
> PNN05-P762 <

1

Abstract—Task Decomposition with Pattern Distributor (PD) is a

new task decomposition method for multilayered feedforward

neural networks. Pattern distributor network is proposed that

implements this new task decomposition method. We propose a

theoretical model to analyze the performance of pattern

distributor network. A method named Reduced Pattern Training

is also introduced, aiming to improve the performance of pattern

distribution. Our analysis and the experimental results show that

reduced pattern training improves the performance of pattern

distributor network significantly. The distributor module’s

classification accuracy dominates the whole network’s

performance. Two combination methods, namely Cross-talk based

combination and Genetic Algorithm based combination, are

presented to find suitable grouping for the distributor module.

Experimental results show that this new method can reduce

training time and improve network generalization accuracy when

compared to a conventional method such as constructive

backpropagation or a task decomposition method such as Output

Parallelism.

Index Terms—Cross-talk Based Combination, Full Pattern

Training, Genetic Algorithm Based Combination, Pattern

Distributor, Reduced Pattern Training, Task Decomposition,

I. INTRODUCTION

ULTILAYERED feedforward neural networks have been

widely used in solving classification problems. However,

they still exhibit some drawbacks when applied to large scale

real-world problems. One common drawback is that large

networks tend to introduce high internal interference because of

the strong coupling among the hidden-layer weights [1]. The

influences from two or more output units could cause the

hidden-layer weights to compromise to non-optimal values due

to the interference in their weight-updating directions during the

weight-updating process [2]. Various task decomposition

methods have been proposed to overcome this drawback [2-10,

18-21, 23-26]. Instead of using a single, large feedforward

network (classic network), task decomposition methods divide a

problem into a set of smaller and simpler sub-problems based on

Manuscript received November 23, 2005.

Sheng-Uei Guan is with School of Engineering and Design, Brunel

University, Uxbridge, Middlesex, UB8 3PH, UK (e-mail:

steven.guan@brunel.ac.uk).

Chunyu Bao and TseNgee Neo are with the Department of Electrical and

Computer Engineering, National University of Singapore, Singapore 119260,

Singapore (e-mail: chunyubao@gmail.com).

“divide-and-conquer”. The results obtained from solving these

sub-problems are integrated together and the solution for the

original problem is obtained.

Anand et al. proposed a method that splits a K -class

problem into K two-class sub-problems [3]. Each sub-network

is trained to learn one sub-problem only. Therefore, each

sub-network is used to discriminate one class of patterns from

patterns belonging to the remaining classes, thereby resulting in

K modules in the overall structure. Another method divides the

K -class problem into

2

K two-class sub-problems [4]. A

module is designated to learn each sub-problem while training

patterns belonging to the other 2−K classes are ignored. The

final overall solution is obtained by integrating all the trained

modules into a min-max modular network. A powerful

extension to the above class decomposition method, Output

Parallelism, is proposed by Guan [2, 5, 6, 7, 8]. Using output

parallelism, a problem can be divided into several sub-problems

as chosen, each of which is composed of the whole input vector

and a fraction of the output vector. Each module (for one

sub-problem) is responsible for producing a fraction of the

output vector of the original problem. These modules can be

grown and trained in parallel. Instead of decomposing the

problem with a high dimensional output space into several

sub-problems, each with a low dimensional output space, Lu

decomposes the problem into several smaller-size sub-problems

[10]. Patterns are classified by a rough sieve module

(non-modular network) at the beginning and those patterns that

are not classified successfully will be presented to another sieve

module. This process continues until all the patterns are

classified correctly. The sieve modules are added to the network

adaptively with the progress of training.

Although these methods are efficient, there are still some

drawbacks associated with them. Firstly, the methods proposed

in [3] and [4] split the problem into a set of two-class

sub-problems. If the original K-class problem is complex (K is

large), a large number of modules will be needed to learn the

sub-problems and thus resulting in excessive computational

cost. Secondly, although the dimension (number of output class)

of each sub-problem in [2] and [3] is smaller than the original

problem, the size of each sub-problem’s training pattern set is

still as large as the original problem. Therefore, each module

will have long training time and ineffective learning especially

when the original problem is large with many training patterns.

Reduced Pattern Training Based on Task

Decomposition Using Pattern Distributor

Sheng-Uei Guan, Chunyu Bao, and TseNgee Neo

M

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

> PNN05-P762 <

2

Lastly, the method proposed in [10] only reduces the size of the

problem but not the dimension of the problem. The internal

interferences (that exists within each module due to the coupling

of output units) are not reduced.

In this paper, we propose a new task decomposition method

called Task Decomposition with Pattern Distributor (PD) to

overcome the drawbacks mentioned above. A special module

called distributor module is introduced in order to improve the

performance of the whole network. The distributor module and

the other modules in the PD network are arranged in a

hierarchical structure. The distributor module has a higher

position as compared to the other modules in the network. This

means an unseen input pattern will be recognized by the

distributor module first. The structure of a typical PD network is

shown in Figure 1. Each output of the distributor module

consists of a fraction of the overall output classes in the original

problem. The PD method could shorten the training time and

improve the generalization accuracy of a network compared

with ordinary task decomposition methods.

In this paper, the PD method will be discussed in details. In

Section 2, a theoretical model is presented to compare the

performance of a PD network with a typical task decomposition

network – Output Parallelism network. In section 3, we

introduce the Reduced Pattern Training method to improve the

PD network’s performance. Because of the importance of the

distributor module, we present in Section 4 two combination

methods, Cross-talk based combination and GA based

combination, to find good grouping for the distributor module.

In Section 5, the experimental results are shown and analyzed.

Conclusions are presented in Section 6.

II. A THEORETICAL MODEL FOR THE PATTERN DISTRIBUTOR

NETWORK

There are two types of modules in a Pattern Distributor

network, distributor module and non-distributor modules (for

simplicity, non-distributor modules are just called modules).

Normally, a PD network consists of one distributor module and

several non-distributor modules.

Class decomposition is often used to in solving classification

problems. Compared with ordinary methods in which only a

neural network is constructed to solve the problem, class

decomposition divides the problem into several sub-problems

and trains a neural network module for each sub-problem. Then

the results from these modules are integrated to obtain the

solution for the original problem. Output Parallelism (OP) is a

typical class decomposition method. Here we present a model to

show that the PD method has better performance than the OP

method when the recognition rate of the distributor module is

guaranteed.

Consider a classification problem with K output classes. To

solve the problem, a PD network with one distributor module

and r non-distributor modules is constructed. See Figure 2 for

details. There are r outputs in the distributor module and each

non-distributor module is connected to an output of the

distributor module. Each output of the distributor module

consists of a combination of several classes. For an unknown

pattern, the distributor module recognizes and dispatches it to

only one of the outputs. Then the connected non-distributor

module continues the classification process to specify which

class the pattern belongs to. In other words, a non-distributor

module needs to recognize the pattern among several classes.

Assume Module j is a non-distributor module that needs to

recognize K(j) classes. Different non-distributor modules are

…

Module 1

Module 2

Module r

Unseen

input

pattern The

distributor

module

Fig. 1. A typical Pattern Distributor network.

…

Class 1

Class K(1)

…

Module 1

Unseen

input

pattern The

distributor

module

Class K(1)+1

Class K(1)+K(2)

…

Module 2

Class K(1)+K(2)+…+K(r-1)+1

Class K

…

Module r

Fig. 2. The PD network used to solve a K-class problem.

…

Class 1

Class K(1)

…

Module 1

Unseen

input

pattern

Class K(1)+1

Class K(1)+K(2)

…

Module 2

Class K(1)+K(2)+…+K(r-1)+1

Class K

…

Module r

Fig. 3. The OP network used for the same K-class problem.

> PNN05-P762 <

3

assumed to have no overlapping classes, we have the following:

()

1

r

j

j

K K
=

=∑ (1)

Figure 3 shows the corresponding OP network used to solve

the K-class problem above. For the convenience of comparison,

we assume that the OP network has the same output grouping as

the PD network. There are also r modules in the OP network and

Module j needs to recognize K(j) classes among all the patterns.

When an unknown input pattern is presented to the OP network,

it is processed by each module (Module 1 to Module r), and the

final result is obtained by integrating the results from Module 1

to Module r.

In the PD network, a non-distributor module only recognizes

the patterns dispatched to it by the distributor module. These

patterns mostly likely belong to one of the classes covered by

that module. Of course, the distributor module may make wrong

decisions and send wrong patterns to that module. The OP

network is different. Each module needs to recognize all the

patterns. In other words, Module j in the OP network needs to

differentiate the patterns belonging to it from those patterns

which do not. Now we denote the probability of error incurred

by Module j processing the patterns that belong to one of the

classes of Module i by pji. If we do not implement

winner-take-all arbitration, a pattern can be regarded as wrongly

classified if one or more modules give wrong decisions. When a

test pattern belonging to one of the classes of module j enters the

network, the probability of error in the OP network can be

written in the following form:

()

1 2

1 1 1
1 2

(1) (1) (1)
r r r

OP

j j ij j ij rj ij

i i i
i i i r

p p p p p p p
= = =
≠ ≠ ≠

= − + − + + −∏ ∏ ∏�

1 2 1 3 (1)

1 1 1
1,2 1,3 1,

(1) (1) (1)
r r r

j j ij j j ij r j rj ij

i i i
i i i r r

p p p p p p p p p−

= = =
≠ ≠ ≠ −

+ − + − + + −∏ ∏ ∏�

1 2 (1)j j r j rjp p p p−

+

+

�

�

 (2)

The first r terms represent the probability of a test pattern being

classified wrongly by one module. The following)1(
2

1
−⋅ rr

terms represent the probability of the test pattern being

classified wrongly by two modules, and so on. Equation (2) can

be rewritten as:
()

1 2 1 2 1 3 (1)()OP

j j j rj j j j j r j rjp p p p p p p p p p−= + + + − + + +� �

1

1 2 3 (2) (1) 1 2() (1) ()r

j j j r j r j rj j j rj
p p p p p p p p p

−
− −+ + + − + −� � � (3)

Here r is the number of modules and is normally not a large

number. So the number of terms in the above equation is not a

large number.
ijp is a small positive real number. In other

words,
kjij pp is much smaller than

ijp . We can ignore the

terms of the product of two and more
ijp ’s. Thus,

()

1 2

OP

j j j rjp p p p≈ + + +� (4)

The number of test patterns classified wrongly by the OP

network is:

() ()

1 2

1 1 1 1

()
r r r r

OP OP

j j j j j rj j kj

j j j k

N N p N p p p N p
= = = =

= ⋅ = + + + =

∑ ∑ ∑ ∑�

 (5)

where Nj is the number of patterns belonging to the classes of

Module j. It can also be written as:

()

1 1 2 2

1

()
r

OP

k k k kk r kr

k

N N p N p N p N p
=

= + + + + +∑ � �
 (6)

Now we define
*kp as the probability of error when Module k

processes the patterns not belonging to the classes of Module k.

Equation (6) can be revised as:

∑
=

⋅−+=
r

k

kkkkk

OP pNNpNN
1

*

)())(((7)

where
kkp is the probability of error when Module k processes

the patterns belonging to it, N is the number of test patterns and

Nk is the number of patterns belonging to the classes of Module

k.

It should be mentioned that in the above OP network, each

module can be trained separately using all the training patterns,

whereas for the PD network, we can also train these modules

separately. If we use all the training patterns to train these

modules, then the weights and hidden units of the

non-distributor modules will be the same as those of the

corresponding modules in the OP network. After the training of

the PD network is completed, the distributor module will be the

first to classify any unseen input pattern. The corresponding

output unit in the pattern distributor will have the largest output

value among all the output units. Then only the corresponding

module will be activated. After that, the input pattern is

presented to this module only and then this module will

complete the classification process. Only the distributor module

and the corresponding module are used in the classification

process.

Let p0 be the probability of error of the distributor module.

Then the number of test patterns which are classified wrongly

by the distributor module is

00 pNM ⋅= (8)

Assume the distributor module classifies patterns wrongly in a

uniform manner. In other words, the number of wrongly

classified patterns by the distributor module to each

non-distributor module is proportional to the number of patterns

entering that non-distributor module. The number of correct

patterns that enter Module j is)1(0pN j − . Then, the number of

patterns classified wrongly by Module j is written as:

jjjj ppNM)1(0−= (9)

Thus, the number of patterns classified wrongly by the PD

network can be expressed as:

∑∑
==

⋅−+⋅==
r

i

jjj

r

i

i

PD pNppNMM
1

00

0

)()1(

 (10)

Comparing the OP network with the PD network, we have

() ()

* 0 0

1 1

[()] (1)
r r

OP PD

j jj j j j jj

j j

N M N p N N p N p p N p
= =

− = + − − ⋅ − − ⋅∑ ∑

> PNN05-P762 <

4

* 0 0

1 1

()
r r

j j j jj

j j

N N p N p p N p
= =

= − − ⋅ + ⋅∑ ∑ (11)

Similar to the analysis made earlier, jji pp 0 is much smaller

than *jp and 0p . So

() ()

* 0

1

()
r

OP PD

j j

j

N M N N p N p
=

− ≈ − − ⋅∑ (12)

Now we have derived the condition under which the PD

network can achieve better classification accuracy than the OP

network:

0

1

*)(pNpNN
r

j

jj ⋅>−∑
=

 (13)

We know that each module needs to process all the test patterns

in an OP network, while in a PD network each non-distributor

module only needs to process a sub-set of the test patterns.

Intuitively, if the number of wrongly-classified patterns by the

distributor module in the PD network is smaller than the sum of

the number of patterns wrongly classified by each module when

processing patterns not belonging to it in the corresponding OP

network, the PD network will perform better.

Discussions:

1. Class decomposition can still be applied to the modules

of the OP network and PD network so that these modules

can be further decomposed into sub-modules. If each

sub-module is used to recognize one class from all the

patterns, then there will be N sub-modules in the whole

OP network. Of course, these sub-modules may belong

to different modules. Figure 4(a) shows an example of a

6-class OP network. There are two modules that are

further partitioned into 6 sub-modules. Figure 4(b)

shows a fully decomposed OP network for this 6-class

problem. In both OP networks, all the training patterns

are used to train these sub-modules. So the sub-modules

in Figure 4(a) are the same as their counterparts in

Figure 4(b). In Figure 4(a), the sub-modules are

grouped into two modules. For an unknown pattern, the

outputs from Sub-modules 1, 2, 3 are considered

together to give the result of Module 1, similar for

Module 2. Then the results from Module 1 and Module 2

are considered together to give the final output. In the

OP network of Figure 4(b), the outputs from all the

sub-modules are considered altogether to give the final

output. In fact, there is little difference between the OP

networks in Figure 4(a) and 4(b). Note that the

non-distributor modules in the PD network are the same

as the counterparts in the OP network. Thus, by

decomposing the modules into sub-modules, we can

compare the performance of the PD network with that of

the fully decomposed OP network. In most of our

experiments, we used networks like such.

2. 2. In Equation (4), we have ignored the situation in

which two or more modules make wrong decisions at the

same time because the situation appears much less

frequently compared to the situation in which only one

module makes wrong decisions. If we do consider that

situation, ()OP

jp will be a little smaller than

rjjj ppp +++ �21
.

3. In the above model, we do not consider the

implementation of winner-take-all for the OP network.

In reality, winner-take-all is used for selecting a unit

among several candidate units to produce the final

output. The purpose of a conventional winner-take-all

network is to select a unit with the highest activation

strength from a set of candidates. Using winner-take-all,

the network may still choose the correct output even if

some modules make wrong decisions. For example,

consider a test pattern that belongs to Class A in Module

1. When the pattern enters Module 1 of the OP network,

Module 1 produces the correct answer – Class A.

However, when the pattern enters Module 2 of the OP

network, Module 2 gives an incorrect answer and thinks

it belongs to Class B. If the output corresponding to

Class A is larger than that of Class B, the OP network can

still give a correct decision. Using winner-take-all will

slightly reduce the final classification error of the OP

Sub-module4

Sub-module5

Sub-module6

Module 2

Sub-module1

Sub-module2

Sub-module3

Module 1

Unseen

Input

pattern

(a)

Sub-module4

Sub-module5

Sub-module6

Sub-module1

Sub-module2

Sub-module3

Unseen

Input

pattern

(b)

Fig. 4. Two OP networks for a 6-class problem.

> PNN05-P762 <

5

network than not using it.

III. MOTIVATION FOR REDUCED PATTERN TRAINING

In a PD network, an unseen pattern is firstly classified by the

distributor module to decide which module will continue to

process it. Then the corresponding module will be activated.

Thus only two modules are used to process that pattern. Now we

look at all the test patterns. We note that each non-distributor

module only processes a subset of the test patterns. In other

words, each non-distributor module only needs to recognize the

patterns belonging to it if the distributor module classifies all the

test patterns correctly. Also, if the distributor module classifies

some patterns wrongly, the mistake can not be corrected by the

later modules. This motivates us to train a non-distributor

module using only the patterns belonging to it. Such a method is

called Reduced Pattern Training (RPT). Similarly, the method

of using the whole training set to train each non-distributor

module is called Full Pattern Training (FPT).

When we train Module j using FPT, the module will carry

information of the instances that do not belong to its own

classes. Such information does not contribute to the

classification accuracy of Module j. So it is useless. Also,

training time would be reduced when training using RPT

compared with FPT.

Moreover, training Module j together with unnecessary

patterns may reduce the ability of Module j to classify the

patterns belonging to Module j correctly. There are two aspects.

Firstly, the objective of training is to let each module reach its

best classification accuracy when processing the patterns

dispatched to it. Using FPT, a module may be able to attain its

best performance when it needs to process all the test instances.

However, it may not attain its best performance when

processing only a subset of the test instances. Secondly, for

patterns not belonging to Module j it would have the outputs as

0 during the learning process. (In our experiments, if a pattern

belongs to some class, the corresponding output is 1, otherwise,

0). With the introduction of those patterns not belonging to

Module j, there are much more patterns with an output label 0

than patterns with an output label 1 in the learning process. So

the patterns with an output label 0 will be more influential in

updating the weights and therefore in computing the training

error function. In contrast, the patterns with an output label 1

will become less influential in the decision of weight updates.

After the training process is over, it is likely that the trained

network may mislabel some test patterns, in particular those

patterns with an output label 1. From the above observations, we

conclude those unnecessary patterns are harmful to the module

training. Our experimental results confirmed that RPT is crucial

for a PD network to obtain good performance.

Reduced pattern training might not be applicable to OP,

because the modules in an OP network operate in parallel and

each module must deal with all the test patterns in the test

process. Training these modules using reduced patterns may

lead to information loss. And it may lead to poor accuracy when

the test patterns are presented.

IV. COMBINATION OF CLASSES IN THE DISTRIBUTOR MODULE

From the analysis in Section 2, it can be seen that the

performance of a PD network depends greatly on the accuracy

of the distributor module. How to group the classes and

combine them becomes a key issue in designing a PD network.

We define two concepts – combination and combination set.

If some classes are grouped together, we call them a

combination. The combination of class A, class B and class C is

denoted as {A, B, C}. Once some classes are combined, they

will form a new class. A combination set is an aggregation of

combinations where each class in the original problem appears

once and exactly once. For example, in a 6-class problem,

{{1,2,3},{4,5},{6}} is a combination set. Here we present two

methods to find an appropriate combination set in the distributor

module.

A. Cross-talk Based Combination

The basic idea is to find classes which are close in the feature

space and combine them together. We first project a

d-dimensional (d is the number of the input classes) input space

to a one-dimensional space using Fisher’s linear discriminant

(FLD) method [12]. The distances between the centers of

different classes are calculated. Then these distances are

arranged to form a table which is called Cross-talk table. If the

distance between two classes in the Cross-talk table is relatively

small, then the two classes are likely to be close in the feature

space. Thus, we choose and combine those classes that have

relatively smaller distances from each other in the Cross-talk

table.

B. Genetic Algorithm Based Combination

The basic idea of this method is to find an optimal or

near-optimal combination set through evolution. First, we

define our chromosome encoding. A binary string of specific

length is often used to encode a chromosome in canonical

genetic algorithms, but it is not suitable here. Thus, we define

chromosome according to the following principles. A

chromosome consists of a sequence of combination numbers,

wherein each class is encoded with its combination number. The

length of a chromosome is equal to the number of the classes.

Assume chromosome encoding always starts with the smallest

class number and increases as follows. For example, 122333 is a

chromosome for a 6-class problem. “1” in the first place means

class 1 belongs to combination 1. Similarly, number “3” in the

fourth place means class 4 belongs to combination 3. The

corresponding combination set of this chromosome is {{1},

{2,3}, {4,5,6}}. There is a need for normalization, however. Let

us look at another example, chromosome 233111. It is obvious

that chromosome 233111 and chromosome 122333 represent

the same combination set (though the ordering differs).

Therefore, chromosome 233111 can be normalized as 122333.

For convenience, we convert all the chromosomes into a form

like 122333. This process is called standardizing the

> PNN05-P762 <

6

chromosomes. The procedure of standardizing a chromosome is

shown in the Appendix.

Then we create an initial population of chromosomes. After

generating the initial population, each chromosome is evaluated

and assigned a fitness value. Here we use a simple neural

network for the evaluation and use the classification error f of

the validation data set to calculate the fitness:

2
ave

f
fitness

f
= − (14)

where fave is the average of classification errors based on the

validation data set for all the chromosomes in the population. f is

also called evaluation value. If 2
ave

f

f
− is smaller than 0,

0fitness = .

The execution of our genetic algorithm can be viewed as a

two-stage process. It starts with the current population. Then

selection is applied to the current population to generate an

intermediate population. After that, mutation and crossover are

applied to the intermediate population to create the next

population. We use “stochastic universal sampling” to form the

intermediate population [11]. Assume that the population is laid

out in random order as in a pie graph in which each individual is

assigned space on the pie graph in proportion to fitness. Next an

outer roulette wheel is placed around the pie with N equally

spaced pointers (N is the number of the population). A single

spin of the roulette wheel will now simultaneously pick all N

members of the intermediate population.

After the construction of the intermediate population,

crossover and mutation are used to generate the next population.

Crossover is applied to randomly paired chromosomes with a

probability pc. Consider two chromosomes: 112233 and

122123. The random crossover point is chosen, for example,

after the 4
th

 place. Then the numbers in the 5
th

 and 6
th

 places are

exchanged and new chromosomes are formed. Here the new

chromosomes are 112223 and 122133. After crossover,

mutation is applied to random chromosomes with a probability

pm. After a chromosome is selected for mutation, a place is

randomly selected for mutation and the number in that place is

randomly chosen. After the crossover and mutation is complete,

standardize the chromosomes. Then the next population is

evaluated and becomes the current population. Then the above

process is repeated.

There is another important parameter Nmax - maximum

number of classes in a combination. Using this parameter, we

kick out some chromosomes directly. For a 6-class problem, if

we choose Nmax=3, then chromosome 121112 will be

eliminated, because combination {1,3,4,5} has four classes. The

purpose of setting Nmax is to avoid the existence of

non-distributor modules with many classes. If there are many

classes in a non-distributor module, it is unlikely that this

module can recognize patterns with a high classification rate.

With a chromosome like 111111, there is only one grouping and

the job of the distributor would be trivial. For this extreme case,

the classification error of the distributor module is obviously 0

because the distributor module combines all the classes

together. Such an extreme case can be avoided using the

parameter Nmax.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Electronic Image Files (Optional)

Constructive Backpropagation (CBP) algorithm was used to

train the network in the experiments. Please refer to [13] for

details. CBP can reduce the excessive computational cost

significantly and it does not require any prior knowledge

concerning decomposition. In this paper, RPROP is used with

the following parameters: η+
 = 1.2, η-

 =0.5, ∆0 = 0.1, ∆max = 50,

∆min = 1.0e-6, (η+
/η-

 is the increase/decrease parameter, ∆0 is

the initial update-value and ∆max/∆min stands for the upper/lower

limit of the update-value) with initial weights selected from

–0.25…0.25 randomly. Please refer to [14] for details. In order

to avoid large computational cost and overfitting, a method

called early stopping based on validation set is used as the

stopping criteria. Please refer to [22] for details.

The set of available patterns is divided into three sets: a

training set is used to train the network, a validation set is used

to evaluate the quality of the network during training and to

measure overfitting, and a test set is used at the end of training to

evaluate the resultant network. The size of the training,

validation, and test sets is 50%, 25% and 25% of the problem’s

total available patterns.

Four benchmark classification problems, namely Vowel,

Glass, Segmentation, and Letter Recognition were used to

evaluate the performance of the new modular network – Task

Decomposition with Pattern Distributor. These classification

problems were taken from the PROBEN1 benchmark collection

[15] and University of California at Irvine (UCI) repository of

machine learning database [16]. In the set of experiments

undertaken, the first three classification problems were

conducted 20 times and the Letter Recognition problem was

conducted 8 times (due to the long training time). All the hidden

units and output units use the sigmoid activation function and

Eth is set at 0.1. When a hidden unit addition was required, 8

candidates were trained and the best one selected. All the

experiments were simulated on a Pentium IV – 2.4GHZ PC. The

sub-problems were solved sequentially and the CPU time

expended was recorded respectively.

B. Experiments for PD network based on full and reduced

pattern training

1) Glass: This data set is used to classify glass types. The data

set consists of 9 inputs, 6 outputs, and 643 patterns (divided into

321 training patterns, 161 validation patterns, and 161 test

patterns). These patterns were normalized and scaled so that

each component lies within [0, 1].

Figure 5 shows the OP network structure used for this

problem. The OP network is composed of 6 sub-modules and

each sub-module recognizes one class from all the patterns. As

described in Discussion 1 in Section 2, these sub-modules are

combined into 2 modules in the OP network. The sub-modules

> PNN05-P762 <

7

which recognize class 1, class 3 and class 5 are combined into

Module 1 and the remaining sub-modules are grouped into

Module 2.

Table I lists some data which are used in expression (13).

Here Ni represents the number of the patterns in the test data set

belonging to the classes of Module i while N denotes the overall

number of the patterns. pii is the probability of error when

Module i processes the patterns belonging to Module i and pi* is

the probability of error when Module i processes the patterns

not belonging to Module i. Now we show that Discussion 2 in

Section 2 is reasonable. There are two modules in the OP

network. From Table I, we have
11 8.4142%p = and

12 1* 4.7340%p p= = . So
11 12 0.40%p p⋅ = , which is much

smaller than
11p and

12p . It is similar that
22 21 0.39%p p⋅ = ,

which is much smaller than
21p and

22p . Ignoring these terms

has little effect to the final results. In other words, the situation

in which two or more modules making wrong decisions at the

same time can be ignored. Now we follow up Discussion 3 in

Section 2 – the effect of winner-take-tall. From Table I, we can

compute the classification error before the implementation of

winner-take-all, which is

1 11 2 1* 2 22 1 2* 17.7562%N p N p N p N p⋅ + ⋅ + ⋅ + ⋅ = . The result is

slightly larger than the result using winner-take-all, which is

14.2547% (see Table II). It also matches our analysis in

Discussion 3, Section 2.

The PD network structure for this problem is shown in Figure

6. The distributor module has two outputs, one has the

combination {1,3,5} while the other has {2,4,6}. Module 1

consists of 3 sub-modules, identical to its counterpart in the OP

network, and same for Module 2.

Table II shows the experimental results of the ordinary

method, the OP method, the PD method with Full Pattern

Training (FPT) and the PD method with Reduced Pattern

Training (RPT). The ordinary method is a method in which a

single-module neural network was constructed to solve the

problem. Constructive Backpropagation (CBP) algorithm is still

used in the ordinary method. “Indep. Param.” stands for the total

number of independent parameters (i.e., the number of weights

and biases in the network). “C. Error” stands for classification

error. Training time (in parallel) is the maximum training time

among all the modules (all modules were trained in parallel).

Training time (in series) stands for the sum of training time for

all the modules (all modules were trained in series). Using the

ordinary and the OP methods, the classification errors were

16.0870% and 14.2547% respectively, while using the PD

method, the classification errors were 10% for FPT and

7.8261% for RPT. Comparing with the classification errors

Class 2

Class 4

Class 6

Sub-module4

Sub-module5

Sub-module6

Module 2

Class 1

Class 3

Class 5

Sub-module1

Sub-module2

Sub-module3

Module 1

Unseen

input

pattern

Fig. 5. The OP network used for the Glass problem.

Class 2

Class 4

Class 6

Sub-module4

Sub-module5

Sub-module6

Module 2

Class 1

Class 3

Class 5

Sub-module1

Sub-module2

Sub-module3

Module 1

Distributor

Module

Unseen

input

pattern

Fig. 6. The PD network used for the Glass problem.

TABLE I

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE GLASS DATA

Output

Parallelism
Ni pii (%) N-Ni pi* (%)

Module 1 67 8.4142 94 4.7340

Module 2 94 18.1383 67 2.1642

TABLE II

RESULTS FOR THE GLASS DATA

Method Training

time (s)

Hidden

Units

Indep.

 Param.

C. error

(%)

Ordinary method

(no task decomposition)

168.1

46 796 16.0870

Output Parallelism

(2 modules,

6 sub-modules)

63.7

(parallel)

197.7

(series)

253.5

2848.5

14.2547

The

distributor

module

82.9

30.6

387.2

2.4224

Overall

network

(FPT)

85.2

(parallel)

 298.7

(series)

280.9 3200.5 10.0

Pattern

Distributor

(1

distributor

module,

2 modules,

6

sub-modul

es)

Overall

network

(RPT)

 82.9

(parallel)

194.3

(series)

391.2 4413.8 7.8261

> PNN05-P762 <

8

from the former two approaches, the classification errors

obtained by the PD network are much smaller. It can be also

noted that the classification error is further reduced when using

RPT instead of FPT.

Now we explain why the PD network can achieve smaller

classification error than the other two methods. According to

our analysis, if Expression (13) is satisfied, the PD network will

have better classification accuracy. Using the data in Table I, we

have 9.5)(
2

1

* ≈−∑
=j

jj pNN . From the classification error p0 of

the distributor module in Table II, we find 9.30 ≈⋅ pN . Thus,

Condition (13) is satisfied, which means that using the PD

network will get smaller classification error. From Table II, we

can see that the number of hidden units and the number of

independent parameters in the PD network are larger than those

in the ordinary network and the OP network. This can be

attributed to the fact that the PD network has more modules than

the other two. From Table II, we can also note the changes of the

training time using the above three methods. With series

training, the training time of FPT (298.7s) is larger than those of

the ordinary network (168.1s) and the OP network (197.7s) due

to a large number of modules in the PD method. However, the

training time of RPT (194s) is reduced compared to that of FPT

and is thus comparable to the training time of the other two

networks. The reason for this is that the number of training

instances used in RPT is smaller than that in FPT. With parallel

training, the training time of the PD network (RPT or FPT) is

similar to those of the other two methods, and it is even shorter

than that of the ordinary method. From the above analysis, we

see that the PD method, especially RPT, performs better than

the other methods.

2) Vowel: The input patterns of this data set are 10 element

real vectors representing vowel sounds that belong to one of 11

classes. It has 990 patterns in total (they are divided into 495

training patterns, 248 validation patterns, and 247 test patterns).

The patterns were normalized and scaled so that each

component lies within [0, 1]. The distributor module has 3

outputs, {1,2,3}, {4,5,6,7} and {8,9,10,11}. Module 1

recognizes classes 1, 2, 3 and consists of 3 sub-modules.

Module 2 recognizes classes 4,5,6,7 and consists of 4

sub-modules, while Module 3 recognizes classes 8,9,10,11 and

consists of 4 sub-modules. The OP network has the same

Module 1, Module 2 and Module 3 as the PD network.

The experimental results of the ordinary method, the OP

method and the PD method for the Vowel data are listed in

Table IV. Using the ordinary method and the OP method, the

classification errors were 37.1660% for the ordinary method

and 25.5466% for the OP method respectively, while using the

PD method, the classification errors were 24.8987% for FPT

and 18.7045% for RPT. The classification error obtained by

FPT is much smaller than the classification error of the ordinary

method and resembles that of the OP method. While for RPT,

the classification error is decreased to 18.7045%, which is much

smaller than those of FPT and the other two methods. We can

compute the number of wrongly-classified patterns using the

data in Table III to explain why the PD method can get smaller

classification errors than the other two methods. We have

9.19)(
3

1

* ≈−∑
=j

jj pNN while 5.160 ≈⋅ pN . Expression (13) is

satisfied. Thus the PD network has smaller classification errors.

From Table IV, we can see that the number of hidden units and

the number of independent parameters in the PD network (RPT

or FPT) are larger than those in the ordinary and OP networks.

Table IV also shows the training time using these methods.

Using series training, the training time of FPT (534.3s) is longer

than those of the ordinary network (237.9s) and the OP network

(418.9s). The training time of RPT (245.6s) is much reduced

compared to that of FPT and is also smaller than those of the

former two networks. If parallel training is used, the training

process of the PD network can save more time. From the above

analysis, we see that RPT outperforms the others.

3) Segmentation: This data set consists of 18 inputs, 7

outputs, and 2310 patterns (1155 training patterns, 578

validation patterns, and 577 test patterns). The patterns were

normalized and scaled so that each component lies within [0, 1].

The distributor module has 2 outputs, {3,4,5} and {1,2,6,7}.

Module 1 recognizes classes 3, 4, 5 and consists of 3

sub-modules. Module 2 recognizes classes 1,2,6,7 and consists

of 4 sub-modules. The OP network has the same module

composition as the PD network.

Table VI shows the simulation results of the ordinary method,

the OP method, the PD method (FPT and RPT). Using the

ordinary method and the OP method, the classification errors

TABLE III

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE VOWEL DATA

Output

Parallelism
Ni pii (%) N-Ni pi* (%)

Module 1 69 9.8551 178 2.9775

Module 2 96 32.0833 151 3.2450

Module 3 82 34.7561 165 5.8788

TABLE IV

RESULTS FOR THE VOWEL DATA

Method Training

time (s)

Hidden

Units

Indep.

 Param.

C. error

(%)

Ordinary method

(no task decomposition)

237.9 23.6 640.2 37.1660

Output Parallelism

(3 modules, 11

sub-modules)

58.7

 (parallel)

418.9

(series)

184.4

2333.8

25.5466

The

distributor

module

117

24.5

376

6.6802

Overall

network

(FPT)

117

(parallel)

534.3

 (series)

210.6 2730.2 24.8987

Pattern

Distributor

(1

distributor

module, 3

modules

and 11

sub-modul

es)
Overall

network

(RPT)

 117

(parallel)

245.6

 (series)

229.4 2955.8 18.7045

> PNN05-P762 <

9

were 5.7366% and 5.1820% respectively, while using the PD

method, the classification errors were 5.4419% for FPT and

4.6101% for RPT. From Table V, we have
2

*

1

() 2.3j j

j

N N p
=

− ≈∑ .

From Table VI, we find
0 6.0N p⋅ ≈ . So Expression (13) is not

satisfied and FPT has a larger classification error than the OP

network. It is also noted that the classification error is decreased

when using RPT to replace FPT. From Table VI, we can see that

the number of hidden units and the number of independent

parameters in the PD networks are larger than those in the

ordinary and OP networks. From Table VI, we also notice

changes in training time using the above three methods. Under

series training, the training time of FPT (2219.2s) is larger than

the training times of the ordinary network (693.8s) and the OP

network (1719.6s) due to a large number of modules in the PD

network. However, the training time of RPT (706.9s) is reduced

compared to that of FPT and the OP network and is thus

comparable to the training time of the ordinary method. With

parallel training, the training time of RPT is the smallest one.

From the above analysis, we see that RPT performs better than

the other methods.

4) Letter recognition: The goal of this data is to recognize

digitized patterns. Each element of the input vector is a

numerical attribute computed from a pixel array containing the

letters. This data set consists of 16 inputs, 26 outputs, and 20000

patterns (10000 training patterns, 5000 validation patterns, and

5000 test patterns). All the patterns were normalized and scaled

so that each component lies within [0, 1]. The distributor

module has 4 outputs, {1,2,3,4,5,6,7}, {8,9,10,11,12,13,14},

{15,16,17,18,19,20} and {21,22,23,24,25,26}. Module 1

recognizes classes 1,2,3,4,5,6,7. Due to the long training time of

this problem, Module 1 is not further divided into sub-modules.

Module 2 recognizes classes 8,9,10,11,12,13,14, Module 3

recognizes classes 15,16,17,18,19,20 and Module 4 recognizes

classes 21,22,23,24,25,26. The OP network has the same

module composition as the PD network. For a fair comparison

with the PD network, sub-modules are not used in the OP

network.

The experimental results of the ordinary method, the OP

method and the PD method for the Letter data are listed in Table

VIII. Using the ordinary method and the OP method, the

classification errors were 21.672% for the ordinary method and

19.260% for the OP method respectively. Using the PD method,

the classification error were 20.515% for FPT and 15.855% for

RPT. The classification error obtained by FPT resembles the

classification errors using the ordinary method and the OP

method. Using RPT, the classification error is much smaller

than the classification errors of the other three networks. From

Table VII, we have 3.330)(
2

1

* ≈−∑
=j

jj pNN . From Table VIII,

we find 8.6090 ≈⋅ pN . So Expression (13) is not satisfied,

which means that FPT has a larger classification error. From

Table VIII, we see that the number of hidden units and the

number of independent parameters in the PD network are larger

TABLE V

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE SEGMENTATION

DATA

Output

Parallelism
Ni pii (%) N-Ni pi* (%)

Module 1 246 10.4129 331 0.2417

Module 2 331 0.9215 246 0.6098

TABLE VI

RESULTS FOR THE SEGMENTATION DATA

Method Training

time (s)

Hidden

Units

Indep.

 Param.

C. error

(%)

Ordinary method

(no task decomposition)

693.8

29 887 5.7366

Output Parallelism

(7 sub-modules)

610.2

(parallel)

1719.6

 (series)

152.1

3175

5.1820

The

distributor

module

213.4 13.9 329.9 1.0399

Overall

network

(FPT)

1002.2

 (parallel)

2219.2

(series)

128.5

2754.9

5.4419

Pattern

Distributor

(1

distributor

module, 2

modules

and 7

sub-modu

les)

Overall

network

(RPT)

213.4

 (parallel)

706.9

(series)

128.9 2762.9 4.6101

TABLE VII

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE LETTER DATA

Output

Parallelism
Ni pii (%) N-Ni pi* (%)

Module 1 1359 20.833 3641 2.856
Module 2 1333 24.812 3667 1.084
Module 3 1195 25.109 3805 3.035
Module 4 1113 11.051 3889 1.826

TABLE VIII

RESULTS FOR THE LETTER DATA

Method Training

time (s)

Hidden

Units

Indep.

 Param.

C. error

(%)

Ordinary method

(no task decomposition)

20845.05 73.6 3607 21.672

Output Parallelism

(4 modules)

5519

 (parallel)

18112.6

 (series)

173.4 6586.8 19.260

The

distributor

module

2510

 (parallel)

8497

 (series)

219.5 4019.0 12.195

Overall

network

(FPT)

6110

 (parallel)

26723.8

 (series)

386.25 8384.5 20.515
Pattern

Distributor

(1

distributor

module, 4

modules)
Overall

network

(RPT)

2510

 (parallel)

14094.5

(series)

344.25 7391.0 15.855

> PNN05-P762 <

10

than those in the ordinary and OP networks. Table VIII also

shows the training time using these methods. Under series

training, the training time of FPT (26723.8s) is larger than those

of the ordinary network (18112.6s) and the OP network

(20845.05s). The training time of RPT (14094.5s) is greatly

decreased compared to that of FPT and is also smaller than

those of the former two networks. If parallel training was used,

the training process of RPT could save more time. From the

above analysis, we can see that RPT performs better than the

others.

C. Cross-talk based combination for distributor modules

Two classification problems, namely Segmentation and

Glass were used in the experiments.

1) Segmentation: The Cross-talk table for this problem is

obtained using the method described in Section 4.1, as shown in

Table IX. As mentioned in Section 4.1, if the distance between

two classes in the Cross-talk table is relatively small, then these

two classes are likely to be close in the feature space. From

Table IX, we want to find classes which are close to each other

and combine them. For simplicity, we use d(i,j) to denote the

distance between class i and class j. From the table, d(3,5) is

1.6476, d(4,5) 3.0618 and d(3,4) 6.7673. These distances are

relatively small compared with other distance figures. Thus, we

combine classes 3,4,5 together. In the remaining four classes,

class 1 is relatively close to classes 3,4,5. Thus, we combine

1,3,4,5 together. Now look at classes 2,6,7. Class 2 and class 6

are relatively close and we combine them together. The final

combination set is {{1,3,4,5},{2,6},{7}}.

We use another combination set {{1,2,7},{3,4},{5,6}}for

comparison with the above set. In this set, we combine together

the classes with relatively large distances. The experimental

results for these two partitions are shown in Table X. Table X

shows that the distributor module’s classification error as well

as the overall classification error are reduced when the classes

close to each other are combined together.

2) Glass: The Cross-talk table for this data set is shown in

Table XI. We can see that the distances among class 1, class 2

and class 3 are 0.4467, 0.3481 and 0.501, which are much

smaller than the other distances. So classes 1, 2, 3 are combined.

In the remaining classes, it seems that class 4 is close to class 2.

However, d(4,1) and d(4,3) is very large. Class 4 is not added to

combination {1,2,3}. Note that class 4, class 5 and class 6 have

relatively small distances. Thus, classes 4,5,6 are combined.

Thus, the final combination set is {{1,2,3}, {4,5,6}}.

We use another combination set {{3,4,6},{1,2,5}}for

comparison with the above set. In this set, we combine together

the classes with relatively large distances. The experimental

results for the two different partitions are shown in Table XII.

From Table XII, it is confirmed that the distributor module’s

classification error as well as the overall classification error are

reduced when the classes close to each other are combined

together.

D. Genetic Algorithm based combination for distributor

TABLE IX

CROSS-TALK TABLE FOR THE SEGMENTATION DATA

 1 2 3 4 5 6 7

1

0 233.0 9.948 17.66 8.876 40.34 53.91

2

233.0 0 72.53 17.12 53.10 42.95 518.8

3

9.948 72.53 0 6.767 1.648 18.55 40.66

4

17.66 17.12 6.767 0 3.062 4.458 54.70

5

8.876 53.10 1.648 3.062 0 16.34 29.02

6

40.34 42.95 18.55 4.458 16.34 0 60.95

7

53.91 518.8 40.66 54.70 29.02 60.95 0

TABLE X

RESULTS FOR THE SEGMENTATION PROBLEM USING CROSS-TALK BASED

COMBINATION

Grouping of

Output classes

 The distributor module’s

Classification error (%)

Overall

Classification error

(%)

Module 1 {1,3,4,5}

Module 2{2,6}

Module 3{7}

(RPT)

0.1040

4.6187

Module 1{1,2,7}

Module 2{3,4}

Module 3{5,6}

(RPT)

4.7834

5.3900

TABLE XI

CROSS-TALK TABLE FOR THE GLASS DATA

 1 2 3 4 5 6

1

0 0.4467 0.3481 13.0807 7.7731 10.8269

2

0.4467 0 0.501 1.2606 1.9163 5.8246

3

0.3481 0.501 0 26.312 9.2086 7.6053

4

13.0807 1.2606 26.312 0 4.6975 6.8534

5

7.7731 1.9163 9.2086 4.6975 0 2.1657

6

10.8269 5.8246 7.6053 6.8534 2.1657 0

TABLE XII

RESULTS FOR THE GLASS PROBLEM USING CROSS-TALK BASED COMBINATION

Grouping of

Output classes

 The distributor module’s

Classification error (%)

Overall

Classification error

(%)

Module 1{1,2,3}

Module 2{4,5,6}

(RPT)

2.4224

7.5776

Module 1{3,4,6}

Module 2{1,2,5}

(RPT)

4.5963

8.5093

> PNN05-P762 <

11

modules

To compare with the results in section 5.3, the same

classification problems, namely Segmentation and Glass were

used in the experiments. In the experiments, we chose the

probability of crossover pc=0.2 and the probability of mutation

pm=0.2. For each chromosome, the classification error of the

validation set is computed 5 times. The evaluation value is the

average of the classification errors from 5 runs.

1) Segmentation: In the experiments, we set the maximum

number of combination Nmax=4. The population number is 20.

Due to long computation time, only 30 generations were bred in

our experiments. We identified the best chromosome 1211133,

or {{1,3,4,5},{6,7},{2}}. The experimental results are shown

in Table XIII. Comparing the results in Table XIII with those in

Table X, it can be seen that using GA based combination, the

classification error of the distributor module is decreased from

0.1040% to 0.0173%. The classification error of the whole

network is slightly better than that using Cross-talk based

combination.

2) Glass: In the experiments, we set the maximum number of

combination Nmax=3. The population number is 12. Due to long

computation time, only 30 generations were bred in our

experiments. We identified the best chromosome 121212, or

{{1,3,5},{2,4,6}}. The experimental results are shown in Table

XIV. Comparing the results in Table XIV with those in Table

XII, it can be seen that using GA based combination, the

classification error of the distributor module is equal to that

using Cross-talk based combination. The classification error of

the whole network is slightly larger than that using Cross-talk

based combination.

In the above two sets of experiments, it took 11 epochs for the

Glass problem and 14 epochs for the Segmentation problem to

locate the best chromosome. With the increasing number of

classes, the number of epochs required to locate the best

chromosome will also be increased. In the above two examples,

we see that the classification error of the distributor module

using GA based combination seems better than or equal to that

using Cross-talk based combination. However, the whole

network’s performance using GA based combination is not

always better than that using Cross-talk based combination. It is

also related to the recognition rates of the non-distributor

modules. It can be seen that GA based combination may not be a

good choice compared with Cross-talk based combination in

these two examples, due to the fact that the improvement in

classification rate is trivial while much more computation is

needed for GA based combination. For problems with a large

number of classes whose Cross-talk computation is more costly

and harder to analyze, GA based combination may be a better

choice. On the other hand, we may consider generating some

initial chromosomes based on the Cross-talk analysis to further

improve the quality of GA based combination.

VI. CONCLUSIONS

This paper presented a unique task decomposition approach

called Task Decomposition with Pattern Distributor (PD). In

this design, a special module called distributor module was

introduced in order to improve the accuracy of the whole

network. A theoretical model was shown to compare the

performance of PD with that of Output parallelism (OP) – a

typical class decomposition method. The analysis showed that

PD can outperform OP when the classification accuracy of the

distributor module is guaranteed. The experimental results

confirmed this. In order to further improve the performance of

PD, Reduced Pattern Training was introduced. Reduced Pattern

Training apparently increased the accuracy of the PD network.

According to our model, the distributor module’s classification

accuracy dominated the whole network’s performance. Two

combination methods, Cross-talk based combination and GA

based combination, were proposed to find good class grouping

for the distributor module. Cross-talk based combination could

find a suitable combination set for the distributor module. GA

based combination could find the optimal (or near-optimal)

combination set for the distributor module, with a larger

computation cost. Our experimental results confirmed the

effectiveness of the combination methods proposed.

We will continue to improve the combination methods in the

future. We hope to design new combination methods which not

only can find optimal or near-optimal sets for the distributor

module but also reduce further the computation time. In our

paper, the number of distributor module is restricted to one.

This can be relaxed by having multi-level PD networks with two

or more distributor modules. How to reduce further the training

pattern set while retaining the recognition rate is also on our

future research agenda.

APPENDIX

The procedure of standardizing a chromosome is shown as

follows:

(1) Add a minus sign “-” to all the places. For example, a place

with number “3” now becomes “-3”. Chromosome 233111

becomes (-2)(-3)(-3)(-1)(-1)(-1).

TABLE XIII

RESULTS OF THE SEGMENTATION PROBLEM USING GA BASED COMBINATION

Grouping of

Output classes

 The distributor module’s

Classification error (%)

Overall

Classification error

(%)

Module 1 {1,3,4,5}

Module 2 {6,7}

Module 3 {2}

(RPT)

0.0173

4.5321

TABLE XIV

RESULTS OF THE GLASS PROBLEM USING GA BASED COMBINATION

Grouping of

Output classes

 The distributor module’s

Classification error (%)

Overall

Classification error

(%)

Module 1 {1,3,5}

Module 2{2,4,6}

 (RPT)

2.4224

7.8261

> PNN05-P762 <

12

(2) Set t=1. Find the number in the first place and find all the

places with the same number as the first one. Change the

numbers in the first place and all the matching places into

“t”. In the above example, chromosome

(-2)(-3)(-3)(-1)(-1)(-1) becomes 1(-3)(-3)(-1)(-1)(-1).

(3) Set t=t+1. Scanning from left to right, find the leftmost

place whose number is negative and find all the following

places whose number is the same. Change the numbers in

these places into “t”. In the above example, when t=2,

chromosome 1(-3)(-3)(-1)(-1)(-1) becomes

122(-1)(-1)(-1).

(4) Repeat Step (3) until all the places have positive numbers

inside.

ACKNOWLEDGMENT

The authors thank the reviewers for their valuable comments.

REFERENCES

[1] R. A. Jacobs and M. I. Jordan, M. I. Nowlan, and G. E. Hinton, “Adaptive

mixtures of local experts”, Neural Computation, vol. 3, no. 1, pp.79-87,

1991.

[2] S. U. Guan and S. C. Li, “Parallel growing and training of neural

networks using output parallelism”, IEEE Transactions on Neural

Networks, 542 -550, Vol. 13, No. 3, May 2002

[3] R. Anand, K. Mehrotra, C. K. Mohan and S. Ranka, “Efficient

classification for multiclass problems using modular neural networks”,

IEEE Transactions on Neural Networks, vol. 6, no.1, pp. 117 – 124,

1995.

[4] B. L. Lu and M. Ito, “Task decomposition and module combination based

on class relations: A modular neural network for pattern classification”,

IEEE Transactions on Neural networks, vol. 10, no. 5, pp. 1244 – 1256,

1999.

[5] S. U. Guan and S. C. Li, “An approach to parallel growing and training

of neural networks”, in Proceeding of 2000 IEEE International

Symposium on Intelligent Signal Processing and Communication

Systems, Honolulu, Hawaii, vol. 2, pp. 1101 – 1104, 2000.

[6] S. U. Guan and J. Liu, “Feature Selection for Modular Networks Based on

Incremental Training”, Journal of Intelligent Systems, vol. 13, pp. 45-70,

2004.

[7] S. U. Guan and F. M. Zhu, “Modular Feature Selection Using Relative

Importance Factors”, International Journal of Computational

Intelligence and Applications, vol. 4, pp. 57-75, 2004.

[8] S. U. Guan and F. M. Zhu, “Class Decomposition for GA-based Classifier

Agents – A Pitt Approach”, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 34, pp. 381-392, 2004.

[9] S. U. Guan and R. Kiruthika, “Recursive Percentage Based Hybrid

Pattern (RPHP) Training for Curve Fitting”, In Proc of the IEEE Int.

Conf. on Cybernetics and Intelligent Systems (CIS), pp. 445-450, 2004.

[10] B. L. Lu, H. Kita, and Y. Nishikawa, “A multisieving neural-network

architecture that decomposes learning tasks automatically”, in

Proceedings of IEEE Conference on Neural Networks, Orlando, FL, pp.

1319-1324, 1994.

[11] J. Baker, “Reducing bias and inefficiency in the selection algorithm”,

Proceedings of the Second International Conference on Genetic

Algorithms and Their Application, Cambridge, Massachusetts, United

States, pp. 14-21, 1987.

[12] R. O. Duda, and P.E. Hart, Pattern Classification and Scene Analysis,

New York: Academic Express, 1973

[13] M. Lehtokangas, “Modeling with constructive backpropagation”, Neural

Networks, vol. 12, pp.707-716, 1999.

[14] M. Riedmiller and H. Braun, “A direct adaptive method for faster

backpropagation learning: the RPROP algorithm”, in Proceedings of the

IEEE International Conference on Neural Networks, pp. 586-591, 1993

[15] L. Prechelt, “PROBEN1: A set of neural network benchmark problems

and benchmarking rules”, Technical Report 21/94, Department of

Informatics, University of Karlsruhe, Germany, 1994.

[16] C.L. Blake and C.J. Merz, UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and Computer

Science, 1998.

[17] C. S. Squires and J. W. Shavlik, (1991). Experimental analysis of aspects

of the cascade-correlation learning architecture, in Machine Learning

Research GroupWorking Paper 91-1, Department of Computer Science,

Univ.Wisconsin, Madison, 1991.

[18] L. Prechelt, “Investigation of the CasCor family of learning algorithms”,

Neural Networks, vol. 10, no. 5, pp. 885 – 896, 1997.

[19] N. J. Nilsson, Learning Machines: Foundations of Trainable Pattern

Classifying Systems. New York: McGraw-Hill, 1965; reissued as The

Mathematical Foundations of Learning Machines. San Mateo, CA:

Morgan Kaufmann, 1990.

[20] M. R. Berthold and J. Diamond, “Constructive training of probabilistic

neural networks,” Neurocomputing, vol. 19, pp. 167–183, 1998

[21] S. Ishihara and T. Nagano, “Text-independent speaker recognition

utilizing neural-network techniques,” Tech. Rep. IEICE, vol. NC93-121,

pp. 71–77, 1994, in Japanese.

[22] G. Auda, M. Kamel and H. Raafat, “Modular neural network

architectures for classification,” in IEEE International Conference on

Neural Networks, Vol. 2, 1996, pp.1279-1284.

[23] Y. Li, M. Dong and R. Kothari, “Classifiability-based omnivariate

decision trees,” IEEE Transactions on Neural Networks, vol. 16, no.6,

pp. 1547 – 1560, 2005.

[24] K. Z. Mao and G. B. Huang, “Neuron selection for RBF neural network

classifier based on data structure preserving criterion,” IEEE

Transactions on Neural Networks, vol. 16, no.6, pp. 1531 – 1540, 2005.

[25] A. Szymkowiak-Have, M. A.Girolami and J. Larsen, “Clustering via

kernel decomposition,” IEEE Transactions on Neural Networks, vol. 17,

no.1, pp. 256 – 264, 2006.

[26] N. Takahashi and T. Nishi, “Global Convergence of Decomposition

Learning Methods for Support Vector Machines,” IEEE Transactions on

Neural Networks, vol. 17, no.6, pp. 1362-1369, 2006.

Sheng-Uei Guan received his M.Sc. & Ph.D. from

the University of North Carolina at Chapel Hill.

He is currently a professor in the School of

Engineering and Design at Brunel University, UK.

Prof. Guan has worked in a prestigious R&D

organization for several years, serving as a design

engineer, project leader, and manager. After leaving

the industry, he joined Yuan-Ze University in

Taiwan. He served as deputy director for the

Computing Center and the chairman for the

Department of Information & Communication

Technology. Later he joined the Electrical &

Computer Engineering Department at National

University of Singapore as an associate professor.

Chunyu Bao received the B. Sc. and M. Sc. degrees

in physics from Beijing University, P.R. China, in

1999 and 2002, respectively. He is currently

pursuing the Ph.D. degree in the Department of

Electrical and Computer Engineering, National

University of Singapore, Singapore.

His research interests include machine learning,

neural networks, pattern classification and

clustering.

TseNgee Neo received his B. Eng. degree from the

Department of Electrical and Computer

Engineering, National University of Singapore,

Singapore.

