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Abstract—Task Decomposition with Pattern Distributor (PD) is a 

new task decomposition method for multilayered feedforward 

neural networks. Pattern distributor network is proposed that 

implements this new task decomposition method. We propose a 

theoretical model to analyze the performance of pattern 

distributor network.  A method named Reduced Pattern Training 

is also introduced, aiming to improve the performance of pattern 

distribution. Our analysis and the experimental results show that 

reduced pattern training improves the performance of pattern 

distributor network significantly.  The distributor module’s 

classification accuracy dominates the whole network’s 

performance. Two combination methods, namely Cross-talk based 

combination and Genetic Algorithm based combination, are 

presented to find suitable grouping for the distributor module. 

Experimental results show that this new method can reduce 

training time and improve network generalization accuracy when 

compared to a conventional method such as constructive 

backpropagation or a task decomposition method such as Output 

Parallelism. 

 
Index Terms—Cross-talk Based Combination, Full Pattern 

Training, Genetic Algorithm Based Combination,  Pattern 

Distributor, Reduced Pattern Training, Task Decomposition, 

 

I. INTRODUCTION 

ULTILAYERED feedforward neural networks have been 

widely used in solving classification problems. However, 

they still exhibit some drawbacks when applied to large scale 

real-world problems.  One common drawback is that large 

networks tend to introduce high internal interference because of 

the strong coupling among the hidden-layer weights [1]. The 

influences from two or more output units could cause the 

hidden-layer weights to compromise to non-optimal values due 

to the interference in their weight-updating directions during the 

weight-updating process [2]. Various task decomposition 

methods have been proposed to overcome this drawback [2-10, 

18-21, 23-26]. Instead of using a single, large feedforward 

network (classic network), task decomposition methods divide a 

problem into a set of smaller and simpler sub-problems based on 
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“divide-and-conquer”. The results obtained from solving these 

sub-problems are integrated together and the solution for the 

original problem is obtained. 

Anand et al. proposed a method that splits a K -class 

problem into K  two-class sub-problems [3]. Each sub-network 

is trained to learn one sub-problem only. Therefore, each 

sub-network is used to discriminate one class of patterns from 

patterns belonging to the remaining classes, thereby resulting in 

K modules in the overall structure. Another method divides the 

K -class problem into 









2

K  two-class sub-problems [4]. A 

module is designated to learn each sub-problem while training 

patterns belonging to the other 2−K  classes are ignored. The 

final overall solution is obtained by integrating all the trained 

modules into a min-max modular network. A powerful 

extension to the above class decomposition method, Output 

Parallelism, is proposed by Guan [2, 5, 6, 7, 8]. Using output 

parallelism, a problem can be divided into several sub-problems 

as chosen, each of which is composed of the whole input vector 

and a fraction of the output vector. Each module (for one 

sub-problem) is responsible for producing a fraction of the 

output vector of the original problem. These modules can be 

grown and trained in parallel. Instead of decomposing the 

problem with a high dimensional output space into several 

sub-problems, each with a low dimensional output space, Lu 

decomposes the problem into several smaller-size sub-problems 

[10]. Patterns are classified by a rough sieve module 

(non-modular network) at the beginning and those patterns that 

are not classified successfully will be presented to another sieve 

module. This process continues until all the patterns are 

classified correctly. The sieve modules are added to the network 

adaptively with the progress of training.  

Although these methods are efficient, there are still some 

drawbacks associated with them. Firstly, the methods proposed 

in [3] and [4] split the problem into a set of two-class 

sub-problems. If the original K-class problem is complex (K is 

large), a large number of modules will be needed to learn the 

sub-problems and thus resulting in excessive computational 

cost. Secondly, although the dimension (number of output class) 

of each sub-problem in [2] and [3] is smaller than the original 

problem, the size of each sub-problem’s training pattern set is 

still as large as the original problem. Therefore, each module 

will have long training time and ineffective learning especially 

when the original problem is large with many training patterns. 
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Lastly, the method proposed in [10] only reduces the size of the 

problem but not the dimension of the problem. The internal 

interferences (that exists within each module due to the coupling 

of output units) are not reduced.  

In this paper, we propose a new task decomposition method 

called Task Decomposition with Pattern Distributor (PD) to 

overcome the drawbacks mentioned above. A special module 

called distributor module is introduced in order to improve the 

performance of the whole network. The distributor module and 

the other modules in the PD network are arranged in a 

hierarchical structure. The distributor module has a higher 

position as compared to the other modules in the network. This 

means an unseen input pattern will be recognized by the 

distributor module first. The structure of a typical PD network is 

shown in Figure 1. Each output of the distributor module 

consists of a fraction of the overall output classes in the original 

problem. The PD method could shorten the training time and 

improve the generalization accuracy of a network compared 

with ordinary task decomposition methods.  

In this paper, the PD method will be discussed in details. In 

Section 2, a theoretical model is presented to compare the 

performance of a PD network with a typical task decomposition 

network – Output Parallelism network. In section 3, we 

introduce the Reduced Pattern Training method to improve the 

PD network’s performance. Because of the importance of the 

distributor module, we present in Section 4 two combination 

methods, Cross-talk based combination and GA based 

combination, to find good grouping for the distributor module. 

In Section 5, the experimental results are shown and analyzed. 

Conclusions are presented in Section 6. 

 

II. A THEORETICAL MODEL FOR THE PATTERN DISTRIBUTOR 

NETWORK 

There are two types of modules in a Pattern Distributor 

network, distributor module and non-distributor modules (for 

simplicity, non-distributor modules are just called modules). 

Normally, a PD network consists of one distributor module and 

several non-distributor modules. 

Class decomposition is often used to in solving classification 

problems. Compared with ordinary methods in which only a 

neural network is constructed to solve the problem, class 

decomposition divides the problem into several sub-problems 

and trains a neural network module for each sub-problem. Then 

the results from these modules are integrated to obtain the 

solution for the original problem. Output Parallelism (OP) is a 

typical class decomposition method. Here we present a model to 

show that the PD method has better performance than the OP 

method when the recognition rate of the distributor module is 

guaranteed. 

Consider a classification problem with K output classes. To 

solve the problem, a PD network with one distributor module 

and r non-distributor modules is constructed. See Figure 2 for 

details. There are r outputs in the distributor module and each 

non-distributor module is connected to an output of the 

distributor module. Each output of the distributor module 

consists of a combination of several classes. For an unknown 

pattern, the distributor module recognizes and dispatches it to 

only one of the outputs. Then the connected non-distributor 

module continues the classification process to specify which 

class the pattern belongs to. In other words, a non-distributor 

module needs to recognize the pattern among several classes. 

Assume Module j is a non-distributor module that needs to 

recognize K(j) classes. Different non-distributor modules are 
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Fig. 1.  A typical Pattern Distributor network. 
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Fig. 2.  The PD network used to solve a K-class problem. 
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Fig. 3.  The OP  network used for the same K-class problem. 
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assumed to have no overlapping classes, we have the following: 

( )

1
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j

K K
=
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Figure 3 shows the corresponding OP network used to solve 

the K-class problem above. For the convenience of comparison, 

we assume that the OP network has the same output grouping as 

the PD network. There are also r modules in the OP network and 

Module j needs to recognize K(j) classes among all the patterns. 

When an unknown input pattern is presented to the OP network, 

it is processed by each module (Module 1 to Module r), and the 

final result is obtained by integrating the results from Module 1 

to Module r. 

In the PD network, a non-distributor module only recognizes 

the patterns dispatched to it by the distributor module. These 

patterns mostly likely belong to one of the classes covered by 

that module. Of course, the distributor module may make wrong 

decisions and send wrong patterns to that module. The OP 

network is different. Each module needs to recognize all the 

patterns. In other words, Module j in the OP network needs to 

differentiate the patterns belonging to it from those patterns 

which do not. Now we denote the probability of error incurred 

by Module j processing the patterns that belong to one of the 

classes of Module i by pji. If we do not implement 

winner-take-all arbitration, a pattern can be regarded as wrongly 

classified if one or more modules give wrong decisions. When a 

test pattern belonging to one of the classes of module j enters the 

network, the probability of error in the OP network can be 

written in the following form: 
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The first r terms represent the probability of a test pattern being 

classified wrongly by one module. The following )1(
2

1
−⋅ rr  

terms represent the probability of the test pattern being 

classified wrongly by two modules, and so on. Equation (2) can 

be rewritten as: 
( )

1 2 1 2 1 3 ( 1)( )OP

j j j rj j j j j r j rjp p p p p p p p p p−= + + + − + + +� �  

1

1 2 3 ( 2) ( 1) 1 2( ) ( 1) ( )r

j j j r j r j rj j j rj
p p p p p p p p p
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Here r is the number of modules and is normally not a large 

number. So the number of terms in the above equation is not a 

large number. 
ijp  is a small positive real number. In other 

words, 
kjij pp  is much smaller than 

ijp . We can ignore the 

terms of the product of two and more 
ijp ’s. Thus, 

( )

1 2

OP

j j j rjp p p p≈ + + +�              (4) 

The number of test patterns classified wrongly by the OP 

network is: 

( ) ( )
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where Nj is the number of patterns belonging to the classes of 

Module j. It can also be written as: 

( )

1 1 2 2

1
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r
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k

N N p N p N p N p
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= + + + + +∑ � �
   (6) 

Now we define 
*kp  as the probability of error when Module k 

processes the patterns not belonging to the classes of Module k. 

Equation (6) can be revised as: 

∑
=

⋅−+=
r
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kkkkk

OP pNNpNN
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)( ))((           (7) 

where 
kkp  is the probability of error when Module k processes 

the patterns belonging to it, N is the number of test patterns and 

Nk is the number of patterns belonging to the classes of Module 

k. 

It should be mentioned that in the above OP network, each 

module can be trained separately using all the training patterns, 

whereas for the PD network, we can also train these modules 

separately. If we use all the training patterns to train these 

modules, then the weights and hidden units of the 

non-distributor modules will be the same as those of the 

corresponding modules in the OP network. After the training of 

the PD network is completed, the distributor module will be the 

first to classify any unseen input pattern. The corresponding 

output unit in the pattern distributor will have the largest output 

value among all the output units. Then only the corresponding 

module will be activated. After that, the input pattern is 

presented to this module only and then this module will 

complete the classification process. Only the distributor module 

and the corresponding module are used in the classification 

process. 

Let p0 be the probability of error of the distributor module. 

Then the number of test patterns which are classified wrongly 

by the distributor module is 

00 pNM ⋅=                   (8) 

Assume the distributor module classifies patterns wrongly in a 

uniform manner. In other words, the number of wrongly 

classified patterns by the distributor module to each 

non-distributor module is proportional to the number of patterns 

entering that non-distributor module. The number of correct 

patterns that enter Module j is )1( 0pN j − . Then, the number of 

patterns classified wrongly by Module j is written as: 

jjjj ppNM )1( 0−=                (9) 

Thus, the number of patterns classified wrongly by the PD 

network can be expressed as: 

∑∑
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Comparing the OP network with the PD network, we have 
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Similar to the analysis made earlier, jji pp 0  is much smaller 

than *jp  and 0p . So 
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Now we have derived the condition under which the PD 

network can achieve better classification accuracy than the OP 

network: 

0

1
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             (13) 

We know that each module needs to process all the test patterns 

in an OP network, while in a PD network each non-distributor 

module only needs to process a sub-set of the test patterns. 

Intuitively, if the number of wrongly-classified patterns by the 

distributor module in the PD network is smaller than the sum of 

the number of patterns wrongly classified by each module when 

processing patterns not belonging to it in the corresponding OP 

network, the PD network will perform better. 

 

Discussions: 

1. Class decomposition can still be applied to the modules 

of the OP network and PD network so that these modules 

can be further decomposed into sub-modules. If each 

sub-module is used to recognize one class from all the 

patterns, then there will be N sub-modules in the whole 

OP network. Of course, these sub-modules may belong 

to different modules. Figure 4(a) shows an example of a 

6-class OP network. There are two modules that are 

further partitioned into 6 sub-modules. Figure 4(b) 

shows a fully decomposed OP network for this 6-class 

problem. In both OP networks, all the training patterns 

are used to train these sub-modules. So the sub-modules 

in Figure 4(a) are the same as their counterparts in 

Figure 4(b).  In Figure 4(a), the sub-modules are 

grouped into two modules. For an unknown pattern, the 

outputs from Sub-modules 1, 2, 3 are considered 

together to give the result of Module 1, similar for 

Module 2. Then the results from Module 1 and Module 2 

are considered together to give the final output. In the 

OP network of Figure 4(b), the outputs from all the 

sub-modules are considered altogether to give the final 

output. In fact, there is little difference between the OP 

networks in Figure 4(a) and 4(b). Note that the 

non-distributor modules in the PD network are the same 

as the counterparts in the OP network. Thus, by 

decomposing the modules into sub-modules, we can 

compare the performance of the PD network with that of 

the fully decomposed OP network. In most of our 

experiments, we used networks like such. 

2. 2. In Equation (4), we have ignored the situation in 

which two or more modules make wrong decisions at the 

same time because the situation appears much less 

frequently compared to the situation in which only one 

module makes wrong decisions. If we do consider that 

situation, ( )OP

jp  will be a little smaller than 

rjjj ppp +++ �21
. 

3. In the above model, we do not consider the 

implementation of winner-take-all for the OP network. 

In reality, winner-take-all is used for selecting a unit 

among several candidate units to produce the final 

output. The purpose of a conventional winner-take-all 

network is to select a unit with the highest activation 

strength from a set of candidates. Using winner-take-all, 

the network may still choose the correct output even if 

some modules make wrong decisions. For example, 

consider a test pattern that belongs to Class A in Module 

1. When the pattern enters Module 1 of the OP network, 

Module 1 produces the correct answer – Class A. 

However, when the pattern enters Module 2 of the OP 

network, Module 2 gives an incorrect answer and thinks 

it belongs to Class B. If the output corresponding to 

Class A is larger than that of Class B, the OP network can 

still give a correct decision. Using winner-take-all will 

slightly reduce the final classification error of the OP 
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Fig. 4.  Two OP networks for a 6-class problem. 
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network than not using it. 

 

III. MOTIVATION FOR REDUCED PATTERN TRAINING 

In a PD network, an unseen pattern is firstly classified by the 

distributor module to decide which module will continue to 

process it. Then the corresponding module will be activated. 

Thus only two modules are used to process that pattern. Now we 

look at all the test patterns. We note that each non-distributor 

module only processes a subset of the test patterns. In other 

words, each non-distributor module only needs to recognize the 

patterns belonging to it if the distributor module classifies all the 

test patterns correctly. Also, if the distributor module classifies 

some patterns wrongly, the mistake can not be corrected by the 

later modules. This motivates us to train a non-distributor 

module using only the patterns belonging to it. Such a method is 

called Reduced Pattern Training (RPT). Similarly, the method 

of using the whole training set to train each non-distributor 

module is called Full Pattern Training (FPT). 

When we train Module j using FPT, the module will carry 

information of the instances that do not belong to its own 

classes. Such information does not contribute to the 

classification accuracy of Module j. So it is useless. Also, 

training time would be reduced when training using RPT 

compared with FPT. 

Moreover, training Module j together with unnecessary 

patterns may reduce the ability of Module j to classify the 

patterns belonging to Module j correctly. There are two aspects. 

Firstly, the objective of training is to let each module reach its 

best classification accuracy when processing the patterns 

dispatched to it. Using FPT, a module may be able to attain its 

best performance when it needs to process all the test instances. 

However, it may not attain its best performance when 

processing only a subset of the test instances. Secondly, for 

patterns not belonging to Module j it would have the outputs as 

0 during the learning process. (In our experiments, if a pattern 

belongs to some class, the corresponding output is 1, otherwise, 

0). With the introduction of those patterns not belonging to 

Module j, there are much more patterns with an output label 0 

than patterns with an output label 1 in the learning process. So 

the patterns with an output label 0 will be more influential in 

updating the weights and therefore in computing the training 

error function. In contrast, the patterns with an output label 1 

will become less influential in the decision of weight updates. 

After the training process is over, it is likely that the trained 

network may mislabel some test patterns, in particular those 

patterns with an output label 1. From the above observations, we 

conclude those unnecessary patterns are harmful to the module 

training. Our experimental results confirmed that RPT is crucial 

for a PD network to obtain good performance. 

Reduced pattern training might not be applicable to OP, 

because the modules in an OP network operate in parallel and 

each module must deal with all the test patterns in the test 

process. Training these modules using reduced patterns may 

lead to information loss. And it may lead to poor accuracy when 

the test patterns are presented. 

 

IV. COMBINATION OF CLASSES IN THE DISTRIBUTOR MODULE 

From the analysis in Section 2, it can be seen that the 

performance of a PD network depends greatly on the accuracy 

of the distributor module. How to group the classes and 

combine them becomes a key issue in designing a PD network. 

We define two concepts – combination and combination set. 

If some classes are grouped together, we call them a 

combination. The combination of class A, class B and class C is 

denoted as {A, B, C}. Once some classes are combined, they 

will form a new class.  A combination set is an aggregation of 

combinations where each class in the original problem appears 

once and exactly once. For example, in a 6-class problem, 

{{1,2,3},{4,5},{6}} is a combination set. Here we present two 

methods to find an appropriate combination set in the distributor 

module. 

A. Cross-talk Based Combination 

The basic idea is to find classes which are close in the feature 

space and combine them together. We first project a 

d-dimensional (d is the number of the input classes) input space 

to a one-dimensional space using Fisher’s linear discriminant 

(FLD) method [12]. The distances between the centers of 

different classes are calculated. Then these distances are 

arranged to form a table which is called Cross-talk table. If the 

distance between two classes in the Cross-talk table is relatively 

small, then the two classes are likely to be close in the feature 

space. Thus, we choose and combine those classes that have 

relatively smaller distances from each other in the Cross-talk 

table. 

B. Genetic Algorithm Based Combination 

The basic idea of this method is to find an optimal or 

near-optimal combination set through evolution. First, we 

define our chromosome encoding. A binary string of specific 

length is often used to encode a chromosome in canonical 

genetic algorithms, but it is not suitable here. Thus, we define 

chromosome according to the following principles. A 

chromosome consists of a sequence of combination numbers, 

wherein each class is encoded with its combination number. The 

length of a chromosome is equal to the number of the classes. 

Assume chromosome encoding always starts with the smallest 

class number and increases as follows. For example, 122333 is a 

chromosome for a 6-class problem. “1” in the first place means 

class 1 belongs to combination 1. Similarly, number “3” in the 

fourth place means class 4 belongs to combination 3. The 

corresponding combination set of this chromosome is {{1}, 

{2,3}, {4,5,6}}. There is a need for normalization, however. Let 

us look at another example, chromosome 233111. It is obvious 

that chromosome 233111 and chromosome 122333 represent 

the same combination set (though the ordering differs). 

Therefore, chromosome 233111 can be normalized as 122333. 

For convenience, we convert all the chromosomes into a form 

like 122333. This process is called standardizing the 
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chromosomes. The procedure of standardizing a chromosome is 

shown in the Appendix. 

Then we create an initial population of chromosomes. After 

generating the initial population, each chromosome is evaluated 

and assigned a fitness value. Here we use a simple neural 

network for the evaluation and use the classification error f of 

the validation data set to calculate the fitness: 

2
ave

f
fitness

f
= −                  (14) 

where fave is the average of classification errors based on the 

validation data set for all the chromosomes in the population. f is 

also called evaluation value. If 2
ave

f

f
−  is smaller than 0, 

0fitness = . 

The execution of our genetic algorithm can be viewed as a 

two-stage process. It starts with the current population. Then 

selection is applied to the current population to generate an 

intermediate population. After that, mutation and crossover are 

applied to the intermediate population to create the next 

population. We use “stochastic universal sampling” to form the 

intermediate population [11]. Assume that the population is laid 

out in random order as in a pie graph in which each individual is 

assigned space on the pie graph in proportion to fitness. Next an 

outer roulette wheel is placed around the pie with N equally 

spaced pointers (N is the number of the population). A single 

spin of the roulette wheel will now simultaneously pick all N 

members of the intermediate population. 

After the construction of the intermediate population, 

crossover and mutation are used to generate the next population. 

Crossover is applied to randomly paired chromosomes with a 

probability pc. Consider two chromosomes: 112233 and 

122123. The random crossover point is chosen, for example, 

after the 4
th

 place. Then the numbers in the 5
th

 and 6
th

 places are 

exchanged and new chromosomes are formed. Here the new 

chromosomes are 112223 and 122133. After crossover, 

mutation is applied to random chromosomes with a probability 

pm. After a chromosome is selected for mutation, a place is 

randomly selected for mutation and the number in that place is 

randomly chosen. After the crossover and mutation is complete, 

standardize the chromosomes. Then the next population is 

evaluated and becomes the current population. Then the above 

process is repeated. 

There is another important parameter Nmax - maximum 

number of classes in a combination. Using this parameter, we 

kick out some chromosomes directly. For a 6-class problem, if 

we choose Nmax=3, then chromosome 121112 will be 

eliminated, because combination {1,3,4,5} has four classes. The 

purpose of setting Nmax is to avoid the existence of 

non-distributor modules with many classes. If there are many 

classes in a non-distributor module, it is unlikely that this 

module can recognize patterns with a high classification rate. 

With a chromosome like 111111, there is only one grouping and 

the job of the distributor would be trivial. For this extreme case, 

the classification error of the distributor module is obviously 0 

because the distributor module combines all the classes 

together. Such an extreme case can be avoided using the 

parameter Nmax. 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Electronic Image Files (Optional) 

Constructive Backpropagation (CBP) algorithm was used to 

train the network in the experiments. Please refer to [13] for 

details. CBP can reduce the excessive computational cost 

significantly and it does not require any prior knowledge 

concerning decomposition. In this paper, RPROP is used with 

the following parameters: η+
 = 1.2, η-

 =0.5, ∆0 = 0.1, ∆max = 50, 

∆min = 1.0e-6, (η+
/η-

 is the increase/decrease parameter, ∆0 is 

the initial update-value and ∆max/∆min stands for the upper/lower 

limit of the update-value) with initial weights selected from 

–0.25…0.25 randomly. Please refer to [14] for details. In order 

to avoid large computational cost and overfitting, a method 

called early stopping based on validation set is used as the 

stopping criteria. Please refer to [22] for details. 

The set of available patterns is divided into three sets: a 

training set is used to train the network, a validation set is used 

to evaluate the quality of the network during training and to 

measure overfitting, and a test set is used at the end of training to 

evaluate the resultant network. The size of the training, 

validation, and test sets is 50%, 25% and 25% of the problem’s 

total available patterns. 

Four benchmark classification problems, namely Vowel, 

Glass, Segmentation, and Letter Recognition were used to 

evaluate the performance of the new modular network – Task 

Decomposition with Pattern Distributor. These classification 

problems were taken from the PROBEN1 benchmark collection 

[15] and University of California at Irvine (UCI) repository of 

machine learning database [16]. In the set of experiments 

undertaken, the first three classification problems were 

conducted 20 times and the Letter Recognition problem was 

conducted 8 times (due to the long training time). All the hidden 

units and output units use the sigmoid activation function and 

Eth is set at 0.1. When a hidden unit addition was required, 8 

candidates were trained and the best one selected. All the 

experiments were simulated on a Pentium IV – 2.4GHZ PC. The 

sub-problems were solved sequentially and the CPU time 

expended was recorded respectively. 

B. Experiments for PD network based on full and reduced 

pattern training 

1) Glass: This data set is used to classify glass types. The data 

set consists of 9 inputs, 6 outputs, and 643 patterns (divided into 

321 training patterns, 161 validation patterns, and 161 test 

patterns). These patterns were normalized and scaled so that 

each component lies within [0, 1]. 

Figure 5 shows the OP network structure used for this 

problem. The OP network is composed of 6 sub-modules and 

each sub-module recognizes one class from all the patterns. As 

described in Discussion 1 in Section 2, these sub-modules are 

combined into 2 modules in the OP network. The sub-modules 
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which recognize class 1, class 3 and class 5 are combined into 

Module 1 and the remaining sub-modules are grouped into 

Module 2. 

Table I lists some data which are used in expression (13). 

Here Ni represents the number of the patterns in the test data set 

belonging to the classes of Module i while N denotes the overall 

number of the patterns. pii is the probability of error when 

Module i processes the patterns belonging to Module i and pi* is 

the probability of error when Module i processes the patterns 

not belonging to Module i. Now we show that Discussion 2 in 

Section 2 is reasonable. There are two modules in the OP 

network. From Table I, we have 
11 8.4142%p =  and 

12 1* 4.7340%p p= = . So 
11 12 0.40%p p⋅ = , which is much 

smaller than 
11p  and 

12p . It is similar that 
22 21 0.39%p p⋅ = , 

which is much smaller than 
21p  and 

22p . Ignoring these terms 

has little effect to the final results. In other words, the situation 

in which two or more modules making wrong decisions at the 

same time can be ignored. Now we follow up Discussion 3 in 

Section 2 – the effect of winner-take-tall. From Table I, we can 

compute the classification error before the implementation of 

winner-take-all, which is 

1 11 2 1* 2 22 1 2* 17.7562%N p N p N p N p⋅ + ⋅ + ⋅ + ⋅ = . The result is 

slightly larger than the result using winner-take-all, which is 

14.2547% (see Table II). It also matches our analysis in 

Discussion 3, Section 2. 

The PD network structure for this problem is shown in Figure 

6. The distributor module has two outputs, one has the 

combination {1,3,5} while the other has {2,4,6}. Module 1 

consists of 3 sub-modules, identical to its counterpart in the OP 

network, and same for Module 2. 

Table II shows the experimental results of the ordinary 

method, the OP method, the PD method with Full Pattern 

Training (FPT) and the PD method with Reduced Pattern 

Training (RPT).  The ordinary method is a method in which a 

single-module neural network was constructed to solve the 

problem. Constructive Backpropagation (CBP) algorithm is still 

used in the ordinary method. “Indep. Param.” stands for the total 

number of independent parameters (i.e., the number of weights 

and biases in the network). “C. Error” stands for classification 

error. Training time (in parallel) is the maximum training time 

among all the modules (all modules were trained in parallel). 

Training time (in series) stands for the sum of training time for 

all the modules (all modules were trained in series). Using the 

ordinary and the OP methods, the classification errors were 

16.0870% and 14.2547% respectively, while using the PD 

method, the classification errors were 10% for FPT and 

7.8261% for RPT. Comparing with the classification errors 
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Fig. 5.  The OP network used for the Glass problem. 
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Fig. 6.  The PD network used for the Glass problem. 

  

TABLE I 

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE GLASS DATA 

Output 

Parallelism 
Ni pii (%) N-Ni pi* (%) 

Module 1 67 8.4142 94 4.7340 

Module 2 94 18.1383 67 2.1642 

 

TABLE II 

RESULTS FOR THE GLASS DATA 

Method Training 

time (s) 

Hidden 

Units 

Indep. 

 Param. 

C. error  

(%) 

Ordinary method 

(no task decomposition) 

168.1 

 

 

46 796 16.0870 

Output Parallelism 

(2 modules, 

6 sub-modules) 

63.7 

(parallel) 

197.7 

(series) 

253.5 

 

2848.5 

 

14.2547 

 

The 

distributor 

module 

82.9 

 

30.6 

 

387.2 

 

2.4224 

 

Overall 

network 

(FPT) 

85.2 

(parallel) 

 298.7 

(series) 

280.9 3200.5 10.0 

 

Pattern 

Distributor 

(1 

distributor 

module, 

2 modules, 

6 

sub-modul

es ) 

Overall 

network 

(RPT) 

 82.9 

(parallel) 

194.3 

(series) 

391.2 4413.8 7.8261 
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from the former two approaches, the classification errors 

obtained by the PD network are much smaller. It can be also 

noted that the classification error is further reduced when using 

RPT instead of FPT. 

Now we explain why the PD network can achieve smaller 

classification error than the other two methods. According to 

our analysis, if Expression (13) is satisfied, the PD network will 

have better classification accuracy. Using the data in Table I, we 

have 9.5)(
2

1

* ≈−∑
=j

jj pNN . From the classification error p0 of 

the distributor module in Table II, we find 9.30 ≈⋅ pN . Thus, 

Condition (13) is satisfied, which means that using the PD 

network will get smaller classification error. From Table II, we 

can see that the number of hidden units and the number of 

independent parameters in the PD network are larger than those 

in the ordinary network and the OP network. This can be 

attributed to the fact that the PD network has more modules than 

the other two. From Table II, we can also note the changes of the 

training time using the above three methods. With series 

training, the training time of FPT (298.7s) is larger than those of 

the ordinary network (168.1s) and the OP network (197.7s) due 

to a large number of modules in the PD method. However, the 

training time of RPT (194s) is reduced compared to that of FPT 

and is thus comparable to the training time of the other two 

networks. The reason for this is that the number of training 

instances used in RPT is smaller than that in FPT. With parallel 

training, the training time of the PD network (RPT or FPT) is 

similar to those of the other two methods, and it is even shorter 

than that of the ordinary method. From the above analysis, we 

see that the PD method, especially RPT, performs better than 

the other methods. 

2) Vowel: The input patterns of this data set are 10 element 

real vectors representing vowel sounds that belong to one of 11 

classes. It has 990 patterns in total (they are divided into 495 

training patterns, 248 validation patterns, and 247 test patterns). 

The patterns were normalized and scaled so that each 

component lies within [0, 1]. The distributor module has 3 

outputs, {1,2,3}, {4,5,6,7} and {8,9,10,11}. Module 1 

recognizes classes 1, 2, 3 and consists of 3 sub-modules. 

Module 2 recognizes classes 4,5,6,7 and consists of 4 

sub-modules, while Module 3 recognizes classes 8,9,10,11 and  

consists of 4 sub-modules. The OP network has the same 

Module 1, Module 2 and Module 3 as the PD network. 

The experimental results of the ordinary method, the OP 

method and the PD method for the Vowel data are listed in 

Table IV. Using the ordinary method and the OP method, the 

classification errors were 37.1660% for the ordinary method 

and 25.5466% for the OP method respectively, while using the 

PD method, the classification errors were 24.8987% for FPT 

and 18.7045% for RPT. The classification error obtained by 

FPT is much smaller than the classification error of the ordinary 

method and resembles that of the OP method. While for RPT, 

the classification error is decreased to 18.7045%, which is much 

smaller than those of FPT and the other two methods. We can 

compute the number of wrongly-classified patterns using the 

data in Table III to explain why the PD method can get smaller 

classification errors than the other two methods. We have 

9.19)(
3

1

* ≈−∑
=j

jj pNN  while 5.160 ≈⋅ pN . Expression (13) is 

satisfied. Thus the PD network has smaller classification errors. 

From Table IV, we can see that the number of hidden units and 

the number of independent parameters in the PD network (RPT 

or FPT) are larger than those in the ordinary and OP networks. 

Table IV also shows the training time using these methods. 

Using series training, the training time of FPT (534.3s) is longer 

than those of the ordinary network (237.9s) and the OP network 

(418.9s). The training time of RPT (245.6s) is much reduced 

compared to that of FPT and is also smaller than those of the 

former two networks. If parallel training is used, the training 

process of the PD network can save more time. From the above 

analysis, we see that RPT outperforms the others. 

3) Segmentation: This data set consists of 18 inputs, 7 

outputs, and 2310 patterns (1155 training patterns, 578 

validation patterns, and 577 test patterns). The patterns were 

normalized and scaled so that each component lies within [0, 1]. 

The distributor module has 2 outputs, {3,4,5} and {1,2,6,7}. 

Module 1 recognizes classes 3, 4, 5 and consists of 3 

sub-modules. Module 2 recognizes classes 1,2,6,7 and consists 

of 4 sub-modules. The OP network has the same module 

composition as the PD network. 

Table VI shows the simulation results of the ordinary method, 

the OP method, the PD method (FPT and RPT). Using the 

ordinary method and the OP method, the classification errors 

TABLE III 

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE VOWEL DATA 

Output 

Parallelism 
Ni pii (%) N-Ni pi* (%) 

Module 1 69 9.8551 178 2.9775 

Module 2 96 32.0833 151 3.2450 

Module 3 82 34.7561 165 5.8788 

 

TABLE IV 

RESULTS FOR THE VOWEL DATA 

Method Training 

time (s) 

Hidden 

Units 

Indep. 

 Param. 

C. error  

(%) 

Ordinary method 

(no task decomposition) 

237.9 23.6 640.2 37.1660 

Output Parallelism 

(3 modules, 11 

sub-modules) 

58.7 

 (parallel) 

418.9 

(series) 

184.4 

 

2333.8 

 

25.5466 

 

The 

distributor 

module 

117 

 

24.5 

 

376 

 

6.6802 

 

Overall 

network 

(FPT) 

117 

(parallel) 

534.3 

 (series) 

210.6 2730.2 24.8987 

Pattern 

Distributor 

(1 

distributor 

module, 3 

modules 

and 11 

sub-modul

es) 
Overall 

network 

(RPT) 

 117 

(parallel) 

245.6 

 (series) 

229.4 2955.8 18.7045 
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were 5.7366% and 5.1820% respectively, while using the PD 

method, the classification errors were 5.4419% for FPT and 

4.6101% for RPT. From Table V, we have 
2

*

1

( ) 2.3j j

j

N N p
=

− ≈∑ . 

From Table VI, we find 
0 6.0N p⋅ ≈ . So Expression (13) is not 

satisfied and FPT has a larger classification error than the OP 

network. It is also noted that the classification error is decreased 

when using RPT to replace FPT. From Table VI, we can see that 

the number of hidden units and the number of independent 

parameters in the PD networks are larger than those in the 

ordinary and OP networks. From Table VI, we also notice 

changes in training time using the above three methods. Under 

series training, the training time of FPT (2219.2s) is larger than 

the training times of the ordinary network (693.8s) and the OP 

network (1719.6s) due to a large number of modules in the PD 

network. However, the training time of RPT (706.9s) is reduced 

compared to that of FPT and the OP network and is thus 

comparable to the training time of the ordinary method. With 

parallel training, the training time of RPT is the smallest one. 

From the above analysis, we see that RPT performs better than 

the other methods. 

4) Letter recognition: The goal of this data is to recognize 

digitized patterns. Each element of the input vector is a 

numerical attribute computed from a pixel array containing the 

letters. This data set consists of 16 inputs, 26 outputs, and 20000 

patterns (10000 training patterns, 5000 validation patterns, and 

5000 test patterns). All the patterns were normalized and scaled 

so that each component lies within [0, 1]. The distributor 

module has 4 outputs, {1,2,3,4,5,6,7}, {8,9,10,11,12,13,14}, 

{15,16,17,18,19,20} and {21,22,23,24,25,26}. Module 1 

recognizes classes 1,2,3,4,5,6,7. Due to the long training time of 

this problem, Module 1 is not further divided into sub-modules. 

Module 2 recognizes classes 8,9,10,11,12,13,14, Module 3 

recognizes classes 15,16,17,18,19,20 and Module 4 recognizes 

classes 21,22,23,24,25,26. The OP network has the same 

module composition as the PD network. For a fair comparison 

with the PD network, sub-modules are not used in the OP 

network. 

The experimental results of the ordinary method, the OP 

method and the PD method for the Letter data are listed in Table 

VIII. Using the ordinary method and the OP method, the 

classification errors were 21.672% for the ordinary method and 

19.260% for the OP method respectively. Using the PD method, 

the classification error were 20.515% for FPT and 15.855% for 

RPT. The classification error obtained by FPT resembles the 

classification errors using the ordinary method and the OP 

method. Using RPT, the classification error is much smaller 

than the classification errors of the other three networks. From 

Table VII, we have 3.330)(
2

1

* ≈−∑
=j

jj pNN . From Table VIII, 

we find 8.6090 ≈⋅ pN . So Expression (13) is not satisfied, 

which means that FPT has a larger classification error. From 

Table VIII, we see that the number of hidden units and the 

number of independent parameters in the PD network are larger 

TABLE V 

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE SEGMENTATION 

DATA 

Output 

Parallelism 
Ni pii (%) N-Ni pi* (%) 

Module 1 246 10.4129 331 0.2417 

Module 2 331 0.9215 246 0.6098 

 
TABLE VI 

RESULTS FOR THE SEGMENTATION DATA 

Method Training 

time (s) 

Hidden 

Units 

Indep. 

 Param. 

C. error  

(%) 

Ordinary method 

(no task decomposition) 

693.8 

 

 

29 887 5.7366 

Output Parallelism 

(7 sub-modules) 

610.2  

(parallel) 

1719.6 

 (series) 

152.1 

 

3175 

 

5.1820 

 

The 

distributor 

module 

213.4 13.9 329.9 1.0399 

Overall 

network 

(FPT) 

1002.2 

 (parallel) 

2219.2  

(series) 

128.5 

 

2754.9 

 

5.4419 

 

Pattern 

Distributor 

(1 

distributor 

module, 2 

modules 

and 7 

sub-modu

les) 

Overall 

network 

(RPT) 

213.4 

  (parallel) 

706.9 

(series) 

128.9 2762.9 4.6101 

 

 

TABLE VII 

CLASSIFICATION ERROR IN DIFFERENT OP MODULES FOR THE LETTER DATA 

Output 

Parallelism 
Ni pii (%) N-Ni pi* (%) 

Module 1 1359 20.833 3641 2.856 
Module 2 1333 24.812 3667 1.084 
Module 3 1195 25.109 3805 3.035 
Module 4 1113 11.051 3889 1.826 

 
TABLE VIII 

RESULTS FOR THE LETTER DATA 

Method Training 

time (s) 

Hidden 

Units 

Indep. 

 Param. 

C. error  

(%) 

Ordinary method 

(no task decomposition) 

20845.05 73.6 3607 21.672 

Output Parallelism 

(4 modules) 

5519  

 (parallel) 

18112.6 

 (series) 

173.4 6586.8 19.260 

 

The 

distributor 

module 

2510 

 (parallel) 

8497 

 (series) 

219.5 4019.0 12.195 

 

Overall 

network 

(FPT) 

6110 

 (parallel) 

26723.8 

 (series) 

386.25 8384.5 20.515 
Pattern 

Distributor 

(1 

distributor 

module, 4 

modules ) 
Overall 

network 

(RPT) 

2510 

 (parallel) 

14094.5 

(series) 

344.25 7391.0 15.855 
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than those in the ordinary and OP networks. Table VIII also 

shows the training time using these methods. Under series 

training, the training time of FPT (26723.8s) is larger than those 

of the ordinary network (18112.6s) and the OP network 

(20845.05s). The training time of RPT (14094.5s) is greatly 

decreased compared to that of FPT and is also smaller than 

those of the former two networks. If parallel training was used, 

the training process of RPT could save more time. From the 

above analysis, we can see that RPT performs better than the 

others. 

C. Cross-talk based combination for distributor modules 

Two classification problems, namely Segmentation and 

Glass were used in the experiments. 

1) Segmentation: The Cross-talk table for this problem is 

obtained using the method described in Section 4.1, as shown in 

Table IX. As mentioned in Section 4.1, if the distance between 

two classes in the Cross-talk table is relatively small, then these 

two classes are likely to be close in the feature space. From 

Table IX, we want to find classes which are close to each other 

and combine them. For simplicity, we use d(i,j) to denote the 

distance between class i and class j. From the table, d(3,5) is 

1.6476, d(4,5) 3.0618 and  d(3,4) 6.7673. These distances are 

relatively small compared with other distance figures. Thus, we 

combine classes 3,4,5 together. In the remaining four classes, 

class 1 is relatively close to classes 3,4,5. Thus, we combine 

1,3,4,5 together. Now look at classes 2,6,7. Class 2 and class 6 

are relatively close and we combine them together. The final 

combination set is {{1,3,4,5},{2,6},{7}}. 

We use another combination set {{1,2,7},{3,4},{5,6}}for 

comparison with the above set. In this set, we combine together 

the classes with relatively large distances. The experimental 

results for these two partitions are shown in Table X. Table X 

shows that the distributor module’s classification error as well 

as the overall classification error are reduced when the classes 

close to each other are combined together.  

2) Glass: The Cross-talk table for this data set is shown in 

Table XI. We can see that the distances among class 1, class 2 

and class 3 are 0.4467, 0.3481 and 0.501, which are much 

smaller than the other distances. So classes 1, 2, 3 are combined. 

In the remaining classes, it seems that class 4 is close to class 2. 

However, d(4,1) and d(4,3) is very large. Class 4 is not added to 

combination {1,2,3}.  Note that class 4, class 5 and class 6 have 

relatively small distances. Thus, classes 4,5,6 are combined. 

Thus, the final combination set is {{1,2,3}, {4,5,6}}. 

We use another combination set {{3,4,6},{1,2,5}}for 

comparison with the above set. In this set, we combine together 

the classes with relatively large distances. The experimental 

results for the two different partitions are shown in Table XII. 

From Table XII, it is confirmed that the distributor module’s 

classification error as well as the overall classification error are 

reduced when the classes close to each other are combined 

together. 

D. Genetic Algorithm based combination for distributor 

TABLE IX 

CROSS-TALK TABLE FOR THE SEGMENTATION DATA 

 1 2 3 4 5 6 7 

1 

 

0 233.0 9.948 17.66 8.876 40.34 53.91 

2 

 

233.0 0 72.53 17.12 53.10 42.95 518.8 

3 

 

9.948 72.53 0 6.767 1.648 18.55 40.66 

4 

 

17.66 17.12 6.767 0 3.062 4.458 54.70 

5 

 

8.876 53.10 1.648 3.062 0 16.34 29.02 

6 

 

40.34 42.95 18.55 4.458 16.34 0 60.95 

7 

 

53.91 518.8 40.66 54.70 29.02 60.95 0 

 

TABLE X 

RESULTS FOR THE SEGMENTATION PROBLEM USING CROSS-TALK BASED 

COMBINATION 

Grouping of  

Output classes 

 The distributor module’s 

Classification error (%) 

Overall 

Classification error 

(%) 

Module 1 {1,3,4,5}  

Module 2{2,6} 

Module 3{7} 

(RPT) 

0.1040 

 

4.6187 

 

Module 1{1,2,7} 

Module 2{3,4} 

Module 3{5,6} 

(RPT) 

4.7834 

 

5.3900 

 

 

TABLE XI 

CROSS-TALK TABLE FOR THE GLASS DATA 

 1 2 3 4 5 6 

1 

 

0 0.4467 0.3481 13.0807 7.7731 10.8269 

2 

 

0.4467 0 0.501 1.2606 1.9163 5.8246 

3 

 

0.3481 0.501 0 26.312 9.2086 7.6053 

4 

 

13.0807 1.2606 26.312 0 4.6975 6.8534 

5 

 

7.7731 1.9163 9.2086 4.6975 0 2.1657 

6 

 

10.8269 5.8246 7.6053 6.8534 2.1657 0 

 

TABLE XII 

RESULTS FOR THE GLASS PROBLEM USING CROSS-TALK BASED COMBINATION 

Grouping of  

Output classes 

 The distributor module’s 

Classification error (%) 

Overall 

Classification error 

(%) 

Module 1{1,2,3} 

Module 2{4,5,6} 

(RPT) 

2.4224 

 

7.5776 

 

Module 1{3,4,6} 

Module 2{1,2,5} 

(RPT) 

4.5963 

 

8.5093 
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modules 

To compare with the results in section 5.3, the same 

classification problems, namely Segmentation and Glass were 

used in the experiments. In the experiments, we chose the 

probability of crossover pc=0.2 and the probability of mutation 

pm=0.2. For each chromosome, the classification error of the 

validation set is computed 5 times. The evaluation value is the 

average of the classification errors from 5 runs. 

1) Segmentation: In the experiments, we set the maximum 

number of combination Nmax=4. The population number is 20. 

Due to long computation time, only 30 generations were bred in 

our experiments. We identified the best chromosome 1211133, 

or {{1,3,4,5},{6,7},{2}}. The experimental results are shown 

in Table XIII. Comparing the results in Table XIII with those in 

Table X, it can be seen that using GA based combination, the 

classification error of the distributor module is decreased from 

0.1040% to 0.0173%. The classification error of the whole 

network is slightly better than that using Cross-talk based 

combination. 

2) Glass: In the experiments, we set the maximum number of 

combination Nmax=3. The population number is 12. Due to long 

computation time, only 30 generations were bred in our 

experiments. We identified the best chromosome 121212, or 

{{1,3,5},{2,4,6}}. The experimental results are shown in Table 

XIV. Comparing the results in Table XIV with those in Table 

XII, it can be seen that using GA based combination, the 

classification error of the distributor module is equal to that 

using Cross-talk based combination. The classification error of 

the whole network is slightly larger than that using Cross-talk 

based combination. 

In the above two sets of experiments, it took 11 epochs for the 

Glass problem and 14 epochs for the Segmentation problem to 

locate the best chromosome. With the increasing number of 

classes, the number of epochs required to locate the best 

chromosome will also be increased. In the above two examples, 

we see that the classification error of the distributor module 

using GA based combination seems better than or equal to that 

using Cross-talk based combination. However, the whole 

network’s performance using GA based combination is not 

always better than that using Cross-talk based combination. It is 

also related to the recognition rates of the non-distributor 

modules. It can be seen that GA based combination may not be a 

good choice compared with Cross-talk based combination in 

these two examples, due to the fact that the improvement in 

classification rate is trivial while much more computation is 

needed for GA based combination. For problems with a large 

number of classes whose Cross-talk computation is more costly 

and harder to analyze, GA based combination may be a better 

choice. On the other hand, we may consider generating some 

initial chromosomes based on the Cross-talk analysis to further 

improve the quality of GA based combination. 

 

VI. CONCLUSIONS 

This paper presented a unique task decomposition approach 

called Task Decomposition with Pattern Distributor (PD). In 

this design, a special module called distributor module was 

introduced in order to improve the accuracy of the whole 

network. A theoretical model was shown to compare the 

performance of PD with that of Output parallelism (OP) – a 

typical class decomposition method. The analysis showed that 

PD can outperform OP when the classification accuracy of the 

distributor module is guaranteed. The experimental results 

confirmed this. In order to further improve the performance of 

PD, Reduced Pattern Training was introduced. Reduced Pattern 

Training apparently increased the accuracy of the PD network. 

According to our model, the distributor module’s classification 

accuracy dominated the whole network’s performance. Two 

combination methods, Cross-talk based combination and GA 

based combination, were proposed to find good class grouping 

for the distributor module. Cross-talk based combination could 

find a suitable combination set for the distributor module. GA 

based combination could find the optimal (or near-optimal) 

combination set for the distributor module, with a larger 

computation cost. Our experimental results confirmed the 

effectiveness of the combination methods proposed. 

We will continue to improve the combination methods in the 

future. We hope to design new combination methods which not 

only can find optimal or near-optimal sets for the distributor 

module but also reduce further the computation time. In our 

paper, the number of distributor module is restricted to one. 

This can be relaxed by having multi-level PD networks with two 

or more distributor modules. How to reduce further the training 

pattern set while retaining the recognition rate is also on our 

future research agenda. 

 

APPENDIX 

The procedure of standardizing a chromosome is shown as 

follows: 

(1) Add a minus sign “-” to all the places. For example, a place 

with number “3” now becomes “-3”. Chromosome 233111 

becomes (-2)(-3)(-3)(-1)(-1)(-1). 

TABLE XIII 

RESULTS OF THE SEGMENTATION PROBLEM USING GA BASED COMBINATION 

Grouping of  

Output classes 

 The distributor module’s 

Classification error (%) 

Overall 

Classification error 

(%) 

Module 1 {1,3,4,5}  

Module 2 {6,7} 

Module 3 {2} 

(RPT) 

0.0173 

 

4.5321 

 

 

TABLE XIV 

RESULTS OF THE GLASS PROBLEM USING GA BASED COMBINATION 

Grouping of  

Output classes 

 The distributor module’s 

Classification error (%) 

Overall 

Classification error 

(%) 

Module 1 {1,3,5}  

Module 2{2,4,6} 

 (RPT) 

2.4224 

 

7.8261 
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(2) Set t=1. Find the number in the first place and find all the 

places with the same number as the first one. Change the 

numbers in the first place and all the matching places into 

“t”. In the above example, chromosome 

(-2)(-3)(-3)(-1)(-1)(-1) becomes 1(-3)(-3)(-1)(-1)(-1). 

(3) Set t=t+1. Scanning from left to right, find the leftmost 

place whose number is negative and find all the following 

places whose number is the same. Change the numbers in 

these places into “t”. In the above example, when t=2, 

chromosome 1(-3)(-3)(-1)(-1)(-1) becomes 

122(-1)(-1)(-1). 

(4) Repeat Step (3) until all the places have positive numbers 

inside. 
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