only reduce the internal interferences that exist

inside the hidden structure of the large network by decoupling it into several modules but also

prevent the error from any of the modules affecting the performance (accuracy) of the other

 19

modules by designing all the modules independent from each other. Besides, this new method

also builds modules that can solve the sub-problems better and faster since by incorporating

the pattern distributor module into the network, the size (number of patterns) and dimension

(number of output classes) of training pattern set presented to each sub-module would be

reduced, thus, unnecessary long training time and ineffective learning can be avoided

Our analysis and the experimental results showed that this new method has shorter

training time and better generalization accuracy as compared to the output parallelism

method. The results of this new method could be further improved by using more levels of

modules in the network.

References

Anand, R., Mehrotra, K., Mohan, C. K. and Ranka, S. (1995) Efficient classification for multiclass

problems using modular neural networks, IEEE Transactions on Neural Networks, 6(1), 117 – 124.

Baum, E. B. and Haussler, D. (1989) What size net gives valid generalization, Neural Computation,

1(1), 151-160.

Blum, A. and Rivest, R. L. (1992) Training a 3-node neural network is NP-complete, Neural

Networks, 5(1), 117-128.

Guan, S. U. and Li, S. C. (2000) An approach to parallel growing and training of neural networks,

Proceeding of 2000 IEEE International Symposium on Intelligent Signal Processing and

Communication Systems, Honolulu, Hawaii, 2, 1101 – 1104.

Guan, S. U. and Li, S. C. (2002) Parallel growing and training of neural networks using output

parallelism, IEEE Transactions on Neural Networks, 13(3), 542 -550.

Jacobs, R. A., Jordan, M. I., Nowlan, M. I. and Hinton, G. E. (1991) Adaptive mixtures of local

experts, Neural Computation, 3(1), 79-87.

Lehtokangas, M. (1999) Modeling with constructive backpropagation, Neural Networks, 12, 707-716.

Lu, B. L. Kita, H., and Nishikawa, Y. (1994) A multisieving neural-network architecture that

decomposes learning tasks automatically, Proceedings of IEEE Conference on Neural Networks,

Orlando, FL, 1319-1324.

Lu, B. L. and Ito, M. (1999) Task decomposition and module combination based on class relations: A

modular neural network for pattern classification, IEEE Transactions on Neural networks, 10(5), 1244

– 1256.

 20

Prechelt, L. (1994) PROBEN1: A set of neural network benchmark problems and benchmarking rules,

Technical Report 21/94, Department of Informatics, University of Karlsruhe, Germany.

Prechelt, L. (1997) Investigation of the CasCor family of learning algorithms, Neural Networks,

10(5), 885 – 896.

Riedmiller, M. and Braun, H. (1993) A direct adaptive method for faster backpropagation learning:

the RPROP algorithm, Proceedings of the IEEE International Conference on Neural Networks, 586-

591.

Appendix I

The Constructive Backpropagation algorithm (CBP) can be depicted briefly as follows

(Lehtokangas, 1999 and Guan and Li, 2002):

1. Initialization: The network has no hidden units. Only bias weights and shortcut

connections from the input units to the output units feed the output units. Train the weights of

this initial configuration by minimizing the sum of squared errors:

∑∑
= =

−=
P

p

K

k
pkpk toE

1 1

2)((1)

whereP is the number of training patterns, K is the number of output units, pko is the actual

output value of the k th output unit for the p th training pattern and pkt is the desired output

value of the k th output unit for the p th training pattern.

“Figure 8 near here”

2. Training a new hidden unit: Connect inputs to the new unit (let the new unit be the i th

hidden unit, 0>i) and connect its output to the output units as shown in Figure 8. Adjust all

the weights connected to the new unit (both input and output connections) by minimizing the

modified sum of squared errors:

2

1 1

1

0

)(∑∑ ∑
= =

−

=

−+=

P

p

K

k
pkpiik

i

j
pjjki towowaE (2)

where jkw is the connection from thej th hidden unit to the k th output unit (kw0 represents a

set of weights which are the bias weights and shortcut connections trained in step 1), pjo is

the output of thej th hidden unit for the p th training pattern (0po represent inputs to bias

weights and shortcut connections), and)(⋅a is the activation function. Note that in the new

 21

i th unit perspective, the previous units are fixed. In other words, we are only training the

weights connected to the new unit (both input and output connections).

3. Freezing a new hidden unit: Fix the weights connected to the unit permanently.

4. Testing for convergence: If the current number of hidden units yields an acceptable

solution, then stop the training. Otherwise go back to step 2.

Appendix II

The Early Stopping method using validation set is used as the stopping criteria in training the

new modular network. The set of available patterns is divided into three sets: a training set is

used to train the network, a validation set is used to evaluate the quality of the network during

training and to measure overfitting, and a test set is used at the end of training to evaluate the

resultant network. The size of the training, validation, and test set is 50%, 25% and 25% of

the problem’s total available patterns. The error measure E used is the squared error

percentage (Prechelt, 1994), derived from the normalization of the mean squared error to

reduce the dependency on the number of coefficients in the problem representation and on the

range of output values used:

∑∑
= =

−
⋅
−

⋅=
P

p

K

k
pkpk to

PK

oo
E

1 1

2minmax)(100 (3)

where maxo and mino are the maximum and minimum values of output coefficients in the

problem representation.

)(tEtr is the average error per pattern of the network over the training set, measured after

epocht . The value)(tEva is the corresponding error on the validation set after epoch t and is

used by the stopping criterion.)(tEte is the corresponding error on the test set; it is not known

to the training algorithm but characterizes the quality of the network resulting from training.

The value)(tEopt is defined to be the lowest validation set error obtained in epochs up to

epocht :

)'(min)(
'

tEtE va
tt

opt ≤
= (4)

 22

The generalization loss (Prechelt, 1994) at epoch t is defined as the relative increase of the

validation error over the minimum so far (in percent):

)1
)(

)(
(100)(−⋅=

tE

tE
tGL

opt

va (5)

A high generalization loss is one candidate reason to stop training because it directly

indicates overfitting.

To formalize the notion of training progress, a training strip of length m (Prechelt, 1994) is

defined to be a sequence of m epochs numbered 1+n … mn + where n is divisible bym .

The training progress measured after a training strip is:

)1
)'(min

)'(
(1000)(

...1'

...1' −
⋅

⋅=
+−∈

+−∈∑
tEm

tE
tP

trtmtt

tmtt tr

m (6)

It is used to measure how much larger the average training error is than the minimum training

error during the training strip.

During the process of growing and training individual modules, we adopted the following

heuristic overall stopping criteria: thopt EE < OR (Reduction of training set error due to the

last new hidden unit is less than 0.01% AND Validation set error increased due to the last

new hidden unit). The first part (thopt EE <) means that the optimal validation set error is

below the threshold (thE) and the result has been acceptable. The other part means the last

insertion of a hidden unit resulted in hardly any progress. The criteria for adding a new

hidden unit are as follows: At least 25 epochs reached for the current network AND

(Generalization loss)(tGL >5 OR Training progress)(5 tP <0.1). The first part means that

the current network should be trained for at least a certain number of epochs before a new

hidden unit is installed because the error curves may be turbulent at the beginning. The

second part means that the current network has been overfitted or training has little progress.

It is a bit unsatisfactory that all of these criteria are heuristic.

 23

Figure 1: Problem decomposition based on Output Parallelism

 Figure 2: Task Decomposition based on Output Parallelism

Figure 3(a): Overview of the pattern distributor network architecture

Unseen
Input
pattern

Class N/r

···

Act as “Pattern
distributor”

Output nr-1

Output n2

Output nr

Output n1

Class 1

Module

0

···
···

···
···

Module 1

Class (r-2)N/r +1

Class (r-1)N/r +1

Class N/r +1

Class (r-1)N/r

Class 2N/r

Class N

Module 2

Module r-1

Module r

Regrouped into
nr classes by the
user (where nr <
N) nr classes of

modified
training patterns

Train the
module 0 N original

classes of
training
patterns

···

Output nr-1

Output n2

Output nr

Output n1
Module 0
(Pattern

Distributor)

 24

Figure 3(b): Training for the pattern distributor module

Figure 4: Modified new network architecture

 Figure 5: Pattern Distributor divides the output classes into two equal portions.

Unseen
Input
pattern Pattern

Distributor
module

…..

Class 1

Class N/r

Module 1

…..

 …
..

Sub-module

Sub-module

Class N/r+1

Class 2N/r

Module 2
2

…..

 …
..

Sub-module

Sub-module

Class (N-1)N/r+1

Class N

Module r
2

…..

 …
..

Sub-module

Sub-module

Unseen
Input
pattern Pattern

Distributor
module

Module 1

Module 2

 Sub-module

Sub-module

Sub-module

…
.

 Sub-module

Sub-module

Sub-module

…
.

Module 1 has several
sub modules, K/2
output classes

Module 2 has several
sub modules, K/2
output classes

 25

Figure 6: An ordinary TD network corresponding to the PD network in figure 5.

Figure 7: Modular pattern distributor

Unseen
test
pattern

Module 1 has
several modules
and K/2 output
classes, and it
corresponds to
Module 1 of the
PD network

Module 2 has
several modules
and K/2 output
classes, and it
corresponds to
Module 2 of the
PD network

Module 1

 Sub-module

Sub-module

Sub-module

…
.

Module 2

 Sub-module

Sub-module

Sub-module

…
.

Unseen
Input
Pattern

•
•

•
•

Sub-module

Sub-module

Sub-module

Sub-module

Pattern Distributor for
Class 1 to Class N/2

patterns

Pattern Distributor for
Class N/2 +1 to Class
N patterns

Figure 8: Training a new hidden unit in CBP learning. Y represents
previously added connections to network output units.

fixed

Y

…

…

New Unit i

1x Nx

 26

Task Decomposition Method Training time
(s)

Hidden
Units

Indp.
 Param.

C. error
(%)

Output Parallelism
(6 sub-modules)

63.7
(in parallel)

197.7
(in series)

253.5

2848.5

14.2236

Non-modular Pattern Distributor’s
performance

(each output of PD module include
three sub-modules)

82.9

30.6

387.2

2.422358

Task Decomposition with non-
modular pattern distributor

(1 pattern distributor modules and 6
sub-modules)

 82.9
(in parallel)

194.3
(in series)

391.2 4413.8 7.82609

 Modular Pattern Distributor’s

Overall Performance

 54.7
(in parallel)

108.7
(in series)

59.7

676.7

2.360246

Task Decomposition with modular
pattern distributor

(2 pattern distributor modules and 6
sub-modules)

54.7
(in parallel)

 220.1
(in series)

420.3 4703.3 7.63975

Table 1: Results for the Glass data

NOTES: 1. In the “Task Decomposition Method” column, “non-modular pattern distributor” means the pattern

distributor module is a classic non-modular feedforward network while “modular pattern

distributor” means the pattern distributor module is decomposed into several modules based on the

Output parallelism method.

 2. “Training time” column stands for the time (CPU time, in seconds) taken by growing and training

each module. Training time (in parallel) stands for the maximum training time among all the

modules (all modules are trained in parallel). Training time (in series) stands for the sum of

training time for all the modules (all modules are trained in series).

3. “Indp. Param.” stands for the total number of independent parameters (the number of weights and

biases in the network) of all modules.

4. “C. Error” stands for classification error.

Task Decomposition Method Training time
(s)

Hidden
Units

Indp.
Param.

C.error
(%)

Output Parallelism 58.7 184.4 2333.8 25.54655

 27

(11 modules) (in parallel)
418.9

(in series)

Non-modular Pattern Distributor’s
performance

(outputs of PD module include 3, 4, 4
output sub-modules respectively)

117

24.5

376

6.680157

Task Decomposition with non-
modular pattern distributor

(1 pattern distributor modules and 11
sub-modules)

 117
(in parallel)

245.6
 (in series)

229.4 2955.8 18.70445

Modular Pattern Distributor’s

Overall Performance

51.8
 (in parallel)

138.8
 (in series)

54 681 6.072874

Task Decomposition with modular
pattern distributor

(3 pattern distributor modules and 11
sub-modules)

51.8
(in parallel)

267.4
 (in series)

258.9 3260.8 18.3

Table 2: Results for the Vowel data

NOTES: Refer to NOTES under Table 1.

Task Decomposition Method Training time
(s)

Hidden
Units

Indp.
Param.

C.error
(%)

Output Parallelism
(7 modules)

610.2
(in parallel)

1719.6
 (in series)

152.1

3175

5.181979

Non-modular Pattern Distributor’s
performance

(outputs of PD module include 3 and 4
output sub-modules respectively)

213.4 13.9 329.9 1.03986

Task Decomposition with non-
modular pattern distributor

(1 pattern distributor modules and 7
sub-modules)

213.4
 (in parallel)

706.9
(in series)

128.9 2762.9 4.61005

Modular Pattern Distributor’s

Overall Performance

155.6
(in parallel)

302.6
(in series)

24.3 524 1.091853

Task Decomposition with modular
pattern distributor

(2 pattern distributor modules and 7
sub-modules)

155.6
 (in parallel)

796.1
(in series)

139.3

2957

4.57539

Table 3: Results for the Segmentation data
NOTES: Refer to NOTES under Table 1.

Task Decomposition Method Training time
(s)

Hidden
Units

Indp.
Param.

C.error
(%)

 28

Output Parallelism
(14 modules)

3707
 (in parallel)

29483.2
 (in series)

394.6

7877

15.784

Non-modular Pattern Distributor’s
performance

(outputs of PD module include 4,4, 3
and 3 output sub-modules respectively)

3940.8

73

1601

17.872

Task Decomposition with non-
modular pattern distributor

(1 pattern distributor modules and 14
sub-modules)

3940.8
 (in parallel)

15088.8
 (in series)

460.4 9331.8 19.396

Modular Pattern Distributor’s

Overall Performance

 2293.6
(in parallel)

7610.4
(in series)

194.6

3570.8

13.088

Task Decomposition with modular
pattern distributor

(4 pattern distributor modules and 14
sub-modules)

2293.6
(in parallel)

 18758.4
(in series)

582 11301.6 15.444

Table 4: Results for the Letter Recognition data

Method Training time
(s)

Hidden
Units

Indp.
Param.

C.error
(%)

Classic Non-modular Network

197.93 26.65 707 34.737

Output Parallelism
(11 modules)

58.7
 (in parallel)

418.9
(in series)

184.4

2333.8

25.54655

Task Decomposition with modular
pattern distributor

(2 pattern distributor modules and
7 sub-modules)

51.8
(in parallel)

267.4
 (in series)

258.9 3260.8 18.3

Table 5: Results for the Vowel data

Method Training time
(s)

Hidden
Units

Indp.
Param.

C.error
(%)

Classic Non-modular Network

20845.05 73.6 3607 21.672

Output Parallelism
(14 modules)

3707
 (in parallel)

29483.2
 (in series)

394.6

7877

15.784

Task Decomposition with modular
pattern distributor

(4 pattern distributor modules and 14
sub-modules)

2293.6
(in parallel)

 18758.4
(in series)

582 11301.6 15.444

Table 6: Results for the Letter Recognition data

