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Abstract

Improvements in semiconductor technology have made 

it possible to include multiple processor cores on a single 

die. Chip Multi-Processors (CMP) are an attractive choice 

for future billion transistor architectures due to their low 

design complexity; high clock frequency, and high through­

put. In a typical CMP architecture, the L2 cache is shared 

by multiple cores and data coherence is maintained among 

private Lis. Coherence operations entail frequent commu­

nication over global on-chip wires. In future technologies, 

communication between different Lis will have a significant 

impact on overall processor performance and power con­

sumption. On-chip wires can be designed to have different 

latency, bandwidth, and energy properties. Likewise, co­

herence protocol messages have different latency and band­

width needs. We propose an interconnect composed of wires 

with varying latency, bandwidth, and energy characteris­

tics, and advocate intelligently mapping coherence opera­

tions to the appropriate wires. In this paper, we present a 

comprehensive list of techniques that allow coherence pro­

tocols to exploit a heterogeneous interconnect and evaluate 

a subset of these techniques to show their performance and 

power-efficiency potential. Most of the proposed techniques 

can be implemented with a minimum complexity overhead.

1. Introduction

One of the greatest bottlenecks to performance in fu­

ture microprocessors is the high cost of on-chip commu­

nication through global wires [19], Power consumption 

has also emerged as a first order design metric and wires 

contribute up to 50% of total chip power in some proces­

sors [32], Most major chip manufacturers have already an­

nounced plans [20, 23] for large-scale chip multi-processors 

(C.MPs). Multi-threaded workloads that execute on such 

processors will experience high on-chip communication la­

tencies and will dissipate significant power in interconnects. 

In the past, only VLSI and circuit designers were concerned 

with the layout of interconnects for a given architecture.
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However, with communication emerging as a larger power 

and performance constraint than computation, it may be­

come necessary to understand and leverage the properties 

of the interconnect at a higher level. Exposing wire prop­

erties to architects enables them to find creative ways to 

exploit these properties. This paper presents a number of 

techniques by which coherence traffic within a C.MP can 

be mapped intelligently to different wire implementations 

with minor increases in complexity. Such an approach can 

not only improve performance, but also reduce power dissi­

pation.

In a typical C.MP, the L2 cache and lower levels of the 

memory hierarchy are shared by multiple cores [24, 41], 

Sharing the L2 cache allows high cache utilization and 

avoids duplicating cache hardware resources. LI caches 

are typically not shared as such an organization entails high 

communication latencies for every load and store. There 

are two major mechanisms used to ensure coherence among 

LI s in a chip multiprocessor. The first option employs a bus 

connecting all of the LI s and a snoopy bus-based coherence 

protocol. In this design, every LI cache miss results in a co­

herence message being broadcast on the global coherence 

bus and other LI caches are responsible for maintaining 

valid state for their blocks and responding to misses when 

necessary. The second approach employs a centralized di­

rectory in the L2 cache that tracks sharing information for 

all cache lines in the L2. In such a directory -based proto­

col, every LI cache miss is sent to the L2 cache, where fur­

ther actions are taken based on that block’s directory state. 

Many studies [2, 10, 21, 26, 30] have characterized the 

high frequency of cache misses in parallel workloads and 

the high impact these misses have on total execution time. 

On a cache miss, a variety of protocol actions are initiated, 

such as request messages, invalidation messages, interven­

tion messages, data block writebacks, data block transfers, 

etc. Each of these messages involves on-chip communi­

cation with latencies that are projected to grow to tens of 

cycles in future billion transistor architectures [3].

Simple wire design strategies can greatly influence a 

wire’s properties. For example, by tuning wire width and 

spacing, we can design wires with varying latency and 

bandwidth properties. Similarly, by tuning repeater size and
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spacing, we can design wires with varying latency and en­

ergy properties. To take advantage of VLSI techniques and 

better match the interconnect design to communication re­

quirements, a heterogeneous interconnect can be employed, 

where every link consists of wires that are optimized for ei­

ther latency, energy, or bandwidth. In this study, we explore 

optimizations that are enabled when such a heterogeneous 

interconnect is employed for coherence traffic. For exam­

ple, when employing a directory-based protocol, on a cache 

write miss, the requesting processor may have to wait for 

data from the home node (a two hop transaction) and for ac­

knowledgments from other sharers of the block (a three hop 

transaction). Since the acknowledgments are on the critical 

path and have low bandwidth needs, they can be mapped to 

wires optimized for delay, while the data block transfer is 

not on the critical path and can be mapped to wires that are 

optimized for low power.

The paper is organized as follows. We discuss related 

work in Section 2. Section 3 reviews techniques that enable 

different wire implementations and the design of a hetero­

geneous interconnect. Section 4 describes the proposed in­

novations that map coherence messages to different on-chip 

wires. Section 5 quantitatively evaluates these ideas and we 

conclude in Section 6 .

2. Related Work

To the best of our knowledge, only three other bodies of 

work have attempted to exploit different types of intercon­

nects at the microarchitecture level. Beckmann and Wood 

[8, 9] propose speeding up access to large L2 caches by in­

troducing transmission lines between the cache controller 

and individual banks. Nelson et al. [39] propose using opti­

cal interconnects to reduce inter-cluster latencies in a clus­

tered architecture where clusters are widely-spaced in an 

effort to alleviate power density.

A recent paper by Balasubramonian et al. [5] introduces 

the concept of a heterogeneous interconnect and applies it 

for register communication within a clustered architecture. 

A subset of load/store addresses are sent on low-latency 

wires to prefetch data out of the L ID  cache, while non- 

critical register values are transmitted on low-power wires. 

A heterogeneous interconnect similar to the one in [5] has 

been applied to a different problem domain in this paper. 

The nature of cache coherence traffic and the optimiza­

tions they enable are very different from that of register 

traffic within a clustered microarchitecture. We have also 

improved upon the wire modeling methodology in [5] by 

modeling the latency and power for all the network com­

ponents including routers and latches. Our power modeling 

also takes into account the additional overhead incurred due 

to the heterogeneous network, such as additional buffers 

within routers.

We begin with a quick review of factors that influence 

wire properties. It is well-known that the delay of a wire 

is a function of its RC time constant (R is resistance and 

C is capacitance). Resistance per unit length is (approxi­

mately) inversely proportional to the width of the wire [19]. 

Likewise, a fraction of the capacitance per unit length is 

inversely proportional to the spacing between wires, and a 

fraction is directly proportional to wire width. These wire 

properties provide an opportunity to design wires that trade 

off bandwidth and latency. By allocating more metal area 

per wire and increasing wire width and spacing, the net 

effect is a reduction in the RC time constant. This leads 

to a wire design that has favorable latency properties, but 

poor bandwidth properties (as fewer wires can be accom­

modated in a fixed metal area). In certain cases, nearly a 

three-fold reduction in wire latency can be achieved, at the 

expense of a four-fold reduction in bandwidth. Further, re­

searchers are actively pursuing transmission line implemen­

tations that enable extremely low communication latencies 

[12, 16], However, transmission lines also entail signif­

icant metal area overheads in addition to logic overheads 

for sending and receiving [8, 12], If transmission line im­

plementations become cost-effective at future technologies, 

they represent another attractive wire design point that can 

trade off bandwidth for low latency.

Similar trade-off's can be made between latency and 

power consumed by wires. Global wires are usually com­

posed of multiple smaller segments that are connected with 

repeaters [4], The size and spacing of repeaters influences 

wire delay and power consumed by the wire. When smaller 

and fewer repeaters are employed, wire delay increases, but 

power consumption is reduced. The repeater configuration 

that minimizes delay is typically very different from the 

repeater configuration that minimizes power consumption. 

Banerjee et al. [6] show that at 50nm technology, a five­

fold reduction in power can be achieved at the expense of a 

two-fold increase in latency.

Thus, by varying properties such as wire width/spacing 

and repeater size/spacing, we can implement wires with dif­

ferent latency, bandwidth, and power properties. Consider 

a CMOS process where global inter-core wires are routed 

on the 8X and 4X metal planes. Note that the primary dif­

ferences between minimum-width wires in the 8X and 4X 

planes are their width, height, and spacing. We will refer 

to these mimimum-width wires as baseline B-Wires (either 

8X-B-Wires or 4X-B-Wires). In addition to these wires, 

we will design two more wire types that may be potentially 

beneficial (summarized in Figure 1). A low-latency L-Wire 

can be designed by increasing the width and spacing of 

the wire on the 8X plane (by a factor of four). A power- 

efficient PW-Wire is designed by decreasing the number 

and size of repeaters within minimum-width wires on the

3 . W i r e  I m p l e m e n t a t i o n s
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III! 1
L (delay optimized, 

low bandwidth)
B -8X (baseline, 

low latency)

A A  A  A  A  A  A  A

B-4X (baseline, 
high bandwidth)

A  A  A  A  A  A  A  A

PW (power-optimized, 
high bandwidth, high delay)

Figure 1. Examples of different wire implementations. Power optimized wires have fewer and smaller repeaters, 
while bandwidth optimized wires have narrow widths and spacing.

4X plane. While a traditional architecture would employ 

the entire available metal area for B-Wires (either 4X or 

8X), we propose the design of a heterogeneous intercon­

nect, where part of the available metal area is employed for 

B-Wires, pail for L-Wires, and pail for PW-Wires. Thus, 

any data transfer has the option of using one of three sets of 

wires to effect the communication. A typical composition 

of a heterogeneous interconnect may be as follows: 256 B- 

Wires, 512 PW-Wires, 24 L-Wires. In the next section, we 

will demonstrate how these options can be exploited to im­

prove performance and reduce power consumption. We will 

also examine the complexity introduced by a heterogeneous 

interconnect.

4. Optimizing Coherence Traffic

For each cache coherence protocol, there exist a vari­

ety of coherence operations with different bandwidth and 

latency needs. Because of this diversity, there are many op­

portunities to improve performance and power characteris­

tics by employing a heterogeneous interconnect. The goal 

of this section is to present a comprehensive listing of such 

opportunities. We focus on protocol-specific optimizations 

in Section 4.1 and on protocol-independent techniques in 

Section 4.2. We discuss the implementation complexity of 

these techniques in Section 4.3.

4.1 Protocol-Dependent Techniques

We first examine the characteristics of operations in both 

directory-based and snooping bus-based coherence proto­

cols and how they can map to different sets of wires. In 

a bus-based protocol, the ability of a cache to directly re­

spond to another cache’s request leads to low L I cache- 

to-cache miss latencies. L2 cache latencies are relatively 

high as a processor core has to acquire the bus before send­

ing a request to L2. It is difficult to support a large num­

ber of processor cores with a single bus due to the band­

width and electrical limits of a centralized bus [11]. In a 

directory-based design [13, 28], each L I connects to the L2 

cache through a point-to-point link. This design has low 

L2 hit latency and scales better. However, each L I cache- 

to-cache miss must be forwarded by the L2 cache, which 

implies high L I cache-to-cache latencies. The performance 

comparison between these two design choices depends on

the cache sizes, miss rates, number of outstanding mem- 

017 requests, working-set sizes, sharing behavior of targeted 

benchmarks, etc. Since either option may be attractive to 

chip manufacturers, we will consider both forms of coher­

ence protocols in our study.

Write-Invalidate Directory-Based Protocol

Write-invalidate directory-based protocols have been im­

plemented in existing dual-core CMPs [41] and will likely 

be used in larger scale CMPs as well. In a directory-based 

protocol, every cache line has a directory where the states of 

the block in all L is are stored. Whenever a request misses 

in an L I cache, a coherence message is sent to the direc­

tory at the L2 to check the cache line’s global state. If there 

is a clean copy in the L2 and the request is a READ, it is 

served by the L2 cache. Otherwise, another L I must hold 

an exclusive copy and the READ request is forwarded to the 

exclusive owner, which supplies the data. For a WRITE re­

quest, if any other L I caches hold a copy of the cache line, 

coherence messages are sent to each of them requesting that 

they invalidate their copies. The requesting L I cache ac­

quires the block in exclusive state only after all invalidation 

messages have been acknowledged.

Hop imbalance is quite common in a directory-based 

protocol. To exploit this imbalance, we can send critical 

messages on fast wires to increase performance and send 

non-critical messages on slow wires to save power. For the 

sake of this discussion, we assume that the hop latencies of 

different wires are in the following ratio: L-wire : B-wire : 

PW-wire :: 1 : 2 : 3

Proposal I: Read exclusive request for block in shared 

state

In this case, the L2 cache’s copy is clean, so it provides the 

data to the requesting L I and invalidates all shared copies. 

When the requesting L I receives the reply message from 

the L2, it collects invalidation acknowledgment messages 

from the other L is before returning the data to the processor 

core1. Figure 2 depicts all generated messages.

The reply message from the L2 requires only one hop, 

while the invalidation process requires two hops - an exam­

ple of hop imbalance. Since there is no benefit to receiving

1 Some coherence protocols may not impose all of these constraints, 

thereby deviating from a sequentially consistent memory model.
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Processor 1 attempts write. 
Sends Rd-Exc to Directory.

Directory finds block in 
Shared state in Cache 2. 
Sends clean copy of cache 
block to Cache 1.

Directory sends invalidate 
message to Cache 2.

Cache 2 sends invalidate 
acknowledgement back to 
Cache 1.

Figure 2. Read exclusive request for a shared 
block in MESI protocol

the cache line early, latencies for each hop can be chosen 

so as to equalize communication latency for the cache line 

and the acknowledgment messages. Acknowledgment mes­

sages include identifiers so they can be matched against the 

outstanding request in the L i ’s MSHR. Since there are only 

a few outstanding requests in the system, the identifier re­

quires few bits, allowing the acknowledgment to be trans­

ferred on a few low-latency L-Wires. Simultaneously, the 

data block transmission from the L2 can happen on low- 

power PW-Wires and still finish before the arrival of the ac­

knowledgments. This strategy improves performance (be­

cause acknowledgments are often on the critical path) and 

reduces power consumption (because the data block is now 

transferred on power-efficient wires). While circuit design­

ers have frequently employed different types of wires within 

a circuit to reduce power dissipation without extending the 

critical path, the proposals in this paper represent some of 

the first attempts to exploit wire properties at the architec­

tural level.

Proposal II: Read request for block in exclusive state 

In this case, the value in the L2 is likely to be stale and the 

following protocol actions are taken. The L2 cache sends 

a speculative data reply to the requesting L I and forwards 

the read request as an intervention message to the exclusive 

owner. If the cache copy in the exclusive owner is clean, an 

acknowledgment message is sent to the requesting L I, indi­

cating that the speculative data reply from the L2 is valid. If 

the cache copy is dirty, a response message with the latest 

data is sent to the requesting L I and a write-back message 

is sent to the L2. Since the requesting L I cannot proceed 

until it receives a message from the exclusive owner, the 

speculative data reply from the L2 (a single hop transfer) 

can be sent on slower PW-Wires. The forwarded request 

to the exclusive owner is on the critical path, but includes 

the block address. It is therefore not eligible for transfer on 

low-bandwidth L-Wires. If the owner’s copy is in the exclu­

sive clean state, a short acknowledgment message to the re­

questor can be sent on L-Wires. If the owner’s copy is dirty, 

the cache block can be sent over B-Wires, while the low pri­

ority writeback to the L2 can happen on PW-Wires. With 

the above mapping, we accelerate the critical path by using 

faster L-Wires, while also lowering power consumption by 

sending non-critical data on PW-Wires. The above protocol 

actions apply even in the case when a read-exclusive request 

is made for a block in the exclusive state.

Proposal III: NACK messages 

When the directory state is busy, incoming requests are 

often NACKed by the home directory, i.e., a negative ac­

knowledgment is sent to the requester rather than buffering 

the request. Typically the requesting cache controller re­

issues the request and the request is serialized in the or­

der in which it is actually accepted by the directory. A 

NACK message can be matched by comparing the request 

id (MSHR index) rather than the full address, so a NACK 

is eligible for transfer on low-bandwidth L-Wires. If load 

at the home directory is low, it will likely be able to serve 

the request when it arrives again, in which case sending the 

NACK on fast L-Wires can improve performance. In con­

trast, when load is high, frequent backoff-and-retry cycles 

are experienced. In this case, fast NACKs only increase 

traffic levels without providing any performance benefit. In 

this case, in order to save power, NACKs can be sent on 

PW-Wires.

Proposal IV: Unblock and write control messages 

Some protocols [36] employ unblock and write control mes­

sages to reduce implementation complexity. For every read 

transaction, a processor first sends a request message that 

changes the L2 cache state into a transient state. After 

receiving the data reply, it sends an unblock message to 

change the L2 cache state back to a stable state. Simi­

larly, write control messages are used to implement a 3- 

phase writeback transaction. A processor first sends a con­

trol message to the directory to order the writeback message 

with other request messages. After receiving the writeback 

response from the directory, the processor sends the data. 

This avoids a race condition in which the processor sends 

the writeback data while a request is being forwarded to it. 

Sending unblock messages on L-Wires can improve perfor­

mance by reducing the time cache lines are in busy states. 

Write control messages (writeback request and writeback 

grant) are not on the critical path, although they are also el­

igible for transfer on L-Wires. The choice of sending write­

back control messages on L-Wires or PW-Wires represents 

a power-performance trade-off.

Write-Invalidate Bus-Based Protocol

We next examine techniques that apply to bus-based 

snooping protocols.

Proposal V: Signal wires 

In a bus-based system, three wired-OR signals are typically 

employed to avoid involving the lower/slower memory hier­

archy [15]. Two of these signals are responsible for report­

ing the state of snoop results and the third indicates that the

Processor 1 Processor 2

Cache 1
4

Cache 2

1\ \ 2

L2 cache and directory
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snoop result is valid. The first signal is asserted when any 

LI cache, besides the requester, has a copy of the block. The 

second signal is asserted if any cache has the block in exclu­

sive state. The third signal is an inhibit signal, asserted until 

all caches have completed their snoop operations. When 

the third signal is asserted, the requesting LI and the L2 

can safely examine the other two signals. Since all of these 

signals are on the critical path, implementing them using 

low-latency L-Wires can improve performance.

Proposal VI: Voting wires 

Another design choice is whether to use cache-to-cache 

transfers if the data is in the shared state in a cache. The 

Silicon Graphics Challenge [ 17] and the Sun Enterprise use 

cache-to-cache transfers only for data in the modified state, 

in which case there is a single supplier. On the other hand, 

in the full Illinois MESI protocol, a block can be preferen­

tially retrieved from another cache rather than from mem- 

017. However, when multiple caches share a copy, a “vot­

ing” mechanism is required to decide which cache will sup­

ply the data, and this voting mechanism can benefit from 

the use of low latency wires.

4.2. Protocol-independent Techniques

Proposal VII: Narrow Bit-Width Operands for Synchro­

nization Variables

Synchronization is one of the most important factors in the 

performance of a parallel application. Synchronization is 

not only often on the critical path, but it also contributes 

a large percentage (up to 40%) of coherence misses [30], 

Locks and barriers are the two most widely used synchro­

nization constructs. Both of them use small integers to im­

plement mutual exclusion. Locks often toggle the synchro­

nization variable between zero and one, while barriers often 

linearly increase a barrier variable from zero to the number 

of processors taking part in the barrier operation. Such data 

transfers have limited bandwidth needs and can benefit from 

using L-Wires.

This optimization can be further extended by examining 

the general problem of cache line compaction. For exam­

ple, if a cache line is comprised mostly of 0 bits, trivial data 

compaction algorithms may reduce the bandwidth needs of 

the cache line, allowing it to be transferred on L-Wires in­

stead of B-Wires. If the wire latency difference between 

the two wire implementations is greater than the delay of 

the compaction/de-compaction algorithm, performance im­

provements are possible.

Proposal VIII: Assigning Writeback Data to PW-Wires 

Writeback data transfers result from cache replacements 

or external request/intervention messages. Since writeback 

messages are rarely on the critical path, assigning them to 

PW-Wires can save power without incurring significant per­

formance penalties.

Proposal IX: Assigning Narrow Messages to L-Wires

Coherence messages that include the data block address or 

the data block itself are many bytes wide. However, many 

other messages, such as acknowledgments and NAC.Ks, do 

not include the address or data block and only contain con­

trol information (source/destination, message type, MSHR 

id, etc.). Such narrow messages can be always assigned to 

low latency L-Wires to accelerate the critical path.

4.3. Implementation Complexity

4.3.1 Overhead in Heterogeneous Interconnect Imple­

mentation

In a conventional multiprocessor interconnect, a subset of 

wires are employed for addresses, a subset for data, and 

a subset for control signals. Every bit of communication 

is mapped to a unique wire. When employing a heteroge­

neous interconnect, a communication bit can map to mul­

tiple wires. For example, data returned by the L2 in re­

sponse to a read-exclusive request may map to B-Wires or 

PW-Wires depending on whether there are other sharers for 

that block (Proposal I). Thus, every wire must be associ­

ated with a multiplexor and de-multiplexor.

The entire network operates at the same fixed clock fre­

quency, which means that the number of latches within ev­

ery link is a function of the link latency. Therefore, PW- 

Wires have to employ additional latches, relative to the 

baseline B-Wires. Dynamic power per latch at 5GHz and 

65nm technology is calculated to be O.ImW, while leakage 

power per latch equals 19.8//W [25]. The power per unit 

length for each wire is computed in the next section. Power 

overheads due to these latches for different wires are tab­

ulated in Table 1. Latches impose a 2% overhead within 

B-Wires, but a 13% overhead within PW-Wires.

The proposed model also introduces additional complex­

ity in the routing logic. The base case router employs a 

cross-bar switch and 8-entry message buffers at each input 

port. Whenever a message arrives, it is stored in the in­

put buffer and routed to an allocator that locates the output 

port and transfers the message. In case of a heterogeneous 

model, three different buffers are required at each port to 

store L, B, and PW messages separately. In our simulations 

we employ three 4-entry message buffers for each port. The 

size of each buffer is proportional to the flit size of the cor­

responding set of wires. For example, a set of 24 L-Wires 

employs a 4-entry message buffer with a word size of 24 

bits. For power calculations we have also included the fixed 

additional overhead associated with these small buffers as 

opposed to a single larger buffer employed in the base case. 

In our proposed processor model, the dynamic characteri­

zation of messages happens only in the processors and in­

termediate network routers cannot re-assign a message to a 

different set of wires. While this may have a negative effect 

on performance in a highly utilized network, we chose to 

keep the routers simple and not implement such a feature.
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Wire Type Power/Length

mW/mm

Latch Power 

mW/latch

Latch Spacing 

mm

Total Power/10mm 

inW/1 Omni

B-Wire - 8X plane 1.4221 0.119 5.15 14.46

B-Wire - 4X plane 1.5928 0.119 3.4 16.29

L-Wire - 8X plane 0.7860 0.119 9.8 7.80

PW-wire - 4X plane 0.4778 0.119 1.7 5.48

Table 1. Power characteristics of different wire implementations. For calculating the power/length, activity 
factor a (described in Table 3) is assumed to be 0.15. The above latch spacing values are for a 5GHz network.

For a network employing virtual channel flow control, each 

set of wires in the heterogeneous network link is treated as 

a separate physical channel and the same number of vir­

tual channels are maintained per physical channel. There­

fore, the heterogeneous network has a larger total number 

of virtual channels and the routers require more state fields 

to keep track of these additional virtual channels. To sum­

marize, the additional overhead introduced by the heteroge­

neous model comes in the form of potentially more latches 

and greater routing complexity.

4.3.2 Overhead in Decision Process

The decision process in selecting the right set of wires is 

minimal. For example, in Proposal I, an OR function on 

the directory state for that block is enough to select either B­

or PW-Wires. In Proposal II, the decision process involves 

a check to determine if the block is in the exclusive state. To 

support Proposal in, we need a mechanism that tracks the 

level of congestion in the network (for example, the num­

ber of buffered outstanding messages). There is no decision 

process involved for Proposals IV, V, VI and VIII. Pro­

posals V II and IX require logic to compute the width of an 

operand, similar to logic used in the PowerPC 603 [ 18] to 

determine the latency for integer multiply.

4.3.3 Overhead in Cache Coherence Protocols

Most coherence protocols are already designed to be robust 

in the face of variable delays for different messages. For 

protocols relying on message order within a virtual channel, 

each virtual channel can be made to consist of a set of L-, 

B-, and PW-message buffers. A multiplexor can be used to 

activate only one type of message buffer at a time to ensure 

correctness. For other protocols that are designed to handle 

message re-ordering within a virtual channel, we propose to 

employ one dedicated virtual channel for each set of wires 

to fully exploit the benefits of a heterogeneous interconnect. 

In all proposed innovations, a data packet is not distributed 

across different sets of wires. Therefore, different compo­

nents of an entity do not arrive at different periods of time, 

thereby eliminating any timing problems. It may be worth 

considering sending the critical word of a cache line on L- 

Wires and the rest of the cache line on PW-Wires. Such a 

proposal may entail non-trivial complexity to handle comer 

cases and is not discussed further in this paper.

In a snooping bus-based coherence protocol, transactions 

are serialized by the order in which addresses appear on the

bus. None of our proposed innovations for snooping pro­

tocols affect the transmission of address bits (address bits 

are always transmitted on B-Wires), so the transaction seri­

alization model is preserved.

5. Results 

5.1. Methodology

5.1.1 Simulator

We simulate a 16-core CMP with the Virtutech Simics full- 

system functional execution-driven simulator [33] and a 

timing infrastructure GEMS [34], GEMS can simulate both 

in-order and out-of-order processors. In most studies, we 

use the in-order blocking processor model provided by Sim­

ics to drive the detailed memory model (Ruby) for fast sim­

ulation. Ruby implements a one-level MOESI directory 

cache coherence protocol with migratory sharing optimiza­

tion [14, 40]. All processor cores share a non-inclusive 

L2 cache, which is organized as a non-uniform cache ar­

chitecture (NUCA) [22]. Ruby can also be driven by an 

out-of-order processor module called Opal, and we report 

the impact of the processor cores on the heterogeneous in­

terconnect in Section 5.3. Opal is a timing-first simulator 

that implements the performance sensitive aspects of an out 

of order processor but ultimately relies on Simics to pro­

vide functional correctness. We configure Opal to model 

the processor described in Table 2 and use an aggressive 

implementation of sequential consistency.

To test our ideas, we employ a workload consisting of all 

programs from the SPLASH-2 [43] benchmark suite. The 

programs were run to completion, but all experimental re­

sults reported in this paper are for the parallel phases of 

these applications. We use default input sets for most pro­

grams except fft and radix. Since the default working sets of 

these two programs are too small, we increase the working 

set of fft to 1M data points and that of radix to 4M keys.

5.1.2 Interconnect Power/Delay/Area Models
This section describes details of the interconnect architec­

ture and the methodology we employ for calculating the 

area, delay, and power values of the interconnect. We con­

sider 65nm process technology and assume 10 metal lay­

ers, 4 layers in IX  plane and 2 layers, in each 2X, 4X, and 

8X plane [25]. For most of our study we employ a cross­

bar based hierarchical interconnect structure to connect the 

cores and L2 cache (Figure 3(a)), similar to that in SGI's
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Parameter Value Parameter Value

number of cores 16 clock frequency 5GHz

pipeline width 4-wide fetch and issue pipeline stages 11

cache block size 64 Bvtes split L I I & D cache 128KB. 4-wav

shared L2 cache 8MBvtes, 4-wav. 16-banks non-inclusive NUCA memorv/dir controllers 30 cvcles

interconnect link latency 4 cycles (one-way) for the baseline 8X-B-Wires DRAM latency 400 cvcles

memory bank capacity 1 GByte per bank latency to mem controller 100 cycles

Table 2. System configuration.

75-bytes

B-Wire

L-Wire

PW-Wire

b) Links with different sets of wires 

a) Hierarchical network topology for 16-core CMP
Figure 3. Interconnect model used for coherence transactions in a sixteen-core CMP.

NUMALink-4 [1]. The effect of other interconnect topolo­

gies is discussed in our sensitivity analysis. In the base case, 

each link in Figure 3(a) consists of (in each direction) 64-bit 

address wires, 64-byte data wires, and 24-bit control wires. 

The control signals carry source, destination, signal type, 

and Miss Status Holding Register (MSHR) id. All wires 

are fully pipelined. Thus, each link in the interconnect is 

capable of transferring 75 bytes in each direction. Error 

Correction Codes (ECC) account for another 13% overhead 

in addition to the above mentioned wires [38]. All the wires 

of the base case are routed as B-Wires in the 8X plane.

As shown in Figure 3(b), the proposed heterogeneous 

model employs additional wire types within each link. 

In addition to B-Wires, each link includes low-latency, 

low-bandwidth L-Wires and high-bandwidth, high-latency, 

power-efficient, PW-Wires. The number of L- and PW- 

Wires that can be employed is a function of the available 

metal area and the needs of the coherence protocol. In 

order to match the metal area with the baseline, each uni­

directional link within the heterogeneous model is designed 

to be made up of 24 L-Wires, 512 PW-Wires, and 256 B- 

Wires (the base case has 600 B-Wires, not counting ECC). 

In a cycle, three messages may be sent, one on each of the 

three sets of wires. The bandwidth, delay, and power calcu­

lations for these wires are discussed subsequently.

Table 3 summarizes the different types of wires and their 

area, delay, and power characteristics. The area overhead of 

the interconnect can be mainly attributed to repeaters and 

wires. We use wire width and spacing (based on ITRS pro­

jections) to calculate the effective area for minimum-width

wires in the 4X and 8X  plane. L-Wires are designed to oc­

cupy four times the area of minimum-width 8X-B-Wires.

Delay

Our wire model is based on the RC models proposed 

in [6 , 19, 37]. The delay per unit length of a wire with 

optimally placed repeaters is given by equation (1), where 

HWire is resistance per unit length of the wire, C'wire is ca­

pacitance per unit length of the wire, and F 0 1 is the fan-out 

of one delay:

Latency Wire =  2.13 w ir e CwireFOl (1)

SXu is inversely proportional to wire width, while 

C'wire depends on the following three components: (i) 

fringing capacitance that accounts for the capacitance be­

tween the side wall of the wire and substrate, (ii) parallel 

plate capacitance between the top and bottom layers of the 

metal that is directly proportional to the width of the metal, 

(iii) parallel plate capacitance between the adjacent metal 

wires that is inversely proportional to the spacing between 

the wires. The C'Wire value for the top most metal layer at 

65nm technology is given by equation (2) [37].

C' 0.065 + 0.057W + 0.01 b/S (fF /fi) (2)

We derive relative delays for different types of wires by tun­

ing width and spacing in the above equations. A variety of 

width and spacing values can allow L-Wires to yield a two­

fold latency improvement at a four-fold area cost, relative 

to 8X-B-Wires. In order to reduce power consumption, we
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Wire Type Relative Latency Relative Area

(tvireW idth + spacing)
Dynamic Power (W/m) 

a  = Switching Factor

Static Power 

W/m

R-Wire (8X plane) lx lx 2.05c* 1.0246

R-Wire (4X plane) 1 .Ox 0.5x 2.9c* 1.1578

[.-Wire (8X plane) 0.5x ■ix 1.40c* 0.5670

PW-Wire (4X plane) ;i:2x QIjx 0.87c* 0.3074

Table 3. Area, delay, and power characteristics of different wire implementations.

Component Hnergy/transaction (J)

Arbiter 

Crossbar 

Ruffer read operation 

Ruffer write operation

6.43079e-14 

5.32285e-12 

1,23757e-12 

1.73723e-12

Table 4. Energy consumed (max) by arbiters, 
buffers, and crossbars for a 32-byte transfer.

selected a wire implementation where the L-Wire's width 

was twice that of the minimum width and the spacing was 

six times as much as the minimum spacing for the 8X metal 

plane.

Power

The total power consumed by a wire is the sum of three 

components (dynamic, leakage, and short-circuit power). 

Equations derived by Banerjee and Mehrotra [6] are used 

to derive the power consumed by L- and B-Wires. These 

equations take into account optimal repeater size/spacing 

and wire width/spacing. PW-Wires are designed to have 

twice the delay of 4X-B-Wires. At 65nm technology, for a 

delay penalty of 100%, smaller and widely-spaced repeaters 

enable power reduction by 70% [6],

Routers

Crossbars, buffers, and arbiters are the major contribu­

tors for router power [42]:

^renter Ebuffer + Ecrossbor + E  arbiter (3)

The capacitance and energy for each of these components 

is based on analytical models proposed by Wang et al. [42]. 

We model a 5x5 matrix crossbar that employs a tristate 

buffer connector. As described in Section 4.3, buffers are 

modeled for each set of wires with word size corresponding 

to flit size. Table 3 shows the peak energy consumed by 

each component of the router for a single 32-byte transac­

tion.

5.2 Results

For our simulations, we restrict ourselves to directory- 

based protocols. We model the effect of proposals pertain­

ing to such a protocol: I, III, IV, V III, IX. Proposal-11 

optimizes speculative reply messages in MESI protocols, 

which are not implemented within GEMS' MOESI pro­

tocol. Evaluations involving compaction of cache blocks 

(Proposal VII) is left as future work.

. 0.8 
0.6 
0.4 

0.2 -

□ Base Model
■ Heterogeneous Model ~

*  ^  v < v v  *  V /

Figure 4. Speedup of heterogeneous intercon­
nect

Figure 4 shows the execution time in cycles for 

SPLASH2 programs. The first bar shows the performance 

of the baseline organization that has one interconnect layer 

of 75 bytes, composed entirely of 8X-B-Wires. The sec­

ond shows the performance of the heterogeneous intercon­

nect model in which each link consists of 24-bit L-wires, 

32-byte B-wires, and 64-byte PW-wires. Programs such as 

LU-Non-continuous, Ocean-Non-continuous, and Raytrac- 

ing yield significant improvements in performance. These 

performance numbers can be analyzed with the help of Fig­

ure 5 that shows the distribution of different transfers that 

happen on the interconnect. Transfers on L-Wires can have 

a huge impact on performance, provided they are on the 

program critical path. LU-Non-continuous, Ocean-Non- 

continuous, Ocean-Continuous, and Raytracing experience 

the most transfers on L-Wires. But the performance im­

provement of Ocean-Continuous is very low compared to 

other benchmarks. This can be attributed to the fact that 

Ocean-Continuous incurs the most L2 cache misses and is 

mostly memory bound. The transfers on PW-Wires have a 

negligible effect on performance for all benchmarks. This is 

because PW-Wires are employed only for writeback trans­

fers that are always off the critical path. On average, we 

observe a 11.2% improvement in performance, compared 

to the baseline, by employing heterogeneity within the net­

work.

Proposals I, III, IV, and IX exploit L-Wires to send small 

messages within the protocol, and contribute 2.3, 0, 60.3,
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□ L Messages ■ B Messages (Reg) □ B Messages (Data) ■ PW Messages

Figure 5. Distribution of messages on the hetero­
geneous network. B-Wire transfers are classified 
as Request and Data.

and 37.4 per cent, respectively, to total L-Wire traffic. A 

per-benchmarkbreakdown is shown in Figure 6 . Proposal-I 

optimizes the case of a read exclusive request for a block in 

shared state, which is not very common in the SPLASH2 

benchmarks. We expect the impact of Proposal-I to be 

much higher in commercial workloads where cache-to- 

cache misses dominate. Proposal-Ill and Proposal-IV im­

pact NAC.K, unblocking, and writecontrol messages. These 

messages are widely used to reduce the implementation 

complexity of coherence protocols. In GEMS' MOESI pro­

tocol, NAC.K messages are only used to handle the race con­

dition between two write-back messages, which are negligi­

ble in our study (causing the zero contribution of Proposal- 

Ill). Instead, the protocol implementation heavily relies on 

unblocking and writecontrol messages to maintain the order 

between read and write transactions, as discussed in Sec­

tion 4.1. The frequency of occurrence of NAC.K, unblock­

ing, and writecontrol messages depends on the protocol im­

plementation, but we expect the sum of these messages to 

be relatively constant in different protocols and play an im­

portant role in L-wire optimizations. Proposal-IX includes 

all other acknowledgment messages eligible for transfer on 

L-Wires.

We observed that the combination of proposals I, III, IV, 

and IX caused a performance improvement more than the 

sum of improvements from each individual proposal. A par­

allel benchmark can be divided into a number of phases by 

synchronization variables (barriers), and the execution time 

of each phase can be defined as the longest time any thread 

spends from one barrier to the next. Optimizations applied 

to a single thread may have no effect if there are other 

threads on the critical path. However, a different optimiza­

tion may apply to the threads on the critical path, reduce 

their execution time, and expose the performance of other

□ Proposal I M Proposal III □ Proposal IV U Proposal IX

Figure 6. Distribution of L-message transfers 
across different proposals.

threads and the optimizations that apply to them. Since dif­

ferent threads take different data paths, most parallel appli­

cations show nontrivial workload imbalance [31], There­

fore, employing one proposal might not speedup all threads 

on the critical path, but employing all applicable proposals 

can probably optimize threads on every path, thereby reduc­

ing the total barrier to barrier time.

Figure 7 shows the improvement in network energy 

due to the heterogeneous interconnect model. The first 

bar shows the reduction in network energy and the sec­

ond bar shows the improvement in the overall processor 

Energy x Delay2 (ED 2) metric. Other metrics in the 

E — D space can also be computed with data in Figures 7 

and 4. To calculate ED 2, we assume that the total power 

consumption of the chip is 200W, of which the network 

power accounts for 60W. The energy improvement in the 

heterogeneous case comes from both L and PW transfers. 

Many control messages that are sent on B-Wires in the base 

case are sent on L-Wires in the heterogeneous case. As per 

Table 3, the energy consumed by an L-Wire is less than the 

energy consumed by a B-Wire. But due to the small sizes 

of these messages, the contribution of L-messages to the to­

tal energy savings is negligible. Overall, the heterogeneous 

network results in a 22% saving in network energy and a 

30% improvement in ED 2.

5.3 Sensitivity Analysis

In this sub-section, we discuss the impact of proces­

sor cores, link bandwidth, routing algorithm, and network 

topology on the heterogeneous interconnect.

Out-of-order/In-order Processors

To test our ideas with an out-of-order processor, we con­

figure Opal to model the processor described in Table 2 and 

only report the results of the first 100M instructions in the
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_I □ Base Model
Heterogeneous Model

parallel sections2.

Figure 8 shows the performance speedup of the hetero­

geneous interconnect over the baseline. All benchmarks ex­

cept Ocean-Noncontinuous demonstrate different degrees 

of performance improvement, which leads to an average 

speedup of 9.3%. The average performance improvement is 

less than what we observe in a system employing in-order 

cores (11.2%). This can be attributed to the greater toler­

ance that an out-of-order processor has to long instruction 

latencies.

Link Bandwidth

The heterogeneous network poses more constraints on 

the type of messages that can be issued by a processor in 

a cycle. It is therefore likely to not perform very well in 

a bandwidth-constrained system. To verify this, we mod­

eled a base case where every link has only 80 8X-B-Wires 

and a heterogeneous case where every link is composed 

of 24 L-Wires, 24 8X-B-Wires, and 48 PW-Wires (almost 

twice the metal area of the new base case). Benchmarks 

with higher network utilizations suffered significant perfor­

mance losses. In our experiments raytracing has the maxi­

mum messages/cycle ratio and the heterogeneous case suf­

fered a 27% performance loss, compared to the base case 

(in spite of having twice the metal area). The heteroge­

neous interconnect performance improvement for Ocean 

Non-continuous and LU Non-continuous is 12% and 11%, 

as against 39% and 20% in the high-bandwidth simulations. 

Overall, the heterogeneous model performed 1.5% worse 

than the base case.

Routing Algorithm

Our simulations thus far have employed adaptive routing 

within the network. Adaptive routing alleviates the con­

2Simulating the entire program takes nearly a week and there exist no 

effective toolkits to ti nd the representative phases for parallel benchmarks. 

LU-Noncontinuous and Radix were not compatible with the Opal timing 

module.

•S 0.8o>
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Figure 8. Speedup of heterogeneous intercon­
nect when driven by OoO cores (Opal and Ruby)

tention problem by dynamically routing messages based on 

the network traffic. We found that deterministic routing de­

graded performance by about 3% for most programs for sys­

tems with the baseline and with the heterogeneous network. 

Raytracing is the only benchmark that incurs a significant 

performance penalty of 27% for both networks.

Network Topology

Our default interconnect thus far was a two-level tree 

based on SGFs NUMALink-4 [1], To test the sensitivity of 

our results to the network topology, we also examine a 2D- 

torus interconnect resembling that in the Alpha 21364 [7], 

As shown in Figure 9, each router connects to 4 links that 

connect to 4 neighbors in the torus, and wraparound links 

are employed to connect routers on the boundary.

Our proposed mechanisms show much less performance 

benefit (1.3% on average) in the 2D torus interconnect than 

in the two-level tree interconnect. The main reason is that 

our decision process in selecting the right set of wires cal­

culates hop imbalance at the coherence protocol level with­

out considering the physical hops a message takes on the 

mapped topology. For example, in a 3-hop transaction as 

shown in Figure 2, the one-hop message may take 4 physi­

cal hops while the 2-hop message may also take 4 physical 

hops. In this case, sending the 2-hop message on the L- 

Wires and the one-hop message on the PW-Wires will actu­

ally lower performance.

This is not a first-order effect in the two-level tree inter­

connect, where most hops take 4 physical hops. However, 

the average distance between two processors in the 2D torus 

interconnect is 2.13 physical hops with a standard deviation 

of 0.92 hops. In an interconnect with such high standard de­

viation, calculating hop imbalance based on protocol hops 

is inaccurate. For future work, we plan to develop a more 

accurate decision process that considers source id, destina­

tion id, and interconnect topology to dynamically compute
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Figure 9. Results for the 2D Torus.

an optimal mapping to wires.

6. Conclusions and Future Work

Coherence traffic in a chip multiprocessor has diverse 

needs. Some messages can tolerate long latencies, while 

others are on the program critical path. Further, messages 

have varied bandwidth demands. On-chip global wires can 

be designed to optimize latency, bandwidth, or power. We 

advocate partitioning available metal area across different 

wire implementations and intelligently mapping data to the 

set of wires best suited for its communication. This paper 

presents numerous novel techniques that can exploit a het­

erogeneous interconnect to simultaneously improve perfor­

mance and reduce power consumption.

Our evaluation of a subset of the proposed techniques 

shows that a large fraction of messages have low bandwidth 

needs and can be transmitted on low latency wires, thereby 

yielding a performance improvement of 11.2%. At the same 

time, a 22.5% reduction in interconnect energy is observed 

by transmitting non-critical data on power-efficient wires. 

The complexity cost is marginal as the mapping of mes­

sages to wires entails simple logic.

For future work, we plan to strengthen our decision pro­

cess in calculating the hop imbalance based on the topol­

ogy of the interconnect. We will also evaluate the poten­

tial of other techniques listed in this paper. There may be 

several other applications of heterogeneous interconnects 

within a CMP. For example, in the Dynamic Self Invali­

dation scheme proposed by Lebeck et a I. [29], the self- 

invalidate [27, 29] messages can be effected through power- 

efficient PW-Wires. In a processor model implementing to­

ken coherence, the low-bandwidth token messages [35] are 

often on the critical path and thus, can be effected on L- 

Wires. A recent study by Huh et a I. [21] reduces the fre­

quency of false sharing by employing incoherent data. For 

cache lines suffering from false sharing, only the sharing

states need to be propagated and such messages are a good 

match for low-bandwidth L-Wires.
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