666 research outputs found

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    Scalable Online Betweenness Centrality in Evolving Graphs

    Full text link
    Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algorithm runs in O(nm) time. The problems of efficiency and scalability are exacerbated in a dynamic setting, where the input is an evolving graph seen edge by edge, and the goal is to keep the betweenness centrality up to date. In this paper we propose the first truly scalable algorithm for online computation of betweenness centrality of both vertices and edges in an evolving graph where new edges are added and existing edges are removed. Our algorithm is carefully engineered with out-of-core techniques and tailored for modern parallel stream processing engines that run on clusters of shared-nothing commodity hardware. Hence, it is amenable to real-world deployment. We experiment on graphs that are two orders of magnitude larger than previous studies. Our method is able to keep the betweenness centrality measures up to date online, i.e., the time to update the measures is smaller than the inter-arrival time between two consecutive updates.Comment: 15 pages, 9 Figures, accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)(revised 08/2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Accelerating Reconfigurable Financial Computing

    Get PDF
    This thesis proposes novel approaches to the design, optimisation, and management of reconfigurable computer accelerators for financial computing. There are three contributions. First, we propose novel reconfigurable designs for derivative pricing using both Monte-Carlo and quadrature methods. Such designs involve exploring techniques such as control variate optimisation for Monte-Carlo, and multi-dimensional analysis for quadrature methods. Significant speedups and energy savings are achieved using our Field-Programmable Gate Array (FPGA) designs over both Central Processing Unit (CPU) and Graphical Processing Unit (GPU) designs. Second, we propose a framework for distributing computing tasks on multi-accelerator heterogeneous clusters. In this framework, different computational devices including FPGAs, GPUs and CPUs work collaboratively on the same financial problem based on a dynamic scheduling policy. The trade-off in speed and in energy consumption of different accelerator allocations is investigated. Third, we propose a mixed precision methodology for optimising Monte-Carlo designs, and a reduced precision methodology for optimising quadrature designs. These methodologies enable us to optimise throughput of reconfigurable designs by using datapaths with minimised precision, while maintaining the same accuracy of the results as in the original designs

    Confidential remote computing

    Get PDF
    Since their market launch in late 2015, trusted hardware enclaves have revolutionised the computing world with data-in-use protections. Their security features of confidentiality, integrity and attestation attract many application developers to move their valuable assets, such as cryptographic keys, password managers, private data, secret algorithms and mission-critical operations, into them. The potential security issues have not been well explored yet, and the quick integration movement into these widely available hardware technologies has created emerging problems. Today system and application designers utilise enclave-based protections for critical assets; however, the gap within the area of hardware-software co-design causes these applications to fail to benefit from strong hardware features. This research presents hands-on experiences, techniques and models on the correct utilisation of hardware enclaves in real-world systems. We begin with designing a generic template for scalable many-party applications processing private data with mutually agreed public code. Many-party applications can vary from smart-grid systems to electronic voting infrastructures and block-chain smart contracts to internet-of-things deployments. Next, our research extensively examines private algorithms executing inside trusted hardware enclaves. We present practical use cases for protecting intellectual property, valuable algorithms and business or game logic besides private data. Our mechanisms allow querying private algorithms on rental services, querying private data with privacy filters such as differential privacy budgets, and integrity-protected computing power as a service. These experiences lead us to consolidate the disparate research into a unified Confidential Remote Computing (CRC) model. CRC consists of three main areas: the trusted hardware, the software development and the attestation domains. It resolves the ambiguity of trust in relevant fields and provides a systematic view of the field from past to future. Lastly, we examine the questions and misconceptions about malicious software profiting from security features offered by the hardware. The more popular idea of confidential computing focuses on servers managed by major technology vendors and cloud infrastructures. In contrast, CRC focuses on practices in a more decentralised setting for end-users, system designers and developers

    Interconnect-aware coherence protocols for chip multiprocessors

    Get PDF
    Journal ArticleImprovements in semiconductor technology have made it possible to include multiple processor cores on a single die. Chip Multi-Processors (CMP) are an attractive choice for future billion transistor architectures due to their low design complexity, high clock frequency, and high throughput. In a typical CMP architecture, the L2 cache is shared by multiple cores and data coherence is maintained among private L1s. Coherence operations entail frequent communication over global on-chip wires. In future technologies, communication between different L1s will have a significant impact on overall processor performance and power consumption. On-chip wires can be designed to have different latency, bandwidth, and energy properties. Likewise, coherence protocol messages have different latency and bandwidth needs. We propose an interconnect composed of wires with varying latency, bandwidth, and energy characteristics, and advocate intelligently mapping coherence operations to the appropriate wires. In this paper, we present a comprehensive list of techniques that allow coherence protocols to exploit a heterogeneous interconnect and evaluate a subset of these techniques to show their performance and power-efficiency potential. Most of the proposed techniques can be implemented with a minimum complexity overhead

    Wire management for coherence traffic in chip multiprocessors

    Get PDF
    Journal ArticleImprovements in semiconductor technology have made it possible to include multiple processor cores on a single die. Chip Multi-Processors (CMP) are an attractive choice for future billion transistor architectures due to their low design complexity, high clock frequency, and high throughput. In a typical CMP architecture, the L2 cache is shared by multiple cores and data coherence is maintained among private L1s. Coherence operations entail frequent communication over global on-chip wires. In future technologies, communication between different L1s will have a significant impact on overall processor performance and power consumption. On-chip wires can be designed to have different latency, bandwidth, and energy properties. Likewise, coherence protocol messages have different latency and bandwidth needs. We propose an interconnect comprised of wires with varying latency, bandwidth, and energy characteristics, and advocate intelligently mapping coherence operations to the appropriate wires. In this paper, we present a comprehensive list of techniques that allow coherence protocols to exploit a heterogeneous interconnect and present preliminary data that indicates the potential of these techniques to significantly improve performance and reduce power consumption. We further demonstrate that most of these techniques can be implemented at a minimum complexity overhead
    • …
    corecore