
Imperial College London
Department of Computing

Accelerating Reconfigurable Financial Computing

Hong Tak Tse (Anson)

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the Imperial College

January 2012

Declaration

This thesis is a presentation of my original research work. The contributions of others are involved,

every effort is made to indicate this clearly in the references to the literature and acknowledgment of

collaborative research.

Signature: ...

Date: ...

i

ii

Abstract

This thesis proposes novel approaches to the design, optimisation, and management of reconfigurable

compute accelerators for financial computing. There are three contributions. First, we propose novel

reconfigurable designs for derivative pricing using both Monte-Carlo and quadrature methods. Such

designs involve exploring techniques such as control variate optimisation for Monte-Carlo, and multi-

dimensional analysis for quadrature methods. Significant speedups and energy savings are achieved

using our Field-Programmable Gate Array (FPGA) designs over both Central Processing Unit (CPU)

and Graphical Processing Unit (GPU) designs. Second, we propose a framework for distributing com-

puting tasks on multi-accelerator heterogeneous clusters. In this framework, different computational

devices including FPGAs, GPUs and CPUs work collaboratively on the same financial problem based

on a dynamic scheduling policy. The trade-off in speed and in energy consumption of different accel-

erator allocations is investigated. Third, we propose a mixed precision methodology for optimising

Monte-Carlo designs, and a reduced precision methodology for optimising quadrature designs. These

methodologies enable us to optimise throughput of reconfigurable designs by using datapaths with

minimised precision, while maintaining the same accuracy of the results as in the original designs.

iii

iv

Acknowledgements

I would like to express my greatest gratitude to my supervisors Professor Wayne Luk and Dr. David

Thomas. It would not have been possible to write this doctoral thesis without their support and

patience. Their ideas, advice and knowledge guide me a right direction of research to complete the

thesis.

Special thanks to Mr. Gary Chow Chun Tak, for his contributions to Chapter 6. We collaborated,

shared our ideas and finally came up with the idea on mixed precision methodology (Section 6.3).

He also defined the partitioning schemes (Section 6.4), proposed the optimisation algorithm (Sec-

tion 6.5) and helped implementing some of the hardware designs (Section 6.6). I would also like to

acknowledge Dr. Kuen Hung Tsoi and Mr. Qiwei Jin for their help in solving technical issues for

the experiments and proof-reading this thesis. I express my gratitude to fellow colleagues in Custom

Computing Group of Imperial College London: Dr. Chi Wai Yu, Dr. Chun Hok Ho, Mr. Adrien Le

Masle, Mr. Brahim Benkaoui, Prof. Yuet Ming Lam, Dr. Van Fu, Prof. Qiang Liu, Dr. Timothy

Todman, Dr. Tobias Becker, Mr. Philip Potter and Prof. Peter Jamieson for their time of discussions

and experience sharings.

I would like to thank Prof. John Lui, Prof. Philip Leong and Mr. Ricky Tsui for their reference

letters when I was applying the Croucher Foundation scholarship. And I sincerely thank the Croucher

Foundation for the financial support in this whole research period.

In addition, I thank my friends in London and Hong Kong for encouraging and supporting me.

The support of UK EPSRC, FP7 EPiCS and REFLECT projects, the HiPEAC NoE, MAXELER

Technologies, Celoxica and Xilinx is gratefully acknowledged.

v

vi

Dedication

To my parents: Chun Sang Tse and So Fan Cheng -

who bring me to this world and take care of me in my childhood.

To my brother and sister: Sze Tak Tse and Wai Tak Tse -

who help solving my problem in my life.

To my friends: -

who grow up with me and accompany me when I am alone.

vii

viii

Publications

Journal Papers

1. Anson H.T. Tse, David B. Thomas and Wayne Luk, “Design Exploration of Quadrature Meth-

ods in Option Pricing”, IEEE Transactions on Very-Large Scale Integration (VLSI) Systems

(Accepted for publication), 2012.

2. Anson H.T. Tse, David B. Thomas, K.H. Tsoi and Wayne Luk, “Efficient Reconfigurable De-

sign for Pricing Asian Options”, ACM SIGARCH Computer Architecture News, vol.38, no.4,

pp.14-20, Sept. 2010.

3. K.H. Tsoi, Anson H.T. Tse, Peter Pietzuch and Wayne Luk, “Programming Framework for

Clusters with Heterogeneous Accelerators”, ACM SIGARCH Computer Architecture News, vol

38, no 4, pp.53-59, Sept. 2010.

Conference Papers

1. Anson H.T. Tse, Gary C.T. Chow, Qiwei Jin, David B. Thomas and Wayne Luk, “Optimising

Performance of Quadrature Methods with Reduced Precision”, International Symposium on

Applied Reconfigurable Computing (Accepted for publication), 2012.

2. Gary C.T. Chow, Anson H.T. Tse, Qiwei Jin, David B. Thomas, Philip Leong, and Wayne Luk,

“A mixed precision Monte Carlo methodology for reconfigurable accelerator systems”, In Proc.

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA) (Accepted

for publication), 2012.

3. Anson H.T. Tse, David B. Thomas, K.H. Tsoi and Wayne Luk, “Dynamic Scheduling Monte-

Carlo Framework for Multi-Accelerator Heterogeneous Clusters”, In Proc. International Con-

ference on Field-Programmable Technology (FPT), pp.233-240, 2010.

4. Anson H.T. Tse, David B. Thomas and Wayne Luk, “Accelerating Quadrature Methods for

Option Valuation”, In Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp.29-36, 2009.

ix

Short Papers

1. Anson H.T. Tse, David B. Thomas, K.H. Tsoi and Wayne Luk, “Reconfigurable Control Variate

Monte-Carlo Designs for Pricing Exotic Options”, In Proc. International Conference on Field

Programmable Logic and Applications (FPL), pp.364-347, 2010.

2. Anson H.T. Tse, David B. Thomas and Wayne Luk, “Option Pricing with Multi-Dimensional

Quadrature Architectures”, In Proc. International Conference on Field-Programmable Tech-

nology (FPT), pp.427-430, 2009.

x

xi

Abbreviations

ASIC - Application Specific Integrated Circuit

CAD - Computer-Aided Design

CPU - Central Processing Unit

DP - Double Precision

DSP - Digital Signal Processor

FP - Floating Point

FPGA - Field Programmable Gate Array

FPU - Floating Point Unit

GPU - Graphics Processing Unit

HDL - Hardware Description Language

I/O - Input / Output

LSB - Least-Significant Bit

LUT - Look Up Table

MC - Monte-Carlo

MSB - Most-Significant Bit

RFC - Reconfigurable Financial Computing

SRAM - Static Random Access Memory

VHDL - Very High Speed Integrated Circuit Hardware Description

Language

xii

Contents

Declaration i

Abstract iii

Acknowledgements v

Dedication vii

Publications ix

Abbreviations xi

Contents xiii

List of Tables xxi

List of Figures xxiii

1 Introduction 1

1.1 Motivation: Demand from the financial industry . 1

1.2 Motivation: Change of the computing technology 2

xiii

xiv CONTENTS

1.3 Objectives . 3

1.4 Research Approach and Contributions . 5

1.5 Thesis Organisation . 6

2 Background 9

2.1 Option Pricing . 9

2.1.1 Option Pricing Model . 10

2.1.2 Exotic Option . 12

2.1.3 Stochastic Volatility . 14

2.2 Numerical Methods for Option Pricing . 14

2.2.1 Monte-Carlo Methods . 16

2.2.2 Control Variate Monte-Carlo Method . 17

2.2.3 Quadrature Methods . 19

2.3 Algorithmic Trading . 20

2.4 Computational Devices . 20

2.4.1 CPU . 21

2.4.2 GPU . 22

2.4.3 FPGA . 24

2.5 Bit-width Optimisation with Reconfigurable Hardware 25

2.5.1 Bit-width Optimisation of Monte-Carlo Method 26

2.6 Multi-Accelerator Heterogeneous Cluster . 27

2.7 Hardware Description Language . 29

CONTENTS xv

2.8 Summary . 31

3 Accelerating Monte-Carlo Methods for Option Valuation 32

3.1 Motivation . 32

3.2 Parallel Hardware Architecture for Exotic Options Pricing 33

3.3 Case Study: Asian Options Pricing . 37

3.3.1 FPGA design: CVMC core . 38

3.3.2 FPGA design: Coordination Block . 43

3.3.3 FPGA design: Pure MC core . 44

3.3.4 GPU design . 44

3.4 Performance Comparison . 46

3.5 Summary . 49

4 Accelerating Quadrature Methods for Option Valuation 50

4.1 Motivation . 50

4.2 Option pricing and quadrature methods . 51

4.3 Parallel Architecture . 53

4.3.1 System architecture . 55

4.4 Multi-dimensional Quadrature Analysis . 59

4.5 FPGA and GPU designs . 62

4.5.1 Single dimension QUAD evaluation core on FPGA 62

4.5.2 Multiple dimensions QUAD evaluation core on FPGA 63

xvi CONTENTS

4.5.3 QUAD evaluation core on GPU . 65

4.6 Evaluation and comparison . 65

4.6.1 Performance Analysis . 67

4.6.2 Energy consumption analysis . 69

4.7 Summary . 70

5 Distributed Financial Computing in Heterogeneous Cluster 72

5.1 Motivation . 72

5.2 Heterogeneous Framework . 73

5.2.1 Overall hierarchy . 74

5.2.2 MC processes . 75

5.3 Scheduling Policies . 77

5.3.1 Constant-Size policy . 78

5.3.2 Linear-Incremental policy . 78

5.3.3 Exponential-Incremental policy . 78

5.3.4 Throughput-Proportional policy . 79

5.3.5 Energy-Proportional policy . 79

5.3.6 Other possible policies . 80

5.4 Applications . 80

5.4.1 Asian option pricing using control variate method 80

5.4.2 GARCH asset simulation . 81

5.5 FPGA and GPU designs . 81

CONTENTS xvii

5.5.1 FPGA kernels . 81

5.5.2 GPU kernels . 83

5.5.3 CPU kernels . 84

5.6 Performance Evaluation . 85

5.6.1 Dynamic scheduling analysis of a single node 85

5.6.2 Performance, energy and efficiency analysis of accelerator allocation of a cluster 87

5.7 Summary . 91

6 Optimising Performance of Monte-Carlo Methods with Mixed Precision 93

6.1 Motivation . 93

6.2 Error Analysis . 94

6.3 Mixed precision methodology . 96

6.4 Workload partitioning . 100

6.5 Mixed precision optimisation . 102

6.6 Case studies . 106

6.6.1 Asian option pricing . 106

6.6.2 The GARCH volatility model . 106

6.6.3 Numerical integration . 107

6.7 Evaluation . 108

6.7.1 Reconfigurable accelerator system . 108

6.7.2 Applying optimisation . 109

6.7.3 Performance: parallelism versus precision 112

xviii CONTENTS

6.7.4 Comparison: CPU/FPGA double precision 113

6.7.5 Comparison: GPU . 114

6.8 Summary . 114

7 Optimising Performance of Quadrature Methods with Reduced Precision 116

7.1 Motivation . 116

7.2 Optimisation Modeling . 117

7.2.1 Accuracy Analysis . 117

7.2.2 Performance Modeling . 119

7.2.3 Optimisation Objective Equation . 121

7.3 Optimisation Algorithm and Methodology . 122

7.4 Case Studies . 124

7.4.1 Discrete Moving Barrier Option pricer . 124

7.4.2 Multi-dimensional European Option pricer 127

7.4.3 Genz’s “Discontinuous” benchmark integral 128

7.5 Result and Evaluation . 129

7.5.1 Performance Comparison . 130

7.5.2 Energy Comparison . 131

7.6 Summary . 131

8 Conclusion and Future Work 133

8.1 Conclusion . 133

CONTENTS xix

8.2 Impact . 135

8.2.1 Satisfying high computational demand in the financial industry 135

8.2.2 Providing optimisation techniques in financial application domain 136

8.2.3 Determining the right combination of accelerators 137

8.3 Future Work . 137

8.3.1 Quadrature methods in other problem domain 137

8.3.2 Accelerating adaptive quadrature methods 138

8.3.3 Monte-Carlo method in other problem domain 138

8.3.4 Interest rate derivative pricing . 139

8.3.5 Accelerating Quasi Monte-Carlo methods 139

8.3.6 Other grid-based pricing methods . 139

8.3.7 Sophisticated dynamic scheduling policies 140

8.3.8 Algorithmic Trading . 140

Bibliography 141

xx CONTENTS

List of Tables

2.1 An example of stock price paths (S0 = 1.00, K = 1.03, T = 2, r = 0.1) 17

2.2 A general comparison between different computational devices. 21

3.1 The init(), update() and calculate() function for some example options 36

3.2 MUXs’ behavior in path simulation . 41

3.3 MUXs’ behavior in result consolidation . 42

3.4 xc5vlx330t FPGA resource consumption . 46

3.5 Performance of the Asian option pricing using CVMC method 48

4.1 The pricing equations for various types of options. 55

4.2 The computational complexity for some example options. N denotes the number of

integration grid points and m denotes the number of time steps. 55

4.3 Comparing the original and optimized designs. 59

4.4 The operators count for the evaluation of B. 61

4.5 The computation complexity for some example multi-dimensional options. 61

4.6 The logic utilization of QUAD evaluation core in different dimensions. Asterisk (*)

indicates that the place and route procedure cannot be completed. 65

xxi

xxii LIST OF TABLES

4.7 The performance and energy consumption comparison of different implementation of

1D QUAD evaluation core. The Geforce 8600GT has 32 processors, the Tesla C1060

has 240 processors and the Xeon W3505 has two processing cores. 67

4.8 The comparison of different implementation of 2D QUAD evaluation core. 68

4.9 The comparison of different implementation of 3D QUAD evaluation core. 68

5.1 xc5vlx330t FPGA resource consumption . 83

5.2 Performance of Asian option pricing . 85

5.3 Performance of the GARCH asset simulation of different accelerators and number of

collaborative nodes . 88

6.1 Parameters in our analytical model. 103

6.2 Parameters of the current system and other hypothetical systems. 108

6.3 Execution time, optimal reduced precision and the pL/paux ratio of the same Asian

option pricing under different system parameters. 112

6.4 Comparison of MC simulations using CPU only system (SW), double precision FPGA

only system (FP) and mixed precision methodology using both CPU and FPGA (Mixed).

. 114

6.5 Comparison with CPU and GPU. 115

7.1 Comparison of different applications using i7-870 quad-core CPU, NVIDIA Tesla

C2070 GPU, double precision xc6vsx475t FPGA and reduced precision optimised

xc6vsx475t FPGA. 130

8.1 Summary of the key results . 134

List of Figures

1.1 The organisation of this thesis. 8

2.1 Example of random walk asset paths. 11

2.2 The payoff function of an up-and-out barrier option at maturity. 13

2.3 A typical CUDA co-processing flow. 22

2.4 Diagram for the CUDA computation grid. 23

2.5 A general architecture of an FPGA. 25

3.1 Overall hardware architecture. 36

3.2 Block diagram of path simulation core and result consolidation core. 37

3.3 Architecture of the price movement path simulation core. 40

3.4 Architecture of the result consolidation core. 42

3.5 Architecture of pure MC path simulation core. The underlined parameter denotes

operator latency. 45

3.6 The required number of simulation versus the 99% confidence interval length. 47

3.7 The required computation time versus the 99% confidence interval length. 48

4.1 The backward iteration process. 54

xxiii

xxiv LIST OF FIGURES

4.2 System architecture of a generic option valuation system based on quadrature methods. 56

4.3 The option evaluation flow. 57

4.4 An operator tree diagram for a straight-forward design by creating the operators from

Equation 4.2 to Equation 4.5 directly (the operator with ’*’ denotes the operation

from right to left). 58

4.5 An operator tree diagram for optimized design. 58

4.6 The iteration process of a 2D barrier option. 61

4.7 The time required for the pricing of European options. (n = 100) 62

4.8 Pipelined QUAD evaluation core for FPGA. 63

4.9 Pipelined αT R−1α design for 2D QUAD evaluation. 63

4.10 Generating multi-dimensional QUAD evaluation. 64

4.11 CUDA pseudo code for QUAD evaluation kernel. 66

4.12 The computational time and energy consumption relationship of different devices. . . 70

5.1 The overall framework. 75

5.2 The work flow of MC workers. 76

5.3 The work flow of MC distributors. 76

5.4 The hardware design of FPGA kernel. 82

5.5 The hardware architecture of GARCH asset simulation core. 83

5.6 The performance comparison for different scheduling policies. 87

5.7 The computation time of GARCH asset simulation. 89

5.8 The AECC of GARCH asset simulation. 90

5.9 The computation time and energy consumption for GARCH asset simulation in our

cluster. The solid line is the Efficient Allocation Line (EAL). 2f2g4c denotes a design

with 2 FPGAs, 2 GPUs and 4 CPUs. 91

6.1 Distribution of 10k runs of a reduced precision and a double precision Monte-Carlo. . 96

6.2 Distribution of 10k runs of a mixed precision and a double precision Monte-Carlo. . 99

6.3 Reduced precision sampling data-path. 101

6.4 Workload partitioning of the auxiliary sampling. Operations in CPU are shaded. . . 102

6.5 System architecture of the reconfigurable accelerator system in our analytical model. 104

6.6 Cost of reduced precision sampling data-paths of the Asian option problem. 110

6.7 The standard deviations of the reduced precision sampling and the auxiliary sampling

verse different precisions. 111

6.8 Results of Asian option pricing versus different number of significand bits. 112

7.1 The εrms for different df at mw=53. 118

7.2 The εrms for different mw at df=12. 119

7.3 The contour plot of εrms of barrier option pricer for different mw and df 120

7.4 The aggregated FPGA throughput. 121

7.5 The aggregated FPGA throughput satisfying εrms(mw, df) < 10−4. 122

7.6 The aggregated FPGA throughput satisfying εrms(mw, df) < 10−3. 123

7.7 The Pareto frontier line of barrier option pricer when εtol = 10−3. 125

7.8 pL estimation and the single core resource utilisation of barrier option pricer. 126

7.9 The backward barrier option iteration process. 127

xxv

7.10 The hardware barrier option pricing core. 127

xxvi

Chapter 1

Introduction

1.1 Motivation: Demand from the financial industry

The financial derivatives trade sees constant innovation and development, with new types of options

introduced in each year, offering increasingly sophisticated features and complex settlement terms.

Although the basic European option can be priced with a closed-form solution, many other derivatives

with knock-out/knock-in features (e.g. Accumulator, Decumulator, and Barrier Options), changing

strike prices, or discrete settlement days, have no simple solution and so their price must be approx-

imated using numerical techniques. Many financial derivatives involve multiple underlying assets,

which increases the dimensionality of the problem, so computational complexity often scales expo-

nentially with the number of underlying assets.

The derivative pricing time is critical for trader for hedging and market making purpose. Also,

huge amounts of computational resources are needed when many complex options are being revalued

overnight under many different scenarios for risk management purpose. Energy consumption of com-

putation is also a major concern when the computation is performed 24 hours a day, 7 days a week.

As a result, the financial industry has seen a sharp increase in computational demand [1] [2]. There

has been much interest in reducing the pricing latency and increasing the pricing throughput in order

to gain competitive advantage. It is also important to increase the energy efficiency and reduce the

cost of computing hardware in order to reduce the overall business cost.

1

2 Chapter 1. Introduction

In 2010, it is estimated that 41 million servers on the planet consumed around 18,118 billion kWh

electricity each year when the energy for associated cooling and power distribution is included [3].

Increasing the number of traditional servers is not a viable solution, so there is a need for research

into new types of solution, such as FPGA acceleration technology.

1.2 Motivation: Change of the computing technology

Moore’s Law [4] (the doubling of transistors on chip every 18 months) has been a fundamental driver

of computing technology for the previous 50 years. Moore’s Law and Dennard scaling [5] has resulted

in exponential performance increase of single-core processor. Since 2005, processor designers have

increased the core counts to continuously exploit Moore’s Law scaling, due to the end of Dennard

scaling [6] [7]. The focus of computing technology has switched from performance-centric serial

computation to energy-efficient parallel computation. However, the increasing number of compo-

nents on a chip, combined with decreasing energy scaling, is leading to the phenomenon of “Dark

Silicon” [7]. The power density of a chip is too high to use all components at once. It has been

predicted that the performance of processors in 2024 will have only 7.9 times average speedup over

the processors in 2008, leaving a near 24 times gap from a predicted of 32 times speedup according to

Moore’s law. These challenges are changing the computer technology to emphasize on efficiency, and

driving chips to use multiple different components, each carefully optimised to efficiently execute a

particular type of task [8].

One solution to improved energy efficiency is to use application-optimised processors and accelera-

tors. By optimising these components for specific application, their energy efficiency can be increased

by orders of magnitude. However, specialisation comes with a loss of generality. Therefore, there is

a significant burden on system designers and application developers to choose the right combination

of processors and accelerators, and how to apply optimisation in the applications. How to determine

the right mix or choice of processor and accelerators for a specific application domain (e.g. financial

computing), and how to optimise the design of accelerators in a specific application domain is of great

research interest.

1.3. Objectives 3

1.3 Objectives

Reconfigurable Financial Computing (RFC) is a technique to use reconfigurable hardware as an ac-

celerator for financial computing. Reconfigurable hardware such as field-programmable gate array

(FPGA) has been commonly used in communication and networking applications [9]. It is also widely

applied for application acceleration in a wide variety of areas, such as video-processing, bioinformat-

ics and cryptography [10, 11, 12, 13], where a large proportion of program time is spent on numerical

computation. The benefits of incorporating FPGAs in a system design have been demonstrated in

numerous research papers [14, 15] especially in the area of computational finance [16, 17]. Some

financial institutions have been actively researching and seeking the opportunities to accelerate finan-

cial computing with FPGA. For example, FPGA accelerated credit derivatives pricing is adapted in

the investment bank J.P. Morgan [18, 19].

FPGAs provide customisable floating-point number operation which could be exploited for addi-

tional speedup. Reduced-precision data-paths usually have higher clock frequencies, consume fewer

resources and offer a higher degree of parallelism for a given amount of resources compared with full

precision data-paths. Although the use of reduced precision can lead to higher performance, it also

affects the accuracy of the results.

Graphical Processing Unit (GPU) is another popular choice in high performance computing recently.

GPUs use the same types of floating-point number representation and operation as CPUs, namely

IEEE-754 double precision and IEEE-754 single precision. GPUs are shown to provide significant

speedup for many applications including in financial computing, especially when single precision is

used [20].

Numerical methods for derivative pricing can be roughly divided into two groups: Monte-Carlo meth-

ods, which work forwards from the current asset price to expiry time using multiple randomly chosen

paths; and lattice methods, which work backwards from exercise time to the current price, using a

pre-determined lattice of asset prices and times. Quadrature methods are subsets of the lattice meth-

ods that are very powerful of pricing path-dependent options where the path is monitored in discrete

time points [21].

4 Chapter 1. Introduction

With regards to the above circumstances, we defined our objectives in this thesis as:

• Generic architecture for derivatives pricing: it must be possible to support multiple derivative

types with minimal manual effort. Numerical methods including both Monte-Carlo and lattice

methods must be supported in order to cover as much derivatives as possible. Optimisation

techniques based on generic derivatives pricing methods must be provided. Comparison be-

tween different accelerators in terms of performance and energy efficiency must be explored in

detail.

• Automated management: the system must automatically adjust the workload balance between

different accelerators including both FPGAs and GPUs. The workload adjustment policy must

be configurable for a pre-defined objective. The system must be scalable to support a large

computation problem.

• Precision optimisation: the custom numerical representation should be optimised automati-

cally. The error incurred by custom numerical representation must be analysed. Models and

algorithms for performance and accuracy optimisation must be problem independent. The per-

formance and energy efficiency gains by precision optimisation must be explored in order to

determine the right choice or right mix of processors and accelerators.

We firstly present our novel accelerated reconfigurable hardware architectures and optimisation tech-

niques for option pricing based on Monte-Carlo methods [22, 23] (Chapter 3) and quadrature meth-

ods [24, 25, 26] (Chapter 4). The performance of the FPGA designs are compared with those of

both GPU and CPU designs. The performance and energy efficiency of different designs are studied

and discussed in depth. Then we present a scalable distributed framework for collaborative financial

computing for multi-accelerator heterogeneous clusters including both FPGAs, GPUs and CPUs [27]

(Chapter 5). Lastly, we present performance optimisation methodologies and techniques for both

Monte-Carlo methods and quadrature methods by exploiting the customisable precision property of

FPGAs. A mixed precision methodology and a reduced precision methodology are proposed to max-

imize the performance of Monte-Carlo methods [28] (Chapter 6) and quadrature methods respec-

tively [29](Chapter 7).

1.4. Research Approach and Contributions 5

1.4 Research Approach and Contributions

The research approach aims at accelerating and optimising reconfigurable financial computing in a

generic way. Therefore, the hardware architectures, frameworks, methodologies, and optimisation

techniques in each chapter can be used for the pricing of a wide range of different options. In Chapter

6 and Chapter 7, the mixed precision and reduced precision methodologies can also be applied in

other problem domains apart from financial option pricing.

In each chapter, case studies and detailed experiments are carried to demonstrate the effectiveness

of our proposed methodologies. The computing performances and energy consumptions are mea-

sured for different computational devices including FPGA, GPU and CPU. The comparison results of

these computational devices in financial computing are one of the key aspects that we are interested

in this thesis as they provide references for financial institutions when designing high performance

derivatives pricing infrastructures.

Our research focuses on two popular and equally important option pricing methods: quadrature meth-

ods and Monte-Carlo methods. Quadrature methods are fast and accurate for many derivatives, and

Monte-Carlo methods are the only computational feasible methods when the derivatives involve many

underlying assets.

The main contributions of this thesis corresponding to our objectives are:

• (Generic architecture for derivatives pricing) A novel parallel hardware architecture using

Monte-Carlo methods for the pricing of a wide range of exotic options. This includes the

detailed parametric design of arithmetic Asian options pricer and the control variate optimisa-

tion technique. The performance comparison results show a speedup of 24 times for the FPGA

over CPU. (Chapter 3)

• (Generic architecture for derivatives pricing) A novel parallel hardware architecture for option

pricing based on quadrature methods. This includes techniques for pricing options with multiple

dimensions and an approach of automatically generating multi-dimensional hardware cores.

6 Chapter 1. Introduction

The experimental results show that FPGA design is 4.6 times faster and 25 times more energy

efficient than a software design running on a comparable CPU. (Chapter 4)

• (Automated management) A scalable distributed financial computing framework which enables

all accelerators including FPGAs and GPUs in a multi-accelerator heterogeneous cluster to

work collaboratively on the same problem. This includes a dynamic runtime scheduling system

which enables the designer to improve the utilisation efficiency. Two practical examples are

developed using the proposed framework and their performances under different scheduling

policies are evaluated. (Chapter 5)

• (Precision optimisation) A mixed precision methodology for Monte-Carlo methods which con-

structs the FPGA data-path with an aggressively reduced precision and corrects the finite preci-

sion error by auxiliary sampling. This work presents the error analysis, techniques for partition-

ing workloads, and optimisation algorithms of the proposed methodology. Three case studies

show a performance gain of 2.9 to 7.1 times is achieved with the mixed precision FPGA design

over the original double precision FPGA design. (Chapter 6)

• (Precision optimisation) A reduced precision methodology for quadrature methods which deter-

mines the optimal precision and integration grid density by constructing a set of Pareto frontier

points satisfying the error tolerance level. The work includes the optimisation modeling, an ac-

curacy analysis and the optimisation algorithms. Case studies demonstrate that a performance

gain of 4 times speedup is achieved using the reduced precision FPGA design over the original

double precision FPGA design. (Chapter 7)

1.5 Thesis Organisation

This thesis is organised as Figure 1.1. The grey boxes indicate the objectives that are related to our

chapters. Chapter 2 describes the background and related work in reconfigurable financial computing.

Chapter 3 and 4 present our novel reconfigurable hardware design and techniques for option pricing

based on Monte-Carlo methods and quadrature methods. Chapter 5 presents a scalable distributed

1.5. Thesis Organisation 7

framework for collaborative financial computing on multi-accelerator heterogeneous clusters includ-

ing both FPGAs, GPUs and CPUs. Chapter 6 and 7 describe performance optimisation techniques

for both Monte-Carlo methods and quadrature methods. A mixed precision methodology and a re-

duced precision methodology are proposed to maximize the performance of Monte-Carlo methods

and quadrature methods correspondingly. Finally, Chapter 8 summarises the thesis and suggests for

future work.

8 Chapter 1. Introduction

Introduction
(Chapter 1)

Background
(Chapter 2)

Accelerating Financial Computing
with Monte-Carlo Method

(Chapter 3)
with Quadrature Methods

(Chapter 4)

Distributed Financial Computing in a
Multi-Accelerator Heterogeneous Cluster

(Chapter 5)

Optimising Performance of Reconfigurable Financial Computing
with Monte-Carlo Method
using Mixed Precision

(Chapter 6)

with Quadrature Methods
using Reduced Precision

(Chapter 7)

Conclusion and Future work
(Chapter 8)

Generic architecture for derivatives pricing

Automated management

Precision optimisation

Figure 1.1: The organisation of this thesis.

Chapter 2

Background

This chapter presents the background knowledge and related works in financial computing and re-

configurable computing. Section 2.1 provides background knowledge of option pricing including

the option pricing model and the examples of exotic options. Section 2.2 introduces the numerical

methods used in option pricing and the corresponding related works. Section 2.3 presents the back-

ground knowledge and related works of algorithmic trading using reconfigurable devices. Section 2.4

introduces different computational devices and analyses their difference and strengths. Section 2.5

presents the previous works on bit-width optimisation using FPGA. Section 2.6 presents the previous

works on cluster computing involving accelerators. Section 2.7 provides the background knowledge

of hardware description languages that are used in this thesis.

2.1 Option Pricing

An option is a type of financial instrument which provides the owner of the option with the right,

but not the obligation, to buy or sell an underlying asset such as a stock or bond at some point in the

future. A call option allows the option owner to buy the underlying asset for some pre-agreed strike

price K, while a put option gives them the right to sell at price K. The decision to exercise the option

(i.e. buy or sell the asset) is always made by the option owner, and the option issuer has to abide by

that decision, so the option owner must pay the issuer to create the option. Hence putting an accurate

9

10 Chapter 2. Background

value on an option is critical for both parties.

For simple European call options (also known as vanilla call options), the owner can exercise only

at the expiry date. If the underlying asset price S at expiry date is higher than the strike price K, the

owner can profit by buying the stock at lower price K from the option issuer and then immediately

selling it at the higher price S in the market, providing a gain of (S−K). If the underlying asset price

is lower than the strike price, S < K, then the gain is zero because the option will not be exercised.

The payoff of European call option on expiry is

Pcall = max(S −K, 0) (2.1)

and the payoff of European put option at expiry is

Pput = max(K − S, 0). (2.2)

2.1.1 Option Pricing Model

A common assumption is that stock price follows a geometric Brownian motion. That is,

dS

S
= µdt + σdWt (2.3)

where Wt is a Brownion motion (random walk), S is the underlying stock price, µ is the drift of the

stock price, t is time and σ is the volatility. Using risk-neutral measure [30], we have the following

equation:
dS

S
= rdt + σdWQ

t (2.4)

where r is the risk-free interest rate.

By solving the above stochastic differential equation (SDE) using Ito’s lemma, we have the following

2.1. Option Pricing 11

Black-Scholes partial differential equation and stock price dynamic equation [31, 32]:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.5)

Si+1 = Sie
((r−σ2

2
)δt+σ

√
δtW) (2.6)

where V is the price of the option, σ is volatility of the underlying asset, δt is the time period between

two time steps, W is a Gaussian random number ∼ N (0, 1), Si is the underlying stock price at step i

and Si+1 is the underlying stock price at step i + 1.

Under this model, the price of an European option at present time can be calculated with a closed-

form solution called the Black-Scholes formula. The price of more complex options (exotic options)

are usually calculated by numerical methods base on Equation 2.5 or Equation 2.6. Figure 2.1 shows

an example of random walk asset paths based on the stock price dynamic equation (Equation 2.6).

60

80

100

120

As
se

t P
ric

e

0

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

As
se

t P
ric

e

time(years)

Figure 2.1: Example of random walk asset paths.

12 Chapter 2. Background

2.1.2 Exotic Option

Exotic option is a derivative which has features making it more complex and usually has no closed-

form solution. For path-dependent exotic options, the payoff on expiry depends on the entire under-

lying asset movement path. Examples of these exotic options include lookback options, arithmetic

Asian options and barrier options.

Lookback Options

The payoff of lookback options depends on the maximum value of the stock price in the whole period.

It is defined as:

Pcall = max(max(S0, S1, ..., Sn)−K, 0) (2.7)

where S0, ..Sn are the asset price at time step 0...n.

Arithmetic Asian Options

For an arithmetic Asian option [33], the payoff is calculated using the arithmetic average of the prices

over the life time of the option. One advantage of this option type is that it is more difficult for the

option issuer to manipulate market prices to reduce the option payoff, as the payoff depends on the

path followed by the asset price, not just the price at expiry.

The payoff of an arithmetic Asian call option is:

Pcall = max

(
1

n + 1

n∑
i=0

Si −K, 0

)
(2.8)

where S0, ..Sn are the asset price at time step 0...n.

2.1. Option Pricing 13

Barrier Options

Barrier options are path-dependent options where the payoff also depends on a predetermined barrier

level B. In options start their lives worthless and only become active when the underlying asset moves

across the barrier B level as known as “knock-in” barrier price. Out option starts their lives as active

and become worthless when the underlying asset moves across the “knock-out” barrier price. There

are four main types of barrier options: up-and-out, down-and-out, up-and-in and down-and-in. Fig-

ure 2.2 shows the payoff function of an up-and-out barrier option at maturity. However, the payoff of

an up-and-out barrier option is also time-dependent and will be zero if the price of underlying asset

moves up across the barrier level before maturity.

Strike price Barrier price

Op
tio

n p
ay

off

Price of underlying asset

Figure 2.2: The payoff function of an up-and-out barrier option at maturity.

• Up-and-out: The spot price is below the barrier level at the beginning. The option is worthless

and is knocked out once the asset moves up across the barrier level.

• Down-and-out: The spot price is above the barrier level at the beginning. The option is worth-

less and is knocked out once the asset moves down across the barrier level.

• Up-and-in: The spot price is below the barrier level at the beginning. The option becomes active

is knocked in once the asset moves up across the barrier level.

• Down-and-in: The spot price is above the barrier level at the beginning. The option becomes

active and is knocked in once the asset moves down across the barrier level.

14 Chapter 2. Background

Barrier options can also be divided into two categories: discrete and continuous. For a continuous

barrier option, the knock-in or knock-out barrier event is considered immediately if the asset moved

across the barrier line. For a discrete barrier option, the knock-in or knock-out barrier event is checked

at a discrete time (e.g. end of the day or end of the month), hence less sensitive to market manipula-

tion.

In addition, moving barrier options are particularly difficult to price. They have multiple different

barrier prices Bm at different time period m. There is no closed-form solution for discrete moving

barrier options.

2.1.3 Stochastic Volatility

Financial equations are often based on many assumptions. The most famous Black-Scholes equation

relies on a constant volatility assumption [31]. In fact, it is well-known that the volatility is not con-

stant in reality. A solution is to employ a stochastic volatility model. One of the most commonly used

stochastic volatility models is Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

models [34]. A commonly used GARCH (1,1) model defines volatility (σ) by the following equations:

σ2
i = σ0 + ασ2

i−1 + βσ2
i−1W

2

= σ0 + σ2
i−1(α + βW 2) (2.9)

where σi is the volatility of the asset at time step i, α and β are pre-calibrated model constants, σ0 is

the volatility at the start time and W is a Gaussian random number following a N (0, 1) distribution.

2.2 Numerical Methods for Option Pricing

Numerical techniques have been developed to value complex derivative products. They can be

roughly divided into two groups: lattice methods, which work backwards from exercise time to

the current price, using a pre-determined lattice of asset prices and times; and Monte-Carlo meth-

ods, which work forwards from the current asset price to expiry time using multiple randomly chosen

2.2. Numerical Methods for Option Pricing 15

paths. Lattice methods include tree-based (binomial and trinomial trees), finite-difference and quadra-

ture methods. We briefly introduce the related works with hardware acceleration using these methods,

and then describe the details of Monte-Carlo and quadrature methods.

• (Lattice) Tree-based methods: Tree-based methods use a “discrete-time” model of the varying

price over time of the underlying financial instrument. Valuation is performed iteratively, start-

ing at each of the final nodes (those that may be reached at the time of expiration), and then

working backwards through the tree towards the first node (valuation date) [35].

A pipelined hardware architecture has been developed for the binomial and trinomial option

models [36]. However, tree-based methods contain two main types of error: “distribution er-

ror” and “non-linearity error”. Distribution error occurs because a continuous log-normal dis-

tribution is approximated by a discrete distribution. Non-linearity error occurs because the tree

grid cannot cater for non-linearity in option price for certain values of the underlying asset.

Non-linearity in option pricing is frequent for exotic options: for example in a discrete barrier

option, at every barrier there is a non-linearity in the option price.

• (Lattice) Finite-difference methods: Finite-difference methods solve the Black-Scholes par-

tial differential equation by discretising both time and the price of the underlying asset, and

mapping both onto a two-dimensional grid [37]. Valuation is performed iteratively similar to

tree-based method. There are three kinds of finite-difference methods: implicit, explicit and

Crank-Nicolson.

A parallel hardware architecture has been developed to support concurrent valuation of inde-

pendent options with 12 times speedup [38]. Similar to tree-based methods, finite-difference

methods suffer from “non-linearity error” as the grid cannot cater the non-linearity points.

• (Lattice) Quadrature methods: Quadrature methods have been applied in different areas in-

cluding pricing options [39], modeling credit risk [40], solving electromagnetic problems [41]

and calculating photon distribution [42]. A numerical approach for option pricing based on

quadrature methods has been proposed, which overcomes the “distribution error” and the “non-

linearity error” [21], and demonstrates accurate and fast calculation. Hardware acceleration of

quadrature methods are not reported before this thesis and there is no previous performance

results. Therefore, a generic hardware architecture of quadrature methods in option pricing is

16 Chapter 2. Background

presented in this thesis in Chapter 4 and the reduced precision optimisation methodology is

proposed in Chapter 7.

• Monte-Carlo methods: Monte-Carlo methods are particularly suitable for implementation in

FPGAs, as they contain abundant parallelism. An early FPGA-accelerated Monte-Carlo ap-

plication for the BGM interest rate model [16] using customised data widths achieved a 25

times speedup over software. An automated methodology has been developed which pro-

duces optimized pipelined designs with thread-level parallelism based on high-level mathemat-

ical descriptions of financial simulation [43]. A stream-oriented FPGA-based accelerator with

higher performance than GPUs and Cell processors has been proposed for evaluating European

options [44]. More recent work has focused on considering more complex types of Monte-

Carlo simulation, such as American exercise features [45]. However, no precision optimisation

methodology has reported from the above works. In addition, optimising generic option pricing

by its statistical property and by collaborative computing with other accelerators are not yet re-

ported. In this thesis, the use of control variate technique for generic option pricing is proposed

in Chapter 3, the design framework and techniques of automated collaborative computing with

other accelerators is proposed in Chapter 5 and the mixed precision optimisation methodology

is proposed in Chapter 6.

2.2.1 Monte-Carlo Methods

Monte-Carlo methods are a class of algorithms based on randomisation which are extensively used

in many applications in science and engineering. The idea is to generate a huge number of random

paths for each probabilistic variable, then take the average of the results. Consider a sequence of

mutually independent, identically distributed random variables, Xi from a Monte-Carlo simulation.

If, SumN =
∑N

i=1 Xi, and the expected value, I , exists, the Weak Law of Large Numbers states that

if p(x) is the probability of x, for ε > 0, the approximation approaches the mean for large N [46],

lim
N→∞

p

(
|SumN

N
− I| > ε

)
= 0 (2.10)

2.2. Numerical Methods for Option Pricing 17

Table 2.1: An example of stock price paths (S0 = 1.00, K = 1.03, T = 2, r = 0.1)

Path: t = 0 t = 1 t = 2 Avg Price Payoff
Path 1 1.00 1.22 1.25 1.16 0.13
Path 2 1.00 1.18 1.41 1.20 0.17
Path 3 1.00 0.92 0.88 0.93 0.00
Path 4 1.00 1.11 1.32 1.14 0.11
Path 5 1.00 0.99 1.09 1.03 0.00
Path 6 1.00 1.16 1.09 1.08 0.05
Path 7 1.00 1.19 1.39 1.19 0.16
Path 8 1.00 0.91 0.86 0.92 0.00
Path 9 1.00 1.22 1.21 1.14 0.11
Path 10 1.00 0.94 0.84 0.93 0.00
Avg Payoff 0.07

Moreover, if the variance σ2 exists, the Central Limit Theorem states that for every fixed a,

lim
N→∞

p

(
SumN −NI

σ
√

N
< a

)
=

1√
2π

∫ a

−∞
e−z2/2dz (2.11)

that is, the distribution of the standard error is normal [47].

We illustrate the idea of Monte-Carlo methods in option pricing with an arithmetic Asian option

as an example. The arithmetic Asian option has the following parameters S0 (spot price) = 1.00,

K (strike price) = 1.03, r (risk-free interest rate) = 0.1, T (time to maturity) = 2 and steps = 2.

Table 2.1 shows an example of simulated stock price paths. Firstly, 10 stock price paths from t = 0

to t = 2 are simulated. Then the average stock price for each path is calculated as in ‘Avg’ column.

The payoff of each path is then calculated according to Equation 2.8 as in ‘Payoff’ column. Finally,

the average payoff across all these paths is calculated. The final result is the expected value of the

arithmetic Asian call option at t = 2. The arithmetic call option value at present time can be obtained

by discounting this final answer backward by multiplying e−rT . The option price in the above example

is 0.057.

2.2.2 Control Variate Monte-Carlo Method

When Monte-Carlo method is used for option pricing, the payoff of the option is the variable that

is simulated. We can construct a confidence interval of our estimated expected payoff based on the

18 Chapter 2. Background

number of simulations.

The 99% confidence interval of the payoff is given by:

Payoff99% =

[
x̄− 2.58

σx√
Nmc

, x̄ + 2.58
σx√
Nmc

]
(2.12)

where x̄ is the estimated expected payoff , Nmc is the number of simulations and σx is the standard

deviation of payoff x. The 99% confidence interval means the actual value has a chance of 99% to be

inside the range of the interval [48].

Therefore, to improve accuracy (reduce confidence interval length) by a factor of n, the number

of Monte-Carlo simulations has to be increased by a factor of n2, which is the reason for the high

computational complexity of Monte-Carlo methods.

Variance reduction techniques aim at shortening the interval by reducing the variance instead of in-

creasing the number of simulations. The control variate method is a variance reduction technique

which estimates the target value using a control variable y [49]. The variable ȳ is computed using

the same set of random data of the computation of x̄. The true expected value of E(y) should be

calculable using a closed-form solution. The control variate estimator of xc is given by:

xc = x + c(y − E(y)) (2.13)

Therefore, E(xc) = E(x), and V ar(xc) is minimized by choosing c = −Cov(x, y)/V ar(y), such that

V ar(xc) = V ar(x)− Cov(x, y)2

V ar(y)
(2.14)

As a result, the variance of the estimated value is reduced and thus the length of confidence interval is

shortened. The higher the correlation between the control variable and the target estimating variable,

the higher effectiveness of control variate method. The required number of simulations could be

significantly reduced for a given confidence interval.

This control variate Monte-Carlo (CVMC) method can be applied to exotic option pricing. Apart

2.2. Numerical Methods for Option Pricing 19

from simulating the payoff of the target exotic option, the payoff of a correlated control option is also

simulated at the same time. The only condition is, the closed-form solution of the control option must

be known.

2.2.3 Quadrature Methods

Quadrature methods are numerical methods for approximating an integral by evaluating at a finite

set of integration points and using a weighted sum of these values. To apply quadrature methods for

option pricing, the Black-Scholes partial differential equation is transformed to an integral form. The

details of the transformation and the mapping to the hardware will be described in Chapter 4. After

determining the boundary conditions according to the number of dimensions and the option type,

the integral is evaluated by one of the quadrature rules. There are many different rules of numeri-

cal integral evaluation. Two of the most common rules include the trapezoidal rule and Simpson’s

rule [50]:

Trapezoidal rule: The trapezoidal rule is the simplest quadrature method but is the slowest to con-

verge. It converges at a rate of (δy)2. The approximation equation is:

∫ b

a

f(y)dy ≈ δy

2
{f(a) + 2f(a + δy) + 2f(a + 2δy) · · ·+ 2f(b− δy) + f(b)} (2.15)

Simpson’s rule: This is the most popular method for approximating integrals. It converges at a rate

of (δy)4. The approximation equation is:

∫ b

a

f(y)dy ≈ δy

6
{f(a) + 4f(a +

1

2
δy) + 2f(a + δy) + · · ·+ 2f(b− δy) + 4f(b− 1

2
δy) + f(b)}

(2.16)

Quadrature methods are powerful ways of pricing path-dependent options where the path is monitored

in discrete time. A lookback discrete barrier option priced using quadrature methods is more than

1000 times faster than using the trinomial method, while achieving a more accurate result [21].

20 Chapter 2. Background

2.3 Algorithmic Trading

Algorithmic trading is a computer-based approach to execute buy and sell orders on financial in-

strument such as securities (e.g. stocks, bonds, and options). Financial traders exercise investment

strategies using autonomous high-frequency algorithmic trading by real-time market events. As a re-

sult, algorithmic trading is dominating financial markets now and accounts for over 70% of all trading

in equities [51]. To take advantage of the timely market information, the algorithmic trading engine

must be able to respond quickly. Existing pure software solutions are no longer able to provide low

latency solutions. There is a need for hardware acceleration for the algorithmic trading engine.

Reconfigurable hardware is a highly desirable platform for an algorithmic trading engine. An FPGA

accelerated low-latency market data feed processing engine is presented which is able to process up

to 3.5M messages per second [52]. An implementation of “Participate” algorithms for trading equity

orders in reconfigurable hardware is presented and shows a 133 times speedup over a software imple-

mentation [53]. An analysis of using run-time reconfiguration of reconfigurable hardware to modify

trading algorithms is also presented [54]. An event processing hardware is described in [55]. This

work described a soft-processor-based architecture, a hardware architecture and a hybrid architecture.

An end-to-end latency comparison shows that the hybrid architecture is 10 times faster than the soft-

ware based solution. An FPGA implementation of a low-latency financial feed handler is presented

and has a deterministic latency of 2.7µs while the CPU-based design has a non-deterministic latency

(due to the operating system layer) of 38± 22µs [56].

2.4 Computational Devices

This section presents the basic information for different computational devices including CPU, GPU

and FPGA. A general comparison between these devices is shown in Table 2.2. The throughput and

energy consumption between these devices are application dependent. Therefore, we made every

effort to obtain a fair comparison between these devices in different aspects of financial computing in

this thesis. Based on case studies and experiment results, the performance and energy consumption

2.4. Computational Devices 21

comparisons are shown in each chapter.

CPU GPU FPGA
Clock rate high high low
Power consumption high high low
Parallelism low high high (depends on the size of FPGA)
Pipelining low medium high
Reconfigurability low low high
Instruction set fixed fixed flexible
Floating-point precision double / single double / single flexible

Table 2.2: A general comparison between different computational devices.

2.4.1 CPU

Central Processing Units (CPUs) were the most common processing devices. It was invented as

a single core at the beginning. The processing power was increased by increasing the maximum

frequency for each new generation. Since the heat generated by the high frequency have reached to

a maximum threshold and the transistor sizes have reduced greatly in recent years, multi-core CPU

architectures such as Intel Core2 have been developed. The multi-core CPUs use the shared memory

for communication, and are synchronised through shared cache. Each thread is processed in one core

at a time (or two threads are processed in one core simultaneously in hyper-threading design).

The computational algorithms are stored as a program and executed by CPUs in four main steps: fetch,

decode, execute, and writeback. The instruction is fetched from the program memory to determine

what the CPU should do. The instruction is than decoded to the opcode (operation type) and operands

(memory location, value or other additional information). Then the instruction is executed and the

result is stored in registers or memory. A management and scheduling unit in CPU is used for branch

prediction, instruction ordering and execution. Although the clock rate of CPU is high, memory

access and the execution cycles are often the bottlenecks. The power consumption of CPU is also

high due to the high clock rate.

22 Chapter 2. Background

2.4.2 GPU

Graphics Processing Units (GPUs) are special processors that accelerates graphic processing with

high memory bandwidth. They traditionally reside on a graphics card such as NVIDIA GeForce or

ATI Radeon series and are dedicated to floating point operations. The GPUs dedicate most of the

silicon area for floating point unit which include texture, scalar and vector processors for graphics

computations. As a result, massive instruction-level parallelism can be achieved. Also, thread-level

parallelism is used to hide latency. Threads are grouped as warps and executed in batches. Because

of the large number of floating point processing units, GPUs are used to accelerate floating point

applications [57] [58]. The clock rate and power consumption of GPUs are relatively high.

General-purpose computing on graphics processing units (GPGPU) is the technique of using a GPU,

which typically handles computation only for computer graphics, to perform computation in other

general applications. It is becoming more popular because of the application programming interface

(API) and the programming language is becoming less complex for general application development.

Main
Memory CPU

GPU
Memory

GPU
1. Copy

processing
data to GPU
memory

2. Instruct GPU
co-processing

3. Execute the
kernel in parallel

4. Copy the result back

Figure 2.3: A typical CUDA co-processing flow.

Compute Unified Device Architecture (CUDA) is developed by NVIDIA to enable developer to use

“C” like programming language to write a computing kernel and gain access to the memory and

computational elements of the GPUs. A typical CUDA co-processing flow involve 4 steps and is

shown in Fig. 2.3:

2.4. Computational Devices 23

• Copy processing data to GPU memory from main memory of the host.

• Instruct GPU to start processing.

• Wait till the threads inside GPU finished executing the kernel in parallel.

• Copy the result back to main memory.

Under CUDA, a function can be compiled into a “kernel”. Each computation grid consists of a grid

of thread blocks. The “kernel” is executed by all threads in parallel. Each block has a unique ID; so

has each thread. Fig. 2.4 shows the organization of the CUDA computation grid.

Thread
(0,0)

Block
(0,0)

Block
(1,0)

Block
(1,1)

Block
(2,0)

Block
(2,1)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Block
(0,1)

Block(1,1)

Computation Grid

Figure 2.4: Diagram for the CUDA computation grid.

OpenCL (Open Computing Language) is another popular choice for GPU programming when the

target GPU is not from NVIDIA. OpenCL provides a common language, programming interfaces,

and hardware abstractions enabling developers to accelerate applications with task-parallel or data-

parallel computations in a heterogeneous computing environment consisting of the host CPU and any

attached OpenCL devices [59]. It is an open standard that can be used to program CPUs, GPUs, and

other devices from different vendors, while CUDA is specific to NVIDIA GPUs. It has been adopted

by Intel, AMD, NVIDIA, and ARM.

There have been much research on the comparison between CUDA and OpenCL. Since OpenCL is a

portable language for GPU programming, its generality may result to a performance penalty. It has

24 Chapter 2. Background

been shown that the performance of data transferring and kernel execution is faster using CUDA

than OpenCL when two implementations are running in nearly identical code [60]. It has been

shown that CUDA performs at most 30% better than OpenCL in most benchmark applications. How-

ever, OpenCL can achieve similar performance to CUDA after some manual tuning to the OpenCL

code [61], .

2.4.3 FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by the

customer or designer after manufacturing. The configuration is usually specified using a hardware

description language (HDL). The HDL code is then synthesized, placed and routed according to the

FPGA vendor tools to generate a bit-stream file in order to configure the FPGA device. The ability

to update the functionality or partial re-configuration of the portion of the design makes FPGA an

attractive alternatives to application-specific integrated circuit (ASIC) as FPGA has a lower non-

recurring engineering costs.

FPGAs contain programmable logic components called “logic blocks”, and routing components for

the interconnection of the logic blocks. Figure 2.5 shows a general architecture of an FPGA.

Modern FPGAs contain fixed high-level functionality blocks such as multipliers, generic DSP blocks,

embedded processors, high speed I/O logic and embedded memories. The inherent parallelism of the

logic resources on FPGAs allows a high computational throughput even at a low clock rates. The

computation on FPGA can be completely pipelined, which enhances the throughput significantly.

FPGA has been commonly used in communication, networking and video encoding applications [9,

62, 10].

Many publications have reported that fined-grained parallelism based on FPGAs can result in out-

standing performance over traditional general-purpose processors. Example of applications include

cryptography [63, 64, 65], the computation problem SAT [66, 67], medical [12, 11] and physics [68,

69]. Hence, high performance computing with FPGAs is becoming a popular research topic.

The flexibility of bit-width for fix-point and floating-point operations offers an additional performance

2.5. Bit-width Optimisation with Reconfigurable Hardware 25

Logic Block

I/O cell
interconnection

Figure 2.5: A general architecture of an FPGA.

gain opportunity. The related works will be presented in Section 2.5.

2.5 Bit-width Optimisation with Reconfigurable Hardware

FPGAs provide customisable floating-point number operation which could be exploited to provide

additional speedup. Reduced precision floating-point operators usually have higher clock frequencies,

consume fewer resources and offer a higher degree of parallelism for a given amount of resources

compared with double precision operators. However, the use of reduced precision affects the accuracy

of the numerical results.

Finite precision error εfin is the error due to non-exact floating-point arithmetic. Floating-point num-

26 Chapter 2. Background

ber representation in computer has a finite significant bit-width. The rounding of the intermediate or

final result leads to precision. Decreasing the bit-width of the floating-point number representation

generally leads to a larger finite precision error εfin and decreases the accuracy of the result.

The benefits for reduced precision designs are well-known. For instance, it has been shown [70]

that appropriate word-length optimisation can improve the area of adaptive filters and polynomial

evaluation circuits by up to 80%, power reduction of up to 98%, and speed of up to 36% over common

alternative design strategies. Therefore, how to perform bit-width optimisation has been an important

research issue.

One common approach is to develop an accuracy model which relates output accuracy with the preci-

sions of the data formats being used in the data-path. The area and delay of data-paths with different

precisions both are modeled and combined with the accuracy model. The design with a minimum

area-delay product can be obtained from the models. Common accuracy modeling approaches in-

clude simulation approach [71], interval arithmetic [72], backward propagation analysis [73], affine

arithmetic [74] [75] [76] [77], SAT-Modulo theory [78] and the polynomial algebraic approach [79].

More recently, a mixed-precision methodology is presented and shows an additional performance

gain of 7.3 times over the original FPGA-accelerated collision detection algorithm [80].

2.5.1 Bit-width Optimisation of Monte-Carlo Method

Methods for dealing with finite precision error in FPGA-based Monte-Carlo simulations can be classi-

fied into two categories. In the first category, only standard precisions such as the IEEE single/double

precision are used in sampling data-paths [81, 82]. Users are responsible for determining whether the

finite precision error is acceptable, because the FPGA Monte-Carlo engines will follow the result of

software exactly.

In the second category, error bounds of the finite precision error are constructed and the precision

of the sampling data-path is adjusted such that the error bounds are smaller than the error tolerance.

In [83], the maximum relative error of the sampling data-path is used to construct the error bound.

The maximum relative error can be characterised using analytical methods such as interval [84] or

2.6. Multi-Accelerator Heterogeneous Cluster 27

affine arithmetic [85]. However, these approaches do not take into account that finite precision errors

from different sample points might have different signs and would cancel out each other. Hence there

is usually an over-estimation of finite precision error in Monte-Carlo simulation.

In [86], test runs with a pre-defined number of sample points are used to figure out the maximum

percentage error due to finite precision effect empirically. The finite precision error of MC simulations

using the same data-path and the same number of sample point are then assumed to share the same

error bound. Such assumption may not be valid and thus the empirical error bound can only be used

as a reference rather than a rigorous bound.

In [87], a design is proposed with both high precision and reduced precision data-paths used in com-

puting cumulative distribution functions (CDFs). The two CDFs are compared using a Kolmogorov-

Smirnov test, the distance score of which is then used to control the precision of the reduced precision

data-path adaptively such that finite precision error is within the range of error tolerance.

In Chapter 6, we proposed a mixed precision methodology in Monte-Carlo option pricing to correct

the finite precision error instead of passively estimating the error bound as other research. Also,

in Chapter 7, we proposed a reduced precision optimisation methodology by trading off both the

precision and the integration grid density to obtain the optimal throughput.

2.6 Multi-Accelerator Heterogeneous Cluster

Domain specific processors with specialized instructions or logic blocks usually outperform tradi-

tional CPUs due to their more efficient use of silicon area and higher hardware parallelism. So it is

common to see Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs)

used as accelerating co-processors in high performance computing (HPC) systems.

Techniques from distributed computing have been a solution for HPC for many years. The computa-

tion task in an application is decomposed into smaller tasks which are performed by computing nodes

which communicate through a network.

A multi-accelerator heterogeneous cluster is a cluster consists of multiple different types of accel-

28 Chapter 2. Background

erators or computational devices (e.g. FPGAs and GPUs). It is very different from a homogeneous

cluster which consists of the same type of computational resources only (e.g. CPUs only). Apart from

using accelerators for application acceleration, one can combine accelerators to perform distributed

computing in a heterogeneous cluster to further improve the performance of the application. How-

ever, there are still some key challenges when building practical applications for a multi-accelerator

heterogeneous cluster.

The first challenge is the difference in programming models and difference in tools between conven-

tional software programming and these hardware accelerators. Having different types of accelerators

within the system makes the situation even more complex as they communicate with the CPU in dif-

ferent ways. This complicated application structure and the high non-recurring engineering (NRE)

cost per application become the major barriers when utilizing heterogeneous clusters.

The second challenge is the different types of hardware accelerators are usually customized for spe-

cific computation and communication patterns. Thus the performance of them will vary from appli-

cation to application. Some accelerators may outperform others in computational speed while some

accelerators may consume less energy. How to efficiently schedule the tasks for different accelerators

is one of the challenging problems. On top of this is the synchronization and data transfer overhead,

which increases the uncertainty of the overall achievable performance.

The third challenge for a distributed HPC system is to distribute tasks efficiently. The overhead

will become dominant as the number of tasks increases, according to the law of diminishing returns.

The communication between distributed tasks will contribute to the overhead. This suggests that

applications with a large number of divisible tasks, and a small number of inter-task communications

will benefit the most.

Clusters with FPGAs as accelerators have been studied and developed in both academic and industrial

fields. In 2004, the Cray XD1 computer [88] achieved 58 GFlops with 12 Opteron CPUs and 6 Xilinx

Virtex-II FPGA devices on a single motherboard. In 2007, a cluster with 64 Virtex-4 FPGA devices

was built in the Maxwell project [89]. Each FPGA in the Maxwell cluster can achieve up to 2.5 times

speedup in a face recognition application when compared with the software implementation.

2.7. Hardware Description Language 29

Clusters with GPUs often have a larger number of floating point units and higher operating frequency

than FPGA devices can support. The programming interface of GPU devices, such as CUDA [90],

also helps to promote their popularity in HPC systems. In 2008, an updated version of the TSUBAME

(Tokyo-tech Supercomputer and Ubiquitously Accessible Mass-storage Environment) system [91],

achieved 56.43 TFlops for solving dense linear equations. In addition to custom vector processors,

this supercomputer is also equipped with 170 nVidia Tesla C1070 cards. In [92] the authors studied

the performance of a GPU cluster, which is 2.8 times faster and consumes 28.3 times less energy than

a CPU cluster.

In 2009, the Quadro Plex (QP) Cluster [93] was built by NCSA in UIUC. For each of the 16 nodes

in the QP prototype, there are two AMD Opteron CPUs, four nVidia G80GL GPUs and one Xilinx

Virtex-4 LX100 FPGA. This system may achieve 23 TFlops (single precision) theoretically. In 2010,

the Axel cluster [94] from Imperial College London demonstrated the collaboration between hetero-

geneous accelerators. With Xilinx Virtex-5 FPGAs and nVidia C1060 GPUs working together, this

16-node cluster achieved over 22 times speedup in a N-body simulation application over a 16-node

CPUs only cluster.

However, no publication has addressed the issue of how to automatically allocate and adjust the

workload balance between different accelerators and how to optimise the workload allocation for a

pre-defined objective. Seeing the potential speedup with multiple accelerators work collaborative

together, we proposed a scalable framework with dynamic scheduling to provide automated manage-

ment for collaborative financial computing in Chapter 5.

2.7 Hardware Description Language

Hardware Description Languages (HDL) are programming languages that are designed to program

FPGAs. The most common and primitive HDLs are VHDL and Verilog. They are full-featured

languages that support synthesis and simulation. However, they are considered to be relatively hard

to learn. For application development, algorithms have to be broken down into smaller hardware

component. The input, output and intermediate states of the component in each clock cycle are

30 Chapter 2. Background

described explicitly. The connections between components are also described explicitly. Therefore,

they are very different from the typical sequential software languages like “C” or “C++”.

Handel-C is a behavioral language for FPGA design and is based on the ANSI-C programming lan-

guage. Handel-C is a superset of the ANSI-C language and contains additional constructs in ex-

ploiting and abstracting complexities present when programming to hardware. A Handel-C program

requires that a clock construct be used. Often, this is set to the clock rate of the target device. Groups

of statements may be encased within PAR and SEQ code blocks, indicating that the statements should

execute in parallel (in the same clock cycle) or in a sequence (one after the other), respectively. The

Handel-C specification also introduces the idea of channels: a link between parallel branches of code

to allow intercommunication [95].

HyperStreams is a high-level abstraction language and library in Handel-C. It can produce a fully-

pipelined hardware implementation with automatic optimization of operator latency at compile time.

This feature is useful when implementing a complex algorithm core [96].

The Data Stream Manager (DSM) was designed by Celoxica to enable OS-independent hardware/software

co-design between applications written in C/C++ on a microprocessor host and Handel-C on a recon-

figurable hardware target [97]. Simply put, it is an API that makes it easy for programmers to have

their C or C++ applications communicate with Handel-C code running on an FPGA coprocessor,

thereby allowing data movement between C/C++ applications and reconfigurable hardwares. How-

ever, we must declare and initialize DSM interfaces in both the hardware and software sides and

specify when to move data in and out during the design phrase in a low-level perspective.

MaxCompiler is a high-level tool developed by Maxeler Technologies for application acceleration

on a Maxeler FPGA system [98]. The FPGA is configured with one or more hardware kernels and

a manager. The computation intensive part of the application is written in Java language following

Maxeler API and compiled as a hardware kernel. The kernel adopts a streaming programming model

and supports customisable data formats.

There are also much research on the integration frameworks between reconfigurable hardware and

software design. An IGOL (Imaging and Graphics Operator Libraries) framework is proposed for

2.8. Summary 31

developing reconfigurable data processing application [99]. A middleware platform is built using

reflective component model [100]. A design methodology is presented which enables designers to

combine cycle-accurate descriptions with behavioral descriptions [101]. A framework for devel-

oping FPGA-based configurable computing machines application is discussed [102]. A high-level

component-based methodology and design environment for application-specific multicore SoC archi-

tectures is presented [103]. Gezel language is introduced for an electronic system level design flow

which supports abstraction and reuse [104]. A parallel programming library is described to transform

C# parallel programs into circuits for realization on FPGAs [105].

2.8 Summary

This chapter provides the background knowledge and related works in financial computing and recon-

figurable computing for this thesis. The background knowledge of option pricing including the option

pricing model and the examples of exotic options is presented in Section 2.1. Numerical methods used

in option pricing including tree-based methods, finite-difference methods, Monte-Carlo methods and

quadrature methods, and the corresponding related works are presented in Section 2.2. The back-

ground knowledge and related works of algorithm trading using reconfigurable devices are presented

in Section 2.3. The differences and strengths of different computational devices are discussed in

Section 2.4. The previous works on bit-width optimisation using FPGA and on cluster computing in-

volving accelerators are presented in Section 2.5 and Section 2.6 respectively. At last, the background

knowledge of hardware description languages is presented in Section 2.7.

Chapter 3

Accelerating Monte-Carlo Methods for

Option Valuation

3.1 Motivation

Financial analysis and pricing applications are often computationally intensive, so there has been

much interest in FPGA-accelerated option pricing. Numerical techniques (lattice and Monte-Carlo

methods) are used for option valuation when there is no closed-form solution. Lattice methods

implemented in FPGAs include binomial trees [36]. Such algorithms are generally more efficient

than Monte-Carlo methods, but they cannot easily handle more complex features, such as the path-

dependence found in some exotic options (e.g. Asian options).

Monte-Carlo methods are particularly suitable for implementation in FPGAs, as they contain abun-

dant parallelism. Early FPGA-accelerated Monte-Carlo application includes the simulation of BGM

interest rate model [16]. More recent work has focused on considering more complex types of Monte-

Carlo simulation, such as American exercise features [45]. However, none of the previous works

explored the use of control variate technique. Control variate is one of the variance reduction tech-

niques which aims at reducing variance as well as the computation time for a given accuracy for

Monte-Carlo simulation [49, 106]. This chapter explores the control variate Monte-Carlo method in

32

3.2. Parallel Hardware Architecture for Exotic Options Pricing 33

FPGAs for generic exotic option pricing.

The contributions in this chapter are:

• A parallel hardware framework using the control variate Monte-Carlo method for pricing exotic

options.

• A detailed hardware design of arithmetic Asian option pricing using both control variate Monte-

Carlo method and pure Monte-Carlo method under this framework.

• Evaluation of the FPGA and GPU implementations versus a multi-threaded software imple-

mentation on Intel Xeon 2.5GHz CPU, showing 24 times speedup for the FPGA, and 10 times

for the GPU. We also explored the trade-off of the accuracy gain versus the parallelism reduc-

tion when using control variate Monte-Carlo method instead of pure Monte-Carlo method. The

chapter shows that using control variate Monte-Carlo method is 2 times faster than using pure

Monte-Carlo method in FPGA for a given confidence interval (accuracy).

3.2 Parallel Hardware Architecture for Exotic Options Pricing

As discussed in Section 2.1, under Black-Scholes model, the stock price movement is governed by a

geometric Brownian motion process, and the stock price is given by Equation 2.6:

Si+1 = Sie
((r−σ2

2
)δt+σ

√
δtW)

where r is the interest rate, σ is the volatility of the underlying stock price, δt is the time period

between two time steps, W is a Gaussian random number ∼ N (0, 1), Si is the underlying stock price

at step i and Si+1 is the underlying stock price at step i + 1. We could define the following equations:

drift =

(
r − σ2

2

)
δt (3.1)

34 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

vsqrdt = σ
√

δt (3.2)

such that

Si+1 = Sie
drift+vsqrdt×W (3.3)

The values of drift and vsqrdt can be precomputed in advance, so that the stock price can be simulated

with these two static values.

To simulate the target exotic option price using control variates, a control option price is also com-

puted with the same set of stock price path. The statistical result (the variance of the control option

payoff and the covariance between target and control option payoff) is required for the final adjust-

ment. A one-pass variance and covariance computation method is used with the following equations:

V ar(x) = E(x2)− E2(x) (3.4)

Cov(x, y) = E(xy)− E(x)E(y) (3.5)

Therefore, the control variate Monte-Carlo option pricing algorithm is designed as in Algorithm 1.

We define t temp and c temp to be the temporary updating variables for the target and control op-

tion payoffs calculation. They are initialized by option specific initialization functions init() at the

beginning of each path simulation (line 8-9). They are then updated with the corresponding updating

functions update() after each step of stock price movement (line 13-14). The corresponding option

payoffs of the target and control options are calculated by their option specific functions calculate()

after a completed path is simulated (line 16-17). The sum of the target option payoff (t sum), the sum

of control option payoff (c sum), the sum of the square of control option payoff (c2 sum) and the sum

of the target option payoff times control option payoff (tc sum) are accumulated correspondingly (line

18-21).

In the final stage of the algorithm, the simulated target option payoff, control option payoff, variance

of the control option payoff, covariance of target and control option payoff are computed from t sum,

c sum,c2 sum and tc sum (line 23-28). The true value of the control option payoff is calculated with

the closed-form equation (line 29). This closed-form equation depends on which type of control

3.2. Parallel Hardware Architecture for Exotic Options Pricing 35

Algorithm 1 Control variate Monte-Carlo pricing algorithm
1: (Let o be all the option parameters)
2: t sum = 0 //target option payoff sum
3: c sum = 0 //control option payoff sum
4: c2 sum = 0 //square of control option payoff sum
5: tc sum = 0 //target times control option payoff sum
6: for i = 1 to Nmc do
7: S = S0

8: t temp ← initt(t temp,o)
9: c temp ← initc(c temp,o)

10: for i = 1 to Steps do
11: W ← NextRandomNumber()
12: S ← Sedrift+vsqrdt×W

13: t temp ← updatet(t temp,S,o)
14: c temp ← updatec(c temp,S,o)
15: end for
16: t ← calculatet(t, t temp,o)
17: c ← calculatec(c, c temp,o)
18: t sum ← t sum + t
19: c sum ← c sum + c
20: c2 sum ← c2 sum + c2

21: tc sum ← tc sum + c × t
22: end for
23: E(t)←(t sum / Nmc)
24: E(c)←(c sum / Nmc)
25: E(c2)←(c2 sum / Nmc)
26: E(tc)←(tc sum / Nmc)
27: Var(c) ← E(c2)− (E(c))2

28: Cov(t,c) ← E(tc)− E(t)E(c)
29: True(c) ← control option true equation(o)

30: adjustment ← −Cov(t,c)
V ar(c)

(E(c)− True(c)) (Using Equation 2.13)
31: Ecv(t) ← E(t) + adjustment (Using Equation 2.13)
32: TargetOptionPrice ← e−rT Ecv(t)

option is used. If an European option is used as an control option, the closed-form equation will

be the Black-Scholes formula [31]. The final target option price is then obtained with the control

variate adjustment (using the Equation 2.13 as presented in Section 2.2.2) and discounted backward

to present time (line 30-32).

Different types of exotic options have different init(), update() and calculate() function. Table 3.1

shows these functions content for some exotic and European options.

We therefore present our overall hardware design architecture as Fig. 3.1. There are two main types

36 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

Table 3.1: The init(), update() and calculate() function for some example options

init(x,o) update(x,S,o) calculate(y,x,o)
Arithmetic Asian call options x ← S0 x ← x + S y ← Max(0, x/(steps + 1)−K)
Geometric Asian put options x ← S0 x ← x× S y ← Max(0,K − x1/(steps+1))
Fixed strike lookback call options x ← S0 x ← Max(x, S) y ← Max(0, x−K)

Up and out barrier call options
x1 ← 0; if S > B, x1 ← 1; if x1 = 1, y ← 0, else
x2 ← S0 x2 ← S y ← Max(0, x2 −K)

European options x ← S0 x ← S y ← Max(0, x−K)

Coordination Block

GRNG core
Path simulation core

Result consolidation core

CVMC core

Host PC

CVMC core CVMC core CVMC core

Internal communication bus

Figure 3.1: Overall hardware architecture.

of components in the design: one or more identical control variate Monte-Carlo (CVMC) cores; and a

single shared Coordination Block (CB). The CVMC cores contain a Gaussian random number gener-

ator (GRNG) core, a path simulation core and a result consolidation core; each CVMC core is capable

of generating random asset price paths, calculating payoffs of the target option and control option, and

accumulating the payoffs and payoffs related statistical result. In other words, each CVMC core is ca-

pable of executing the main for-loop in Algorithm 1. Multiple identical CVMC cores are instantiated

to make maximum use of the device. The total number of simulations required is distributed equally

to each CVMC core.

The block diagrams of the path simulation core and result consolidation core inside the CVMC core

are shown in Fig. 3.2. The logic for update() and calculate() function of t temp, c temp, t and c are

located inside their corresponding block of path simulation core. As pipelined operators are used and

the output of all “update blocks” and “sum blocks” will be fed back to the input of themselves, there is

a pipelined loop for each of the “update block” and “sum blocks”. The number of the pipelined stages

must be identical for all the pipelined loops in order to guarantee a consistent computation schedule.

Let p be the maximum number of pipeline stages for these pipelined loops. Pipelined registers are

added to ensure the number of pipelined stages of all loops equal to p. As the feedback result will

3.3. Case Study: Asian Options Pricing 37

reappear only after p stages, we simulate a batch of p paths at the same time in this pipelined fashion.

Path simulation core
update stock price

update t_temp update c_temp

calculate t calculate c

Result consolidation core
prepare t, tc, c and c²

sum t sum tc sum c sum c²

Figure 3.2: Block diagram of path simulation core and result consolidation core.

The number of pipeline stages for all “calculate blocks” must be the same as well to guarantee the

valid results of t and c arrive at the result consolidation core at the same cycle. The “calculate blocks”

output only when that p simulations reaches the end of the path (i.e. S reached Sn and n is the

total number of steps). Therefore, p path simulations are completed every p × steps cycles. These

t and c results are used in result consolidation core until the completed number of batches reaches

the required number of batches. Let Nbatch be the required number of batches, Nmc be the required

number of Monte-Carlo simulations and C be the number of CVMC cores in the hardware. Nbatch is

defined as:

Nbatch =

⌈
Nmc

p · C
⌉

(3.6)

The Coordination Block (CB) manages the CVMC cores, allowing them to work in parallel to price

the same option. The CB is also responsible for communicating with the external controller, for

example a PC. With the precious timing control, all the t sum, c sum, c2 sum and tc sum computed

in CVMC cores will be sent back to CB, and then transfer to the external host for the final post-

processing. The Gaussian random number generators in CVMC cores are also initialized by the CB.

Different sequences of bits are connected to different Gaussian random number generators as the

random seeds.

3.3 Case Study: Asian Options Pricing

In this section, we present the detailed FPGA design of CVMC arithmetic Asian option pricing using

our designed hardware architecture. There is no closed-form solution for arithmetic Asian options and

38 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

pricing them fast and accurately is a challenging problem in finance. Therefore, arithmetic Asian op-

tions are perfect candidates to be priced using the hardware accelerated CVMC framework. European

options are chosen as control options, as they have a closed-form solution.

For an arithmetic Asian option [33], the payoff is calculated using the arithmetic average of the prices

over the life time of the option. One advantage of this option type is that it is more difficult for the

option issuer to manipulate market prices to reduce the option payoff, as the payoff depends on the

path followed by the asset price, not just the price at expiry.

The payoff of an arithmetic Asian call option is introduced in Chapter 2 Section 2.1 in Equation 2.8

as:

Pcall = max

(
1

n + 1

n∑
i=0

Si −K, 0

)

where S0, ..Sn are the asset price at time step 0...n.

A common assumption is that asset prices move according to a log-normal random walk. Under this

model, price of an European option at present time can be calculated with a closed-form solution

called the Black-Scholes Equation [31]. However, there is no such solution for arithmetic Asian

options, due to their highly path-dependent properties. Monte-Carlo methods are commonly used to

solve this problem.

3.3.1 FPGA design: CVMC core

Gaussian random number generator

Random Number Generators (RNGs) are a key component of any Monte-Carlo simulation, as they

provide the underlying stochastic factor that allows the average behaviour to be explored. For this rea-

son it is critical that the RNGs produce a high-quality stream of random numbers: the numbers must

appear independent, with no correlations or patterns in the sequence; and the statistical distribution

must be indistinguishable from the target distribution, in this case the Gaussian distribution.

3.3. Case Study: Asian Options Pricing 39

These independence requirements are particularly important in accelerated Monte-Carlo, where 230

random samples can be generated and consumed in one second. Any correlations or biases can easily

distort the overall results of the simulation, so the period of the RNG must be 2128 or more.

This work uses the piecewise linear generation method [107], which provides high-quality fixed-

point Gaussian samples, while using only a small amount of logic and block-RAMs. A particular

advantage of the method is that it does not use any DSP blocks, freeing these up for the use in the

path generation and payoff logic. To provide a good approximation to the Gaussian distribution,

two independent piecewise linear RNGs are used, both of which provide a good approximation to

the Gaussian distribution. The outputs of the generators are then added together, providing a better

approximation to the Gaussian distribution, due to the Central Limit Theorem.

The resulting Gaussian RNG uses a single block-RAM and around 600 slices, and produces a stream

of 24-bit fixed-point random numbers, with a period of 2128. The quality of the stream has been

checked with the Chi-squared test for sample sizes up to 232, and shows no significant deviation from

the Gaussian distribution.

Path simulation

The init(), update() and calculate() functions of arithmetic Asian call options and the controlling

European options are shown earlier in Table 3.1. Therefore, the architecture of the path simulation

core is designed as in Fig 3.3.

The static input parameters include S0, K, vsqrdt , drift and steps (number of simulation steps). The

dynamic input parameter is the Gaussian random number W . The underlined parameter near each

operator is the number of pipeline stages (latency) of that operator. Therefore, it takes da + dm + de

clock cycles for W to reach the second multiplication operator.

There are 3 multiplexers namely MUXA, MUXB and MUXC controlling the computation flow.

MUXA selects S0 at the beginning in order to calculate the S1 price. The signal s path indicates

the updated S in the path and is feed back to MUXA. Therefore, MUXA selects signal s path after-

ward to provide a loop for iterating next Si. The loop containing MUXA and the second multiplication

40 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

MaxExpMUXB
MUXA

S0

w
vsqrdt

drift

S0
dm

da

de

dm
da

steps+1

Kdd

ds

Delay da-dm
S_pathS_sum

MUXC

0

asian_call_payoff

S_path
S_sum

K
ds

Delay dd+da

Max

MUXC

0

euro_call_payoff

Figure 3.3: Architecture of the price movement path simulation core.

operator is the “stock price updating loop”.

MUXB selects S0 at the beginning in order to compute the sum of price S0 and S1 to the result signal

S sum. S sum is then feed back to MUXB to form the “sum of price updating loop”. MUXB selects

S sum afterward after the S0 + S1 computation.

The number of the pipelined stages must be identical for all the pipelined loops in order to guarantee a

consistent computation schedule. Let p be the maximum number of pipeline stages for these pipelined

loops. Pipelined registers are added to ensure the number of pipelined stages of all loops equal to p.

In this architecture, p = da. Therefore, a da − dm cycles pipelined delay register is inserted after the

second multiplication operator for balancing.

As the computation is pipelined, the feedback result will reappear at the MUXA and MUXB after p

cycles. Therefore, we simulate p paths at the same time in this pipelined fashion. The computed 1

step of S for the first simulation will arrive MUXA and MUXB just after the other p−1 computations

of the other simulations.

MUXC selects the output of max operator only when that p simulations reached the end of the path

(i.e. S path reached Sn). Therefore, MUXC only selects the max operator output for p cycles as

the asian call payoff at that moment, and selects value 0 for the rest of time. In conclusion, p path

simulations are completed after p× steps + 3da + dm + de + dd + ds cycles for the pipeline stages.

3.3. Case Study: Asian Options Pricing 41

The whole process repeats and we could expect another p completed path simulations after another

p× steps cycles. Table 3.2 summarize the behavior of the MUXs in the path simulation core.

Table 3.2: MUXs’ behavior in path simulation

MUX Selecting behavior:
MUXA Select S0 for first da + dm + de cycles.

Repeat: Select S0 for p cycles and then
select S path for p× (steps− 1) cycles

MUXB Select S0 for first 2da + dm + de cycles.
Repeat: Select S0 for p cycles and then
select S path for p× (steps− 1) cycles

MUXC Select 0 for first 3da + dm + de + dd + ds cycles.
Repeat: Select 0 for p× (steps− 1) cycles
and then select max() output for p cycles

Result consolidation

The architecture of the result consolidation core is shown in Fig. 3.4. As discussed in the previous

subsection, a batch of p payoff results (Asian call payoff and European call payoff) are generated

for every p × steps cycles and passed to the result consolidation core. The product of Asian and

European call payoff, and the square of the European call payoff are computed with two multipliers.

These results are accumulated until the completed number of batches reaches Nbatch. Two 8 stage

delay registers are inserted to balance the timing with these two multipliers.

All MUXD type multiplexers select 0 for initialization, then they select the accumulated result (e.g.

signal a sum) afterward to form “sum of result loop”. When the number of batches reached Nbatch, we

have to aggregate the final p consecutive sum of result (e.g. a sum) together. It is a bit complicated to

aggregate these p consecutive values using p stages pipelined adders. The solution is to make use of

multiplexers (MUXE) and registers with a special clock-enable timing. All MUXE type multiplexers

select the output of the delays or multipliers at the beginning, then they select the output of the D-type

register afterward. As the input of the D-type register is connected with the output of those adders,

these D-type registers and MUXE form another feedback loops. Table 3.3 shows the behavior of

MUXs in the result aggregation core with the actual number of cycles.

The clock-enable of the D-type registers are controlled by a special signal sequence “accr” in order to

42 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

a_sum

asian_call_payoff

MUXD

a_sum

MUXE

Reg
D Q

CE
1

accr

da

0

final_a_sum

ae_sum

MUXD

ae_sum

MUXE

Reg
D Q

CEaccr

da

0

e_sum

MUXD

e_sum

MUXE

Reg
D Q

CEaccr

da

0

ee_sum

MUXD

ee_sum

MUXE

Reg
D Q

CEaccr

da

0

euro_call_payoff

Delay Delay

final_ae_sum final_e_sum final_ee_sum

dm dm dm dm

1 1 1

Figure 3.4: Architecture of the result consolidation core.

Table 3.3: MUXs’ behavior in result consolidation

MUX Selecting behavior:
MUXD Select 0 for p× steps +

4da + 2dm + de + dd + ds cycles
and then select AdderOut afterward.

MUXE Select result from multipliers or delays
for p× steps×Nbatch +
5da + 2dm + de + dd + ds cycles
and then select D-type RegOut afterward.

achieve the final accumulation. The “accr” is set to 1 for a dedicated timing so as to buffer the desired

intermediate output of the adder. The desired intermediate result stays at the output of the register and

the output of the MUXE.

Let x be the index of clock cycle, the sequence of signal “accr” is defined as the following equation:

accr(x) =

1 if x mod 2k+1 = 2k − 1,

pk ≤ x < p(k + 1),

∀k ∈ N, 0 ≤ k ≤ log2(p)

1 if x mod 2k = 2k−1 − 1,

pk ≤ x < p(k + 1),

∀k ∈ N, log2(p) < k ≤ log2(p) + 1

0 otherwise

(3.7)

3.3. Case Study: Asian Options Pricing 43

The number of cycles required to obtain the aggregated results at register out is dp(log2(p) + 1)e. As

p = 12 in this case, the final sum will appear at the output of the D-type registers 56 cycles later.

This register, with a special clock-enable signal sequence, is of general use for a design requiring

a “reduce” function in a “map-reduce” computation with commutative operator with any number of

pipeline stages. If a multiplier is used as the commutative operator, the result of
∏p

i=1 Yi will be

computed at the register output instead of
∑p

i=1 Yi.

3.3.2 FPGA design: Coordination Block

The Coordination Block is the main control unit of the hardware architecture and provides the commu-

nication with the host PC. The Asian option parameters are first sent from host PC to the Coordination

Block. The Coordination Block then distributes the parameters to all CVMC cores. The communica-

tion time between the FPGA and PC is negligible as there are only tens of bytes of input parameters

and results transferred between them.

The Coordination Block also controls the overall timing of the computation. It generates 5 types

of MUX selection signals and 1 type of “accr” signal sequence to all CVMC cores as discussed in

previous subsection. The timing of generating these signals is followed strictly by the requirement as

in Table 3.2 and Table 3.3. Instead of implementing counters and finite state machines in each CVMC

core, we implement them in the Coordination Block only to reduce logic redundancy.

Path delay optimization

All counters, condition checking and controlling logic are implemented in the Coordination Block

only instead of in the CVMC cores. In this way, the logic redundancy is significantly reduced. How-

ever, the use of global controlling signals may suffer from a decrease of clock rate due to a long

critical path delay. Path delay consists of 2 parts: logic delay and routing delay. When there are many

computational cores, the routing delay of the controlling signal from the Coordination Block to the

farthest computational core will be significant, and the performance of a parallel architecture will be

drastically reduced. Therefore, the hardware design of the Coordination Block is optimized carefully

44 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

Algorithm 2 Monte-Carlo pricing algorithm
payoffSum = 0
for i = 1 to NumberOfSimulation do

SumOfPrice = S0

S = S0

for i = 1 to Steps do
W ← NextRandomNumber
S ← Sedrift+vsqrdt×W

SumOfPrice ← SumOfPrice + S
end for
payoff ← SumOfPrice / (Steps+1) - K
payoff ← max(0,payoff)
payoffSum ← payoffSum + payoff

end for
Price ← e−rT (payoffSum/NumberOfSimulation)

with path delay partitioning. Pipeline registers are inserted in the controlling signal paths to minimize

the routing delay. Therefore, a high clock rate can be maintained while maximizing the degree of

parallelism.

3.3.3 FPGA design: Pure MC core

A pure MC version of Asian option pricer is also designed for performance comparison. The hardware

architecture of the price movement path simulation is based on the pure MC Asian option pricing

algorithm (Algorithm 2), which is shown in Figure 3.5.

3.3.4 GPU design

Our implementation on GPU is based on Compute Unified Device Architecture (CUDA) API pro-

vided for nVidia GPUs. We design our CUDA implementation of Asian option pricing by 2 proce-

dures, namely Gaussian random number generator procedure and path simulation procedure.

3.3. Case Study: Asian Options Pricing 45

MaxExpMUXB
MUXA

S0

w
vsqrdt drift

S0
dm

da

de

dm
da

steps+1

Kdd

ds

Delay da - dm
S_path

S_sum

MUXC

0S_sum

asian_call_payoff

S_path

Figure 3.5: Architecture of pure MC path simulation core. The underlined parameter denotes operator
latency.

Gaussian random number generator procedure

In this procedure, we first allocate the GPU’s global memory space for the total amount of random

numbers that we needed for the simulations. If the number of simulations is N, the number of steps is

M and single precision is used, we allocate 4NM bytes of global memory in GPU. Then we execute the

Mersenne Twister random number generator kernel using all the threads to generate random numbers

at the memory space [108]. A Box-Muller transformation kernel is then executed on that memory

space to form Gaussian random numbers. The random number generation procedure is optimised by

ensuring all threads generate random numbers in the global memory in a fully parallel manner and

the reading and writing to the global memory are coalesced.

Path simulation procedure

In the path simulation procedure, each thread simulates the price movement path and sums up the

payoff in the shared memory. Therefore, these payoff sums can be accessed by other threads in the

same block. The first thread in each block then sums up all the payoff sums within the same block

and stored it in the global memory location. Finally, a final aggregation kernel is executed by 1 thread

46 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

Table 3.4: xc5vlx330t FPGA resource consumption

10 CVMC Cores 16 pure MC Cores
Resource Used % Used %
Slices 44,118 85% 41,968 80%
FFs 130,195 62% 110,789 53%
LUTs 79,587 38% 95,749 46%
RAM 10 3% 16 4%
DSP48Es 180 93% 192 100%

only. This thread sums up the results by all blocks from the global memory location and returns the

total payoff sum to the main program. The main program then computes the option price from the

returned result.

3.4 Performance Comparison

This section investigates the advantage of using the CVMC method over the pure Monte-Carlo method

for arithmetic Asian option pricing on FPGA. We also compare the performance of the implementa-

tions against GPU and CPU.

Our FPGA implementations targeted a Xilinx xc5vlx330t FPGA chip on an Alpha Data ADM-XRC-

5T2 card. We design our hardware architecture manually in VHDL to maximize performance. The

design is synthesized, mapped, placed and routed using Xilinx ISE 10.1.03. Single precision floating

point arithmetic is used. There are 10 CVMC cores in the design. Resource utilisation is summarised

in Table 3.4. We have also implemented arithmetic Asian option pricing using the pure Monte-Carlo

method on xc5vlx330t. As the number of floating point operators is decreased, 16 pure MC cores can

be fitted in an xc5vlx330t device.

We choose an arithmetic Asian call option with parameters S0=100, K=105, v=0.15, r=0.1, T=1 and

steps=365. The number of Monte-Carlo simulations is 1,000,000. The Var(t), Var(c) and Cov(t, c) of

the tested arithmetic Asian call option is 33.47, 152.36 and 59.54 respectively. The 99% confidence

interval of the option price is [3.392, 3.408]. The 99% confidence interval length is 0.016.

Fig. 3.6 shows the number of simulations required versus the 99% confidence interval length for using

3.4. Performance Comparison 47

pure Monte-Carlo and control variate Monte-Carlo methods to price arithmetic Asian options. We can

see that the number of simulations required for the pure Monte-Carlo method is 3.28 times more than

the control variate Monte-Carlo method. One may consider that the pure Monte-Carlo core in FPGA

consumes fewer resources, and therefore the degree of parallelism is higher. Our result also shows

that 6 more cores can fit in the xc5vlx330t FPGA using pure Monte-Carlo. However, the reduced

parallelism with fewer cores for the control variate method is more than compensated by the benefit

of reduced variance. For a given confidence interval length (accuracy), the 10 CVMC FPGA cores is

2 times faster than the pure Monte-Carlo FPGA implementation with 16 cores as shown in Fig. 3.7.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0.05 0.04 0.03 0.02 0.01
99% Confidence interval length

N

N (Pure Monte Carlo)

N (Control variate)

Figure 3.6: The required number of simulation versus the 99% confidence interval length.

The acceleration of the FPGA implementations and GPU implementations of Asian option pricing us-

ing CVMC method are in comparison to a reference software implementation. The reference PC used

an Intel Xeon quad-core E5420 2.5GHz processor with 16GB RAM. The multi-threaded software im-

plementation is written using C language with Intel Math Kernel Library (MKL) and compiled using

Intel compiler icc with maximum speed optimization options which fully utilize SSE2 parallelism.

The targeted GPU is nVidia Tesla C1060 with 4GB of on board RAM. The GPU implementation is a

translation from the software C code using CUDA API. The Mersenne Twister and Box-Muller trans-

formation is used for Gaussian random number generation. The CUDA code is written in a way to

ensure all GPU cores execute concurrently for random number generation and path simulation. The

48 Chapter 3. Accelerating Monte-Carlo Methods for Option Valuation

0

200

400

600

800

1000

1200

0.05 0.04 0.03 0.02 0.01
99% Confidence interval length

Time (ms)

xc5vlx330t (16 Pure MC cores)

xc5vlx330t (10 CVMC cores)

Figure 3.7: The required computation time versus the 99% confidence interval length.

summary of the performance comparison is shown in Table 3.5.

From the results, it can be seen that a speedup of 24 times over the CPU is achieved by xc5vlx330t

FPGA. For the performance of the GPU, a speedup of 10 times is achieved by Tesla C1060. The

xc5vlx330t FPGA is 2.4 times faster than the Tesla C1060 GPU. The maximum power usage of

different devices is also estimated. The power usage of xc5vlx330t is estimated by Xilinx XPower

Estimator 11.4.1 with toggle rate 100% and clock rate 200MHz. It is impossible for all the Flip-Flops

to toggle at all times. Setting toggle rate to 100% is purely for estimating the maximum bound of

power usage. The maximum energy consumption and the energy efficiency can also be estimated.

From the Table 3.5, we can see that GPU is 4 times more energy efficient than CPU and FPGA is 66.6

times more energy efficient than CPU.

Table 3.5: Performance of the Asian option pricing using CVMC method

FPGA GPU CPU
Type xc5vlx330t Tesla C1060 Xeon E5420
Frequency 200MHz 1.3GHz 2.5GHz
Time (ms) 184ms 443ms 4,446ms
Speedup 24x 10x 1x
Max power (W) 29W 200W 80W
Max energy consumption (J) 5.3J 88.6J 355.7J
Normalised energy efficiency 66.6x 4.0x 1.0x

3.5. Summary 49

3.5 Summary

This chapter presents a high performance hardware architecture for exotic option pricing using the

control variate Monte-Carlo (CVMC) method. To our knowledge, this is the first reported hardware

implementation of CVMC method in the literature. Hardware implementations of arithmetic Asian

option pricing using both CVMC method and pure Monte-Carlo method are described. Our result

shows the reduced number of cores for the control variate method is more than compensated by the

benefit of reduced variance. For a given confidence interval length (accuracy), the 10 CVMC cores

FPGA implementation is 2 times faster than the pure MC FPGA implementation with 16 cores.

The performance of CVMC FPGA design is compared with a GPU design using CUDA and a multi-

threaded software design. By exploiting the efficient Gaussian random number generators, massive

parallelism and highly pipelined datapath, our FPGA implementation outperforms a comparable soft-

ware implementation running on a quad-core CPU by 24 times, and outperforms the GPU implemen-

tation by 2.4 times.

There has been no previous work on using control variate method to perform Monte-Carlo simula-

tion in option pricing. There are some similar previous works which employ pure Monte-Carlo for

financial computing. In [43], five different types of financial random walks were implemented in hard-

ware and in average 80 times faster than a software implementation running on a single-core CPU.

Those random walks are roughly 20 times faster when comparing with a quad-core CPU. Hardware

accelerated American option pricer based on Monte-Carlo method is presented in [45] and shows a

speedup of 20 times compared with a single-core CPU. The speedup figure of this American option is

only around 5 times when comparing with a quad-core CPU. Therefore, our FPGA design of a more

complex exotic option pricer presented in this chapter outperforms both the simple financial walk

simulator and American option pricer in previous research.

In addition, the FPGA implementation consumes much less power than the GPU and software im-

plementation. This improvement in speed and power consumption provides an attractive solution to

financial institutions to shorten the pricing time and reduce costs by energy savings.

Chapter 4

Accelerating Quadrature Methods for Option

Valuation

4.1 Motivation

Financial institutions continually invent new ways to repackage and modify financial products in or-

der to satisfy the needs of different investors. While some basic financial options can be priced with

a closed-form solution, many other derivatives with knock-out/knock-in features (e.g. Accumula-

tor, Decumulator, and Barrier Options), changing strike prices, or discrete settlement days, have no

known closed-form solution. Numerical techniques are used to value these complex derivative prod-

ucts. Numerical methods for derivative pricing can be roughly divided into two groups: Monte-Carlo

methods, which work forwards from the current asset price to expiry time using multiple randomly

chosen paths; and lattice methods, which work backwards from exercise time to the current price,

using a pre-determined lattice of asset prices and times. In Chapter 3, we presented the acceleration

methodology for Monte-Carlo methods. In this chapter, we explore the acceleration methodology

of quadrature methods, which are subsets of the lattice methods and are very powerful for pricing

options when their paths are monitored in discrete time points [21].

Quadrature methods have been applied in different areas including modeling credit risk [40], solving

electromagnetic problems [41] and calculating photon distribution [42]. It is a powerful way of pricing

50

4.2. Option pricing and quadrature methods 51

path-dependent options where the path is monitored in discrete time points. A lookback discrete

barrier option priced using quadrature methods is more than 1000 times faster than using the trinomial

method, while achieving a more accurate result [21].

Using quadrature methods to price a single simple option is fast and can typically be performed in

milliseconds on desktop computers. However, quadrature methods can become a computational bot-

tleneck when a huge number of complex options are being revalued in real-time using live data-feeds.

Many financial derivatives now involve multiple underlying assets instead of just one. As the com-

putation complexity increases exponentially with the number of underlying assets (i.e. the number of

dimensions), how to accelerate the quadrature option pricing becomes a significant problem. Energy

consumption of computation is also a major concern when the computation is performed 24 hours a

day, 7 days a week.

This chapter explores the acceleration of quadrature computation using different computational de-

vices including Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs).

The main contributions of this chapter are:

• A novel parallel hardware architecture for option pricing based on quadrature methods (Sec-

tion 4.3).

• Techniques for multi-dimensional option pricing and a model of the computational complexity

(Section 4.4).

• An approach for generating multi-dimensional quadrature evaluation cores for FPGA and GPU

(Section 4.5).

• Comparison of performance and energy consumption of FPGAs, GPUs and CPUs for quadra-

ture evaluation across different number of dimensions (Section 4.6).

4.2 Option pricing and quadrature methods

To understand option pricing with quadrature methods, we first consider the Black and Scholes partial

differential equation [31] for an option with an underlying asset following geometric Brownian motion

52 Chapter 4. Accelerating Quadrature Methods for Option Valuation

with continuous dividend yield:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r −Dc)S

∂V

∂S
− rV = 0 (4.1)

where V (S, t) is the price of the option, S is the value of the underlying asset, t is time, r is risk-free

interest rate, σ is volatility of the underlying asset, E is exercise price, and Dc is continuous dividend

yield.

According to [21], the following standard transformations

x = log(St/E), y = log(St+∆t/E)

give us the solution of V (x, t) as:

V (x, t) = A(x)

∫ +∞

−∞
B(x, y)V (y, t + ∆t)dy (4.2)

where

A(x) =
1√

2σ2π∆t
e(−kx/2)−(σ2k2∆t/8)−r∆t (4.3)

B(x, y) = e−((x−y)2/2σ2∆t))+(ky/2) (4.4)

k =
2(r −Dc)

σ2
− 1 (4.5)

Equation (4.2) contains an integral which cannot be evaluated analytically. Although for European

options they can be converted to the probability density function for the normal distribution, for more

complicated options numerical techniques are required to evaluate the integrals. For the evaluation

of other complicated options such as discrete barrier options and American options, the valuation

problem can be arranged to exploit consecutive time intervals and apply Equation (4.2) iteratively

from maturity time. The value of V (y, T) at maturity time (T) is determined according to the payoff

function of the option. For example, the values of V (y, T) for an European option is given by:

4.3. Parallel Architecture 53

V (y, T) = E(ey − 1) for y > 0 and V (y, T) = 0 for y <= 0.

There are many different methods of numerical integral evaluation. Two of the most common methods

include the trapezoidal rule and Simpson’s rule [50] and their equations are stated in Section 2.2.3 as

Equation 2.15 and Equation 2.16.

4.3 Parallel Architecture

Using quadrature methods from Equation (2.15) or Equation (2.16), the option value V (x, t) from

Equation (4.2) can be computed as:

V (x, t) = A(x)

∫ +∞

−∞
B(x, y)V (y, t + ∆t)dy

≈A(x)Ioc

N∑
i=0

Ii ·B(x, ymin + iδy)V (ymin + iδy, t + ∆t) (4.6)

The sequence of integration coefficients Ii and the value of the outer integration coefficient Ioc depend

on the type of quadrature method used. For example, the sequence of Ii is 1, 2, 2, . . . , 2, 1 and the

value of Ioc is δy
2

for trapezoidal rule.

The major calculation part of V (x, t) is the summation of B(x, ymin + iδy)V (ymin + iδy, t + ∆t)

times Ii for all i. Similarly, the values of V (ymin + iδy, t + ∆t) are computed by the summation

of B(ymin + iδy, ymin + jδy)V (ymin + jδy, t + 2∆t) times Ij for all j. Therefore, the computation

is a backward iterative process from the maturity time. A graphical representation of the process is

illustrated in Fig. 4.1.

The value of δy determines the density of the integration. As the underlying asset follows a lognormal

distribution and the change of price exhibits Brownian motion, the value of y fluctuates proportional

to
√

∆t. As a result, we define the grid density factor K1 from:

δy =
√

∆t/K1 (4.7)

54 Chapter 4. Accelerating Quadrature Methods for Option Valuation

V
V (S,T0)

T0 T1 T2 T3

Price

Time

0
m

N

Figure 4.1: The backward iteration process.

Therefore, increasing the value of K1 leads to a smaller value of δy and a denser grid.

It is not possible to integrate a function from −∞ to +∞ numerically in practice. Therefore, the

quadrature methods evaluate from a sufficiently small value ymin to a sufficiently large value ymax.

We define the grid size factor K2 from:

ymax = x + K2 · σ
√

∆t (4.8)

ymin = x−K2 · σ
√

∆t (4.9)

As a result, a large value of K2 leads to a large value of ymax and a small value of ymin, resulting in a

wide grid. K2 can also be viewed as the number of standard deviations from y to the original position

of x after ∆t.

Table 4.1 shows some of the pricing equations for different option types according to [21]. The

pricing equations are slightly different in terms of the integration range and the evaluation flow. For

discrete barrier options, the result of Cm+1 is required for the evaluation of Cm. The final option value

C0 has to be evaluated iteratively. Table 4.2 shows the computational complexity for different types

of options. The computation complexity depends on the evaluation flow, the number of integration

grid points N and the number of time steps m.

A key result from Table 4.1 and Table 4.2 is that all option pricing equations require the evaluation of

4.3. Parallel Architecture 55

Table 4.1: The pricing equations for various types of options.

Option type: Pricing equation:

European V (x, t) ≈ A(x)
∫ N+δy
0 B(x, y)V (y, t + ∆t)dy

Discrete barrier call Cm(x, Tm−1) ≈ A(x)
∫ ymaxm

bm
B(x, y)Cm+1(y, Tm)dy

Bermudan put Pm(x, Tm−1) ≈ A(x)
∫ ymaxm

bm
B(x, y)Pm(y ≥ bm, Tm)dy + Ee−r∆tmN(−d2)− Eex−Dc∆tmN(−d1)

American call Cm(x, Tm−1) ≈ A(x)
∫ bm

yminm
B(x, y)Cm(y ≤ bm, Tm)dy + EMex−Dc∆tmN(d1)− Eme−r∆tmN(d2)

Table 4.2: The computational complexity for some example options. N denotes the number of inte-
gration grid points and m denotes the number of time steps.

Option type: Number of integration Number of evaluation of B(x,y) Number of evaluation of A(x)
European O(1) O(N) O(1)
Discrete barrier call O(Nm) O(N2m) O(Nm)
Bermudan put O(Nm) O(N2m) O(Nm)
American call O(Nm) O(N2m) O(Nm)

a similar integral on B(x, y)V (y, t + ∆t). Using quadrature methods requires the evaluation of the

function B(x, y) intensively, which is the computation bottleneck. Although function A(x) is also

required to be evaluated repeatedly, the computation complexity for A(x) is lower than B(x, y) from

Table 4.2.

4.3.1 System architecture

Our system architecture is not designed for pricing a specific option, so the flexibility to support

all kinds of options must be considered. It has been shown that most of the equity options can be

expressed in integral forms and solved by quadrature methods including: European options, discrete

barrier options, moving discrete barrier options, Bermudan put options, American call options, and

lookback options [21, 109]. However, the quadrature evaluation procedures are slightly different

for different types of options. Different types of options have different discontinuities, which lead

to different integral boundaries. Some options contain option specific parameters: for example, the

knock-out prices and number of periods are required for discrete barrier options. Although European

options can be priced with a single quadrature step, most of the other options need to be evaluated

iteratively from the price in period of m to m − 1. Therefore using different number of quadrature

steps is required. As a result, our system is designed to provide efficiency in hardware evaluation of

the integral and flexibility for a general option pricing framework, as illustrated in Fig. 4.2.

56 Chapter 4. Accelerating Quadrature Methods for Option Valuation

Main Control Unit

Post-processingPre-processing

Option value
QUAD

Evaluation Core

Option parameters input

Figure 4.2: System architecture of a generic option valuation system based on quadrature methods.

The system architecture of the generic option valuation system using quadrature method is shown in

Fig. 4.2. The architecture consists of the following components: (a) a pre-processing block, (b) one

or more QUAD(quadrature) evaluation cores, (c) a post-processing block, and (d) a main control unit.

Data input to the system are: K1, K2, T, So, E, r,Dc, σ, option-type and option-specific-parameters.

The option-type and option-specific-parameters provide the flexibility to support the pricing of mul-

tiple types of options. For example, we could specify the number of periods (m) and the knock-

out/knock-in prices (b) for barrier options.

A typical option evaluation flow is illustrated in Fig. 4.3. The main control unit accepts the ba-

sic option input, selects the corresponding option evaluation equation and coordinates with the pre-

processing and post-processing blocks. The pre-processing block computes the non-repeated values

such as δy, ymax and ymin. It then generates the set of yi, Vi and x for the QUAD(quadrature) eval-

uation cores. The QUAD evaluation cores evaluate the integral value based on Equation (4.6). The

post-processing block combines the integral value with the value of A(x) and produces the value of

V (x, t). The main control unit then decides whether V (x, t) is the final solution or a temporary result

for the next iteration.

The QUAD evaluation core is implemented in hardware for three main reasons. First, more than one

QUAD evaluation core fits on a single FPGA. Therefore, several quadratures can be evaluated simul-

taneously to exploit parallelism. Second, the evaluation of the function B(x, y) could be implemented

in pipelined hardware which is fast and efficient. The value of B(x, y) can be obtained in every clock

cycle. Third, as shown in Table 4.2, the evaluation of the quadrature is the computation bottleneck,

4.3. Parallel Architecture 57

Calculate dy, ymax and ymin

Select corresponding option pricing equation and flow

Evaluate the integral

Evaluate the value of A(x) Store the
temporary result

Final option value?

Pre-processing
stage:

Quadrature
evaluation stage:

Post-processing
stage:

No
YesFinish

Figure 4.3: The option evaluation flow.

which would benefit from hardware acceleration.

The main control unit, pre-processing and post-processing blocks are implemented in software for

the following reasons. (a) It increases the flexibility to support other options. (b) The evaluation in

pre-processing and post-processing blocks is not the performance bottleneck; implementing them in

hardware would not improve performance significantly.

The proposed architecture offers fast and parallel hardware cores for repeated numerical integrations,

while supporting a versatile option evaluation platform.

A straight-forward way of optimising the QUAD evaluation core is to create a tree of pipelined opera-

tors from the equations directly. Fig. 4.4 shows an operator tree based on Equation 4.2 to Equation 4.5.

In Fig. 4.4, ∆t, x, yi, σ, r,Dc, V (yi, t+∆t) and Ii are fed to the evaluation tree continuously. However,

the straight-forward implementation consumes a large amount of hardware resources as it requires

many floating-point operators. The optimized design is shown in Fig. 4.5, and will be used to produce

implementations on both FPGA and GPUs (Section 4.5).

The optimized quadrature operator tree takes the following data input: x, yi, C1, C2, Ii and V (yi, t +

58 Chapter 4. Accelerating Quadrature Methods for Option Valuation

-

/

e

-

^2
/

^2 -

-
/ 2

1
2

2

σ r Dx yi V(yi,t+∆t)c I∆t

 Accumulator

*

i
*

Figure 4.4: An operator tree diagram for a straight-forward design by creating the operators from
Equation 4.2 to Equation 4.5 directly (the operator with ’*’ denotes the operation from right to left).

/
e

-
^2

-

C2C1x yi I ·V(yi,t+∆t)
 Accumulator

*

i

Figure 4.5: An operator tree diagram for optimized design.

∆t). We define:

C1 = 2σ2∆t (4.10)

C2 =
r −Dc

σ2
− 1

2
(4.11)

The operator tree is optimized by identifying the non-changing nodes during the pipelined evaluation.

The values of C1 and C2 are fixed for the values of yi, Ii, V (yi, t + ∆t), i ∈ [0, N]. Therefore,

C1 and C2 can be pre-computed in the pre-processing stage and passed to QUAD evaluation cores.

The hardware size is therefore reduced significantly and the number of parameters is also reduced.

The parameters of Ii and V (yi, t + ∆t) are passed to the QUAD evaluation cores together. For an

integration grid with N steps, the total number of parameters required is of the order 2N , a 33%

reduction from the original design which is of the order 3N . Table 4.3 summarizes the differences

between the original design and the optimized design.

4.4. Multi-dimensional Quadrature Analysis 59

Table 4.3: Comparing the original and optimized designs.

Original Optimized
Number of exp(x) operators 1 1
Number of × operators 8 3
Number of ÷ operators 3 1
Number of − operators 4 2
Number of input parameters 3N + 5 2N + 3

4.4 Multi-dimensional Quadrature Analysis

To extend the design to support multiple underlying assets, we first consider the Black and Scholes

partial differential equation [39] for an option with all underlying assets following geometric Brown-

ian motion:

∂V

∂t
+

1

2

d∑
i=1

d∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

+
d∑

i=1

(r −Di)Si
∂V

∂Si

− rV = 0 (4.12)

with the logarithmic transformations of xi = log(Si) to be the chosen nodes at t and yi = log(Si) to

be the chosen nodes at t + ∆t. Let R be the matrix such that element Rij = ρij . According to [39],

the solution is:

V (x1, . . . , xd, t) = A

∫ +∞

−∞
. . .

∫ +∞

−∞
V (y1, . . . , yd, t + ∆t)B(x1, . . . , xd, yi, . . . , yd)dy1 . . . dyd

(4.13)

where

B(x1, . . . , xd, yi, . . . , yd) = exp(−1

2
αT R−1α), (4.14)

αi = (xi − yi + C1i)/C2i (4.15)

Equation (4.13) is the fundamental equation for multi-dimensional option pricing containing an inte-

gral which cannot be evaluated analytically. The number of dimensions for this integration is given

by the total number of assets. C1i and C2i will be calculated in the pre-processing stage to improve

60 Chapter 4. Accelerating Quadrature Methods for Option Valuation

performance.

C1i = (r −Di − σ2
i

2
)∆t

and

C2i = σi(∆t)1/2

All quadrature methods discretize the continuous integration range into a set of grid points. The func-

tion value f(y) is evaluated at these grid points and multiplied with integration coefficients. As from

Equation (2.16), the integration coefficients for Simpson’s rule are {1, 4, 2, 4, 2, . . . , 2, 4, 1}. Under

multi-dimensional quadrature methods, the product rule is used to determine the coefficient. The ef-

fective integration coefficients are calculated by the product of all original integration coefficients in

their corresponding dimensions. For example in a 2D case, the integration coefficients for the grid

points using Simpson’s rule are:

1, 4, 2, 4, 2, · · · , 2, 4, 1

4, 16, 8, 16, 8, · · · , 8, 16, 4

2, 8, 4, 8, 4, · · · , 4, 8, 2

4, 16, 8, 16, 8, · · · , 8, 16, 4

2, 8, 4, 8, 4, · · · , 4, 8, 2

...,
...,

...,
...,

..., . . . ,
...,

...,
...

2, 8, 4, 8, 4, · · · , 4, 8, 2

4, 16, 8, 16, 8, · · · , 8, 16, 4

1, 4, 2, 4, 2, · · · , 2, 4, 1

Fig. 4.6 shows the graphical representation of the iteration process of a 2-dimensional barrier option

pricing. We define N as the number of possible values (grid points) for y1 and assume the number of

grid points for all yi is the same. We define d as the number of dimensions and m as the number of time

intervals. For each time step, the number of integrations required is equal to the number of grid points,

which is Nd. As a result, the total number of integrations required for multiple time steps American

options and Barrier options is Ndm. The total number of evaluations of B is Ndm×Nd = N2dm.

4.4. Multi-dimensional Quadrature Analysis 61

V
V (S1,S2,T0)

T0 T1 T2 T3

Price

Time

0

m

N

y2

y1
N

Figure 4.6: The iteration process of a 2D barrier option.

Next, consider complexity analysis of our designs. The optimized number of operators required for

the calculation of column matrix α is d for (−) operator, d for (+) operator and d for (÷) operator.

For matrix multiplication of αT R−1α in Equation (4.14), the number of (×) operators required is

d(d + 1) and the number of (+) operators required is (d − 1)(d + 1). The rest of Equation (4.14)

requires one more (×) operator and one more exponential operator. Table 4.4 shows the summary of

operator requirement for the evaluation of B(x1, . . . , xd, yi, . . . , yd) and Table 4.5 shows the summary

of computation complexity for some example options.

Table 4.4: The operators count for the evaluation of B.

Operator type: Count
+ d2 + d− 1
− d
× d2 + d + 1
÷ d
exp 1

Total: 2d2 + 4d + 1

Table 4.5: The computation complexity for some example multi-dimensional options.

Option type: Number of integration Number of evaluation of B Total number of floating-point operations
European options O(1) O(Nd) O(Nd(2d2 + 4d + 1))
Barrier options O(Ndm) O(N2dm) O(N2d(2d2 + 4d + 1)m)
American options O(Ndm) O(N2dm) O(N2d(2d2 + 4d + 1)m)

The computation time can be estimated by assuming that a 10 GFLOPs processor is used (the peak

performance of a Pentium 4 3.2GHz CPU is around 6.4 GFLOPs) and all floating point operators take

62 Chapter 4. Accelerating Quadrature Methods for Option Valuation

the same amount of time. Fig. 4.7 shows that the computation time required is drastically increased

with the number of dimensions. It can be seen that pricing a European option with 7 underlying

assets takes 14.7 days with this processor at peak performance; however, it takes over 5 years with 8

assets. Hence other methods, such as using a cluster of accelerators, are required for designs beyond

7 dimensions.

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

1.00E+09

1 2 3 4 5 6 7 8 9 10
Dimension

Time (days)

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

1.00E+14

1.00E+16

1.00E+18

1.00E+20

1.00E+22

1.00E+24

2.7 hours

14.7 days

5.1 years

4.9 seconds

71 seconds

630 years

76368 years

FLOPs

Figure 4.7: The time required for the pricing of European options. (n = 100)

4.5 FPGA and GPU designs

4.5.1 Single dimension QUAD evaluation core on FPGA

Our FPGA implementation of the QUAD evaluation cores is based on HyperStreams and the Handel-

C programming language. HyperStreams is a high-level abstraction language and library [44]. It can

produce a fully-pipelined hardware implementation with automatic optimization of operator latency

at compile time. This feature is useful when implementing a complex algorithm core.

Fig. 4.8 shows a pipelined QUAD evaluation core based on the design in Fig. 4.5. The grey boxes

denote the pipeline balancing registers that are allocated automatically by HyperStreams. The QUAD

evaluation core produces the value of B(x, y) in Equation (4.2) for every clock cycle. For an FPGA

running at 100MHz, the QUAD evaluation core can produce 100M partial integral values per second.

4.5. FPGA and GPU designs 63

SubMult
Sqr
Div

Sub
Exp

Mult
Acc

x C1yiI ·V C2(yi,t+∆t)i

Figure 4.8: Pipelined QUAD evaluation core for FPGA.

4.5.2 Multiple dimensions QUAD evaluation core on FPGA

The most challenging part of the multi-dimensional design is to support an arbitrary number of di-

mensions. The hardware evaluation cores are completely different for different dimensions as the

underlying logic and the number of pipeline stages are different. Our approach provides a generic

architecture that produces hardware designs specialised for a given dimension.

The hardware multi-dimensional QUAD evaluation core involves three major parts. The first part is

the evaluation of the vector α from Equation (4.15). The second part is the matrix multiplication of

αT R−1α. The last part is the rest of the integration.

Fig. 4.9 shows a αT R−1α design for 2D QUAD evaluation. The αT R−1α design becomes more

complex for higher dimensions, with an increasing number of operators and pipeline stages. An

evaluation core generator is developed to produce designs for different dimensions automatically.

Mult

Mult

R10α0 -1R00
-1

Mult

Add

α1

Mult

Mult

R11α0 -1R01
-1

Mult

Add

α1

Add

Figure 4.9: Pipelined αT R−1α design for 2D QUAD evaluation.

The flow of the QUAD evaluation core generator is shown in Fig. 4.10. The generator accepts 2

64 Chapter 4. Accelerating Quadrature Methods for Option Valuation

input parameters: number of dimensions and the precision (single or double). An operator tree is

generated and stored in a temporary file. Finally, the operator tree file is parsed and the corresponding

HyperStreams and Handel-C codes are generated. The Handel-C code can then be compiled for

simulation or bit-stream generation.

Generate hardware description

Operator tree temp file

Handel-C File

Generate operators for α
calculation

Generate operators for matrix
multiplication

dimension = ?, precision = ?

Figure 4.10: Generating multi-dimensional QUAD evaluation.

The operator tree generation consists of two main parts. The first part is the operator tree generation

for the vector α calculation. It is generated according to Equation (4.15) and replicated d times with

respect to dimension d. Therefore, the logic resources required grow proportionally to d for the α

calculation part. The second part is the operator tree generation for the matrix multiplication αT R−1α

from Equation (4.14). The numbers of (×) and (+) operators required for this matrix multiplication

are d(d + 1) and (d− 1)(d + 1) respectively. Therefore, logic resources required grow proportionally

to d2. Finally, the operator trees from the above two parts are combined with the rest of the quadrature

operators.

Table 4.6 shows the FPGA device utilization figures for the QUAD evaluation core in different dimen-

sions and precisions. The targeted FPGA is Xilinx Virtex-4 xc4vlx160 and the designs are compiled

using DK5.1 and Xilinx ISE 10.1. The result indicates that the FPGA device is fully utilized for 1

dimension under double-precision and is fully utilized for 5 dimensions under single-precision. The

result also shows that for 1 dimension, multiple QUAD evaluation cores could be fitted into a single

FPGA in order to exploit parallelism.

4.6. Evaluation and comparison 65

Table 4.6: The logic utilization of QUAD evaluation core in different dimensions. Asterisk (*) indi-
cates that the place and route procedure cannot be completed.

FPGA - Virtex-4 xc4vlx160
Precision single double

Dimension 1 2 3 4 5 6 1 2
DSPs 34 (35%) 51 (53%) 75 (78%) 96 (100%) 96 (100%) (*) 96 (100%) (*)
LUTs 19,713 (14%) 32,053 (23%) 43,580 (32%) 60,058 (44%) 70,909 (52%) (*) 53,792 (39%) (*)
FFs 16,605 (12%) 22,418 (16%) 30,005 (22%) 41,466 (30%) 54,569 (40%) (*) 39,281 (29%) (*)

Slices 20,200 (29%) 27,970 (41%) 38,006 (56%) 51,862 (76%) 67,582 (99%) (*) 51,396 (76%) (*)
Clock Rate 100MHz 91.2MHz 89.7MHz 91.5MHz 88.0MHz (*) 81.9MHz (*)

4.5.3 QUAD evaluation core on GPU

Our implementation on GPUs is based on Compute Unified Device Architecture (CUDA) API for

nVidia GPUs [90]. The QUAD evaluation core is implemented in CUDA as a kernel to exploit

parallelism. Similar to the implementation on FPGA, we implement the evaluation core in CUDA

based on the optimized operator tree. In addition, the whole integration is segmented to support

different blocks and threads in the CUDA environment. Each thread would evaluate a set of partial

integrals and accumulate the result. The first thread in each block then adds up the results from all

the threads within the same block. The main thread then adds up all the results from all the blocks.

The CUDA pseudo code for the QUAD evaluation kernel is shown in Fig. 4.11. The grid size and

block size is set to 60 and 256 respectively. Registers per thread is 16 and the occupancy of each

multiprocessor is 100%.

4.6 Evaluation and comparison

In this section, the performance and energy consumption of different implementations of QUAD

evaluation core are studied. We choose the pricing of 1,000 European options with grid density factor

K1 = 400, 000 and grid size factor K2 = 10 as the benchmark. The typical K1 value of 400 produces

highly accurate results, but the reason for choosing a much larger value is to facilitate performance

analysis of the QUAD evaluation cores with a longer evaluation time. No matter what values of K1

or K2, the QUAD evaluation cores are still responsible for the computation bottleneck of option pric-

ing of the order N2m as shown in Table 4.2 or N2dm in multi-dimensional cases. Simpson’s rule is

preferable to the trapezoidal rule in our system as the error terms of Simpson’s rule decrease at a rate

66 Chapter 4. Accelerating Quadrature Methods for Option Valuation

void GPU_EvaluationCore()
{
 unique_thread_ID = Num of block * block_ ID + thread_ID_per_block
 THREAD_COUNT = Num of thread in a block * Num of block in a grid

for (i = unique_thread_ID ; i <N; i += THREAD_COUNT)
 evaluate partial integral on yi and Vi, and accumulate on local register;

 copy local register value to shared memory
 Synchronize with all other threads.

if (thread_ID_per_block==0) // the first thread in each block
Sum up all partial integrals from all threads in the same block.

 Synchronize with all other threads.
if (unique_thread_ID==0) // the main thread

Sum up all partial integrals from all the first threads in all blocks.
}

Figure 4.11: CUDA pseudo code for QUAD evaluation kernel.

of (δy)4 which produces more accurate results with the same hardware complexity. Therefore, Simp-

son’s rule is adopted for performance analysis. The performance and energy consumption analysis

for the pricing of 1-underlying, 2-underlying and 3-underlying assets European options are studied.

The FPGA and GPU implementations are compared to a reference software implementation. The

reference CPU is Intel Xeon W3505 2.53GHz dual-core processor. The software implementation is

written using C language. It is optimized with multi-threading using OpenMP API and compiled

using Intel compiler (icc) 11.1 with -O3 maximum speed optimization option and SSE enabled. Intel

Math Kernel Library is used. The targeted FPGA is Xilinx Virtex-4 xc4vlx160 in the RCHTX card.

The designs are compiled using DK5.1 and Xilinx ISE 9.2. The targeted GPU is nVidia Geforce

8600GT with 256MB of on board RAM and nVidia Tesla C1060 with 4GB of on board RAM. The

time measured for the GPU is the execution time of the evaluation kernel only. The time for copy-

ing the data from the main memory to the global memory of GPU is excluded. Similarly, the data

transfer time for copying the data from main memory to the block RAM of FPGA is excluded. The

performance figures obtained reflect the pure processing speed of the underlying devices only.

We measure the additional power consumption for computation (APCC) with a power measuring

setup involving multiple equipments. A FLUKE i30 current clamp is used to measure the additional

4.6. Evaluation and comparison 67

AC current in the live wire of the power cord during the computation. This current clamp has an

output sensitivity of S = 100mV/A in ±1mA resolution. The output of the clamp is measured

in mV scale by a Maplin N56FU digital multi-meter (DMM), collected through a USB connection

and logged with open source QtDMM software. APCC is defined as the power usage during the

computation time (run-time power) minus the power usage at idle time (static power). In other words,

APCC is the dynamic power consumption for that particular computation. Since the dynamic power

consumption fluctuates a little, we take the average value of dynamic power to be the APCC.

The additional energy consumption for computation (AECC) is defined by the following equation:

AECC = APCC× Total Computational Time. (4.16)

Therefore, AECC measures the actual additional energy consumed for that particular computation.

The summary of the performance comparison of 1D, 2D and 3D QUAD evaluation core is shown in

Table 4.7, Table 4.8 and Table 4.9.

Table 4.7: The performance and energy consumption comparison of different implementation of 1D
QUAD evaluation core. The Geforce 8600GT has 32 processors, the Tesla C1060 has 240 processors
and the Xeon W3505 has two processing cores.

FPGA GPU CPU
Virtex-4 xc4vlx160 Geforce 8600GT Tesla C1060 Xeon W3505

Technology 90nm 80nm 65nm 45nm
Release date Sep 2004 Apr 2007 Sep 2008 Mar 2009
Arithmetic single double single single double double
Clock Rate 100MHz 81.9MHz 1.35GHz 1.3GHz 1.3GHz 3.6GHz
Replicated cores 3 1 - - - -
Processing Speed (M values/sec) 300.0 81.9 114.4 546.5 288.7 65.3
Time for 109 values (s) 3.3 12.21 8.74 1.83 3.46 15.31
Acceleration (replicated cores) 4.59x 1.25x 1.75x 8.37x 4.42x 1x
APCC for 109 values (W) 4.18 3.3 40.55 102.00 99.00 23.60
AECC for 109 values (J) 13.93 40.29 354.42 186.64 342.92 361.30
Normalized energy efficiency 25.93x 8.97x 1.02x 1.94x 1.05x 1x

4.6.1 Performance Analysis

From the results of Table 4.7 for 1D case, it can be seen that the FPGA implementation on the

xc4vlx160 achieved 4.59 times acceleration using single-precision with 3 replicated QUAD cores,

68 Chapter 4. Accelerating Quadrature Methods for Option Valuation

Table 4.8: The comparison of different implementation of 2D QUAD evaluation core.

FPGA GPU CPU
Virtex-4 xc4vlx160 Geforce 8600GT Tesla C1060 Xeon W3505

Arithmetic single single single double double
Clock Rate 91.2MHz 1.35GHz 1.3GHz 1.3GHz 3.6GHz
Replicated cores 1 - - - -
Processing Speed (M values/sec) 91.20 95.50 509.60 284.40 50.82
Time for 109 values (s) 10.96 10.47 1.96 3.52 19.68
Acceleration 1.79x 1.88x 10.03x 5.60x 1x
APCC for 109 values (W) 2.64 37.02 91.00 83.00 21.16
AECC for 109 values (J) 28.95 387.64 178.57 291.84 416.37
Normalized energy efficiency 14.38x 1.07x 2.33x 1.43x 1x

Table 4.9: The comparison of different implementation of 3D QUAD evaluation core.

FPGA GPU CPU
Virtex-4 xc4vlx160 Geforce 8600GT Tesla C1060 Xeon W3505

Arithmetic single single single double double
Clock Rate 89.7MHz 1.35GHz 1.3GHz 1.3GHz 3.6GHz
Replicated cores 1 - - - -
Processing Speed (M values/sec) 89.70 81.70 489.20 272.80 33.69
Time for 109 values (s) 11.15 12.24 2.04 3.67 29.68
Acceleration 2.66x 2.43x 14.52x 8.10x 1x
APCC for 109 values (W) 3.08 38.74 91.00 87.00 19.8
AECC for 109 values (J) 34.34 474.17 186.02 318.91 587.71
Normalized energy efficiency 17.12x 1.24x 3.16x 1.84x 1x

and achieved 1.25 times acceleration using double-precision. For GPUs, a speedup of 1.75 times

is achieved by Geforce 8600GT and a speedup of 8.37 times is achieved by Tesla C1060 in single-

precision. In double-precision, the Tesla C1060 has shown a 4.42 times speedup over the reference

CPU, while there is no double-precision support in the Geforce 8600GT.

It would be fair to compare Virtex-4 FPGA with Geforce 8600GT GPU because of similar fabrication

technology. Xeon W3505 is selected to be a CPU reference because it represents the processing

power of most workstations and it has a similar architecture to the latest CPU. We included a set of

comparable devices - Virtex-4 FPGA, Geforce 8600GT GPU and Xeon W3505 CPU. We estimated

that Virtex-5 FPGA performs at least 4 times faster than Virtex-4 as Virtex-5 has 4 times more slices

than Virtex-4 and with higher clock frequency. We found that Tesla C1060 GPU is more than 4 times

faster than Geforce 8600GT from Table 4.7. We also estimate that the performance of the latest Intel

Core i7 CPU will be around 4 times faster than Xeon W3505 according to their number of cores and

frequency ratios.

4.6. Evaluation and comparison 69

From Table 4.8 and Table 4.9, it can be seen that the performance of xc4vlx160 FPGA in 2D and 3D

cases is not as good as in 1D case. The reason is that the xc4vlx160 FPGA is fully utilized in 1D case

with 3 replicated QUAD evaluation cores. However, only one QUAD evaluation core can be fitted in

the xc4vlx160 FPGA in 2D and 3D cases and there are many unused logic resources. From this point

of view, we can conclude that an algorithm with a smaller computation core is more suitable to FPGA

because it is easier to replicate multiple smaller computation cores to fully utilize the resources in the

FPGA. The worst scenario, like our 2D case, involves a computation core that consumes just above

50% FPGA resources; it precludes replication so possibly wasting resources.

Although complex algorithms can be implemented easily in FPGAs with HyperStreams, maximum

performance and utilization of FPGA resources is not guaranteed, as there is a tradeoff when using Hy-

perStreams between development time and the amount of acceleration that can be achieved. However,

our HyperStreams implementation still provides a satisfactory result with significant acceleration over

the software implementations. Therefore, HyperStreams is useful for producing prototypes rapidly to

explore the design space. Further optimization can be applied after a promising architecture is found.

Fixed-point implementations usually enable FPGA to achieve the best performance [70]. However,

it is not applicable to quadrature methods as the range of the numerical values spreads widely from

small size partial integral values to large size complete integral values.

4.6.2 Energy consumption analysis

Next, consider the energy efficiency of different devices. It is interesting to note that the xc4vlx160

FPGA demonstrates the greatest energy efficiency regardless of the technology differences. In single

dimension case, xc4vlx160 is 25.9 times more energy efficient than Xeon W3505, 25.4 times more

energy efficient than Geforce 8600GT, and 13.4 times more energy efficient than Tesla C1060.

Fig. 4.12 shows a scatter plot graph of the computation time versus the energy consumption (AECC)

of different devices implementing the 1D QUAD evaluation core. From this graph, the highest com-

putational performance is achieved using Tesla C1060 GPU and the lowest energy consumption is

achieved using xc4vlx160 FPGA. Therefore, Geforce 8600GT and Xeon W3504 are considered to

70 Chapter 4. Accelerating Quadrature Methods for Option Valuation

be inefficient for this application. Tesla C1060 and xc4vlx160 are the fastest and the most energy

efficient respectively for this application.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Time

Energy consumption

xc4vlx160

Tesla C1060

Geforce 8600GT

Xeon dual-core

Figure 4.12: The computational time and energy consumption relationship of different devices.

4.7 Summary

This chapter proposes a novel parallel architecture for hardware accelerated option pricing based

on quadrature methods. Our proposal includes a highly pipelined datapath capable of supporting

quadrature evaluation in parallel. We explore implementations for quadrature evaluation in FPGA

and GPU technologies. A tool is developed for automatic production of hardware designs with a

given number of dimensions.

The performance and energy consumption of FPGA and GPU implementations are compared against

each other and compared against a multi-threaded software implementation on a CPU. The results

show that FPGA implementation is 4.6 times faster than the CPU, 1.75 times faster than a GPU in

comparable technology and 1.8 times slower than the latest GPU. In addition, the FPGA is up to 25

times more energy efficient than a CPU and a GPU in comparable technology. The energy efficiency

of FPGA against other devices in multi-dimensional cases is similar to the 1D case.

There is no previous work nor previous performance result for this problem. The closest research

4.7. Summary 71

work is presented in [38], where a parallel hardware architecture is proposed to accelerate option

pricing based on explicit finite difference method. It uses a different CPU and a different compiler

as the base reference, but it uses the same GPU (Geforce 8600GT) and FPGA (XC4VLX160) as in

this chapter. It demonstrated a speedup of only 1.3 times using XC4VLX160 FPGA over Geforce

8600GT GPU. Therefore, our FPGA design using quadrature method (1.75 times faster than GPU)

achieved a better speedup than previous FPGA design using finite-difference method (1.3 times faster

than GPU) while both designs are based on lattice methods.

Chapter 5

Distributed Financial Computing in

Heterogeneous Cluster

5.1 Motivation

A multi-accelerator heterogeneous cluster is a cluster consists of multiple different types of acceler-

ators or computational devices (e.g. FPGAs and GPUs). It is very different from a homogeneous

cluster which consists of the same type of computational resources only (e.g. CPUs only). In the pre-

vious two chapters (Chapter 3 and Chapter 4), we presented the design and optimisation techniques

to use FPGA or GPU as accelerators for generic option pricing with both Monte-Carlo and lattice

methods. To further improve the option pricing performance, one may consider using all FPGAs

and GPUs as accelerators at the same time in a heterogeneous cluster to perform the computation

collaboratively. However, there are still some key challenges when building practical applications to

run collaboratively on a multi-accelerator heterogeneous cluster, such as the scalability of the system,

the diversity of programming models, tool chains and interfaces; and the difficulty in scheduling the

task according to the goal. In this chapter, we tried to address these challenges in Section 5.2 and

Section 5.3 when designing the heterogeneous framework.

Focusing our research on the Monte-Carlo (MC) simulation problems enables a better system opti-

mization in a domain specific way. A large Monte-Carlo simulation problem can also be sub-divided

72

5.2. Heterogeneous Framework 73

into smaller problems due to the associativity and commutativity nature of the Monte-Carlo simula-

tion. Therefore, we address the above challenges by designing a versatile distributed framework on

the heterogeneous cluster architecture targeted in Monte-Carlo problem domain. The main contribu-

tions of this chapter include:

• A scalable distributed Monte-Carlo framework for multi-accelerator heterogeneous clusters is

proposed. In this framework, various computational units including CPUs, GPUs and FPGAs

work collaboratively to share the workload in the simulation process. Each device is controlled

by a working process and communicate in a unified way.

• Various load balancing schemes are modeled and evaluated for the proposed framework. Dy-

namic runtime scheduling is enabled to improve the utilization efficiency of all available com-

puting resources in the system and to minimize the communication overhead.

• Two applications are developed and mapped in the proposed framework. The performance of

different dynamic scheduling policies in these practical examples is evaluated. The speed and

energy consumption trade-off of different accelerator allocations is discussed and analyzed with

the Efficient Allocation Line (EAL) approach.

In the chapter, Section 5.2 explains the details of our proposed distributed MC framework. Sec-

tion 5.3 presents the models and implementations of different dynamic scheduling policies. Sec-

tion 5.4 presents the implementation details of two applications (Asian-Option pricing and GARCH

asset simulation) using the proposed framework. Section 5.6 evaluates the measured results of these

two applications running on a cluster of accelerated computers. Different dynamic scheduling poli-

cies are compared and the speed and energy consumption trade-off between different accelerator

allocation policies is discussed. Finally, Section 5.7 summarizes our achievements and future work.

5.2 Heterogeneous Framework

There are three major concerns when we design the computing framework in a multi-accelerator

heterogeneous cluster, and they are:

74 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

• the scalability of the framework to handle more time consuming computation by adding addi-

tional hardware resources in a hierarchical way (Section 5.2.1),

• the flexibility of the framework for application programmers to use the original tool-chain of

the accelerators (Section 5.2.2),

• and the efficiency of the framework to allocate resources according to the performance goal are

the three major concerns of our distributed framework (Section 5.3).

Therefore, we designed our heterogeneous Monte-Carlo framework without creating another layer in

programming language level and without altering the original tool-chain of each type of accelerators

in order to provide the flexibility for the application programmer. The framework provides a unified

hierarchical model such that a Monte-Carlo simulation is divided into sub-tasks and distributed to the

lower layers recursively. It is highly scalable as a simulation task can be distributed across different

accelerators in a single server node, across different server nodes in a cluster or even across several

heterogeneous clusters. Extensible dynamic scheduling policies can be designed in the distributor

processes such that the sub-tasks can be allocated to the worker process based on the computational

performance or even energy consumption.

5.2.1 Overall hierarchy

The overall framework for distributed Monte-Carlo simulation on a multi-accelerator heterogeneous

cluster is shown in Fig. 5.1. There are two major processes in this framework: MC distributors and

MC workers. MC distributors wait for the Monte-Carlo parameters and task size as a form of MC

request from their parent MC distributor or from the user. The MC distributor then partitions the task

and distributes the sub-tasks to their child MC distributors or MC workers. No simulation is done

on the MC distributor. Their functionality is implied by their name – to distribute the Monte-Carlo

simulation tasks to their connecting child processes. Each MC worker is responsible for the execution

of part of the simulation. They pass the simulation parameters to the underlying “kernel” and get

the partial simulation result back from it. In a multi-accelerator environment, each “kernel” holds a

specific computational hardware resource such as FPGA, GPU or CPUs.

5.2. Heterogeneous Framework 75

Fig. 5.1 only shows a two layer MC distributor network. In fact, the framework is highly scalable

since there could be more than two and no upper limit for the number of layers of MC distributors.

Additional layers of MC distributors could be inserted between the user node and the cluster. For

example, when there are 3 heterogeneous clusters (A,B,C) from different organizations, they could

collaborate by inserting a layer of 3 MC distributors namely DA, DB and DC. The MC distributer at

the user node distributes the sub-tasks to DA, DB and DC. DA then further partitions and distributes

the sub-tasks to the MC distributors of the nodes in cluster A. Similarly for DB and DC.

MC distributor

MC distributor

MC
worker

FPGA
kernel

GPU
kernel

CPU
kernel

MC
worker

MC
worker

node 1 node 2 node N

user node

TCP/IP channel

IPC channel

Figure 5.1: The overall framework.

5.2.2 MC processes

The MC workers are the main simulation units. Fig. 5.2 shows the work flow of the MC worker. The

MC workers wait for the MC request (MC parameters and the task size), then forward the MC request

to their computation hardware (FPGA, GPU or CPUs) and execute the kernel via the hardware driver.

Therefore, the computation kernel can be optimised using the native tool-chain for each accelerator.

When the computation results are returned, the MC workers report them to their parent MC distributor.

The reported results include the aggregated simulation results and the actual completed task size by

the kernel. The actual completed task size could differ from the MC request due to hardware specific

constraints (e.g. number of cores and memory limit).

The MC distributors are key elements in the distributed Monte-Carlo framework. The work flow of

the MC distributor is shown in Fig. 5.3. The MC distributors wait for the MC request from their parent

76 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

Wait for MC request Wait for results
from kernel

Report results

Send MC request to
kernel (FPGA/GPU/CPU)

Figure 5.2: The work flow of MC workers.

process or user input, then they partition the MC request to several sub-tasks based on the scheduling

policy. The partial MC requests for those sub-tasks are then sent to the child MC distributors or MC

workers. When one of the child processes reports the partial results, the MC distributors aggregate the

results until the task is completed (the sum of reported task completion size = the required task size

in the MC request). When the task is not completed yet, the MC distributor adjusts the sub-task size

for the reporting process according to the scheduling policy. Another partial MC request is sent to

the reporting process with an updated sub-task size. When the task is completed, the MC distributors

report the aggregated result to the parent process (or user). The “task size” discussed here can be the

number of simulations, the number of particles or any form of computation tasks of that particular

Monte-Carlo simulation.

Wait for MC request Wait for results from
any worker

Aggregate result

Finish? NoYes
Report results

Send partial MC request
to the same worker

Adjust job size according
to scheduling policy

Send partial MC
request to all workers

Figure 5.3: The work flow of MC distributors.

The intra-node communication between MC distributor and MC workers within the same node is

realized by interprocess communication channel (IPC). The inter-node communication between MC

distributors of different nodes is realized by the TCP/IP channel with MPI as the session layer.

5.3. Scheduling Policies 77

5.3 Scheduling Policies

In a multi-accelerator heterogeneous cluster, the computational performance differs between different

nodes and between different accelerators of the same node as well. Improper task distribution could

lead to a drastic performance reduction.

For example, consider a node consisting of one FPGA and one CPU, and the processing speed of

FPGA and CPU is 1000 simulations per second and one simulation per second respectively. If 2000

simulations are required and the MC distributor simply distributes 1000 simulations to the MC worker

of FPGA and CPU equally at the beginning, the total execution time will be 1000 seconds and the

FPGA will be idle for 999 seconds. Such inefficient task allocation leads to poor performance and

imbalanced resource utilization. In contrast, if the MC distributor distributes one simulation to both

MC workers and distributes another one simulation to them after they reported the result, the execution

time is around 2 seconds computation time plus a large amount of message passing overhead and

latency between hardware and software.

For the above simple example, one may be able to determine the “optimal task distribution” by pilot

running the simulation in each of the devices and distribute the tasks according to their computational

performance (1000:1 in this case) provided that the computational time is deterministic for each ac-

celerator. However, such deterministic assumption is often invalid as many Monte-Carlo simulation

problems involve non-deterministic run-time (such as solving PDEs). The computation performance

for some devices (such as CPU) also depends heavily on the server status.

Therefore, the scheduling policy is a critical factor for the collaborative computing performance in a

multi-accelerator heterogeneous cluster. Our solution involves introducing one static and two dynamic

scheduling policies. The dynamic scheduling policies enable the task size allocated to the child

processes to grow adaptively according to their performance. The performance evaluation of these

policies will be discussed in Section 5.6. The initial task size for all child processes is defined as

TSinit. The task size for child i at the jth time of simulation is defined as TSi
j . Therefore, TSi

1 = TSinit

for all i. The remaining uncompleted task size of the MC distributor is defined as Rd. The updating

of Rd and aggregating of the returned results from MC workers are done by MC distributors before

78 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

and after each scheduling.

5.3.1 Constant-Size policy

The Constant-Size scheduling policy is the simplest form of static scheduling policy in which the task

size stays constant for each child at all times. The Constant-Size scheduling policy is defined as:

TSi
j+1 = min(TSi

j, Rd) (5.1)

The number of TSinit (TSi
1) is critical for constant-size scheduling policy. A small value of TSinit

might cause a large amount of message passing overhead. A large value of TSinit might cause the

slowest MC worker to affect the overall computation performance.

5.3.2 Linear-Incremental policy

The Linear-Incremental scheduling policy is defined as:

TSi
j+1 = min((TSi

j + c), Rd), (5.2)

where c is a constant. It is a dynamic scheduling policy which increases the task size of the MC worker

linearly. Eventually, the task size allocated for the faster child TSi1
j1 is larger than the slower child TSi2

j2

as j1 > j2. The task size allocated to each child will grow proportionally to their corresponding

processing rate slowly.

5.3.3 Exponential-Incremental policy

The Exponential-Incremental scheduling policy is defined as:

TSi
j+1 = min((TSi

j ×m), Rd), (5.3)

5.3. Scheduling Policies 79

where m is a constant. This dynamic scheduling policy increases the task size of the MC worker

exponentially with a factor of m. Similar to Linear-Incremental policy, the task size allocated for the

faster child will be larger than the slower child after a period of time. The task size allocated to the

child processed will grow proportionally to their processing rate at a much faster rate.

5.3.4 Throughput-Proportional policy

The Throughput-Proportional scheduling policy is defined as:

TSi
j+1 = min

((
Throughputi∑

Throughputi
× TSmax

)
, Rd

)
, (5.4)

where TSmax is a constant representing the maximum total task size for all MC workers. The

Throughputi is calculated by the computational throughput of that MC worker in its previous task.

It is defined as TSi/UsedTime. This dynamic scheduling policy aims at allocating the tasks propor-

tionally according to the worker’s computational throughput in the previous task.

5.3.5 Energy-Proportional policy

The Speed-Proportional scheduling policy is defined as:

TSi
j+1 = min

((
EnergyPerTaski

j∑
EnergyPerTaski

j

× TSmax

)
, Rd

)
, (5.5)

where TSmax is a constant representing the maximum total task size for all MC workers. The

EnergyPerTaski is calculated by the with the power times the used time of that MC worker in its pre-

vious task. It is defined as DynamicPoweri×UsedTime
TSi

j
. This dynamic scheduling policy aims at allocate the

tasks proportionally according to the worker’s computational energy such that each underlying worker

80 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

consumes the similar amount of energy. The dynamic power of MC worker i (DynamicPoweri) can

be determined with a power meter.

5.3.6 Other possible policies

Apart from the basic scheduling policies stated above, we can also employ a mixed scheduling policy,

such as using Linear-Incremental policy at the beginning and then change the policy to Constant-Size

after certain iteration. The scheduling policy in this framework is highly flexible and can be optimized

for any goal. It is up to the application engineer to design their own scheduling policies for their own

target. For example, If the energy usage of the MC worker can be profiled and fed back to the MC

distributor, an Energy-Equal scheduling policy can be defined such that each MC worker consumes

the same amount of computational energy. An energy-efficient MC worker keeps computing most of

the time, while a less energy-efficient MC worker will be idle occasionally to keep the same amount

of energy usage. The idle accelerators can therefore be used in another application.

5.4 Applications

We have implemented two applications in our proposed framework, namely

• Asian option pricing using control variate method,

• GARCH asset simulation.

5.4.1 Asian option pricing using control variate method

Arithmetic Asian options provide a payoff depending on the arithmetic average price of the underlying

during the option life-time. This averaging makes arithmetic Asian options cheaper and less sensitive

to market manipulation, but also means there is no closed-form solution for the pricing. The payoff

equation is shown in Section 2.1 as Equation 2.8.

5.5. FPGA and GPU designs 81

Monte-Carlo methods provide an accurate way to price Asian options, but have slow convergence, so

a huge number of simulations is needed. Therefore, arithmetic Asian options are perfect candidates

to be priced using a multi-accelerator heterogeneous cluster. In Chapter 3, we present the FPGA and

GPU accelerated designs of Asian option pricer based on control variate Monte-Carlo method. In this

chapter, we use Asian option pricer as an application in our presented multi-accelerator heterogeneous

cluster framework. The computing is performed by all FPGAs, GPUs and CPUs collaboratively in

the cluster.

5.4.2 GARCH asset simulation

Our second application is the simulation of GARCH volatility model. The volatility of an underlying

asset is not constant in reality. One solution is assuming a stochastic volatility such as GARCH

(1,1) model as presented in Section 2.1.3. We simulate the volatility in each time step according to

Equation 2.9 with an additional Gaussian random number generator and price an European option

accordingly.

5.5 FPGA and GPU designs

5.5.1 FPGA kernels

For both applications, we design the FPGA kernels as shown in Fig. 5.4. There are two main types

of components in the design: one or more identical Monte-Carlo cores, and a single shared Coordi-

nation Block (CB). The MC cores contain a Gaussian random number generator (GRNG) core and

a simulation core. The GRNG uses the piecewise linear generation method [107] which produces a

stream of 24-bit fixed-point random numbers, with a period of 2128.

The MC core in our Asian option pricing application is capable of generating random asset price

paths, calculating payoffs of the Asian option and European option, and accumulating the payoffs

and payoffs related statistical result. In other words, each MC core is capable of executing the MC

82 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

Coordination Block
(MC distributor)

GRNG core
Simulation core

MC core

MC request

MC core MC core MC core

Results

Figure 5.4: The hardware design of FPGA kernel.

part of CVMC Algorithm. Multiple identical MC cores are instantiated to make the maximum use of

the device. The required number of simulations is distributed equally to each MC core.

The MC core in our GARCH asset simulation application is responsible for the generation of random

numbers, simulation of the stochastic volatility movement, and simulation of the asset movement with

respect to the volatility.

The Coordination Block (CB) manages the MC cores, allowing them to work in parallel to price

the same option. The CB is also responsible for communicating with the host by accepting MC

request and reporting MC results. The Gaussian random number generators in MC cores are also

initialized by the CB. Different sequences of bits are connected to different Gaussian random number

generators as the random seeds. The CB can also be viewed as a MC distributor employing Constant-

Size scheduling policy. Constant-Size scheduling policy is the best choice as all MC cores finish the

computation in the exact same cycle.

The hardware architecture of the simulation core for GARCH asset simulation is shown in Fig. 5.5.

The grey boxes in Fig. 5.5 indicates the pipelined registers inserted to balance the number of pipeline

stages for all feedback updating loops for the stochastic volatility and asset prices.

Our FPGA kernels target a Xilinx xc5vlx330t FPGA chip on an Alpha Data ADM-XRC-5T2 card,

which contains 51,840 slices, 192 DSP48E and 324 BlockRAM units. We design our hardware

architectures for both applications manually in VHDL to maximize performance. The design is syn-

thesized, mapped, placed and routed using Xilinx ISE 10.1.03. Single precision floating point arith-

metic is used. The number of MC cores for Asian option pricing is 10. The number of MC cores

for GARCH asset simulation is 12. The summary of resource consumption for both applications is

5.5. FPGA and GPU designs 83

Sqr Sqr

Sqrt

W

sig eps v

a2

a3

Delay

a1

mu

Delay

Delay

sig’ eps’ v’

Figure 5.5: The hardware architecture of GARCH asset simulation core.

Table 5.1: xc5vlx330t FPGA resource consumption

Asian option pricing GARCH simulation
MC Cores 10 12
Resource Used % Used %
Slices 44,118 85% 37,205 71%
FFs 130,195 62% 118,261 57%
LUTs 79,587 38% 59,313 28%
RAM 10 3% 12 3%
DSP48Es 180 93% 192 100%

shown in Table 5.1.

5.5.2 GPU kernels

Graphics Processing Units (GPUs) have been used for acceleration in many application domains.

They are Single Instruction Multiple Data (SIMD) computing devices. Parallelizable tasks are exe-

cuted on the GPU as a “kernel” by a computation grid. The “kernel” is executed by all threads in

parallel with the same code, but on different sets of data.

The co-processing flow of GPUs provides a good match to our design framework. The MC request

84 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

containing MC parameters and task size is firstly copied to the GPU data memory. The MC results

are copied back to the memory of the MC worker after the execution of the GPU kernel.

We design our CUDA kernels for Asian options pricing and GARCH asset simulation using two

procedures, namely Gaussian random number generator procedure, and a path simulation procedure.

In the Gaussian random number generator procedure, uniform random numbers are first generated

and stored in the GPU’s global memory space using the Mersenne Twister algorithm in parallel with

all threads. Then the uniform random numbers are transformed into Gaussian random numbers using

the Box-Muller method [110]. The memory space for storing Gaussian random numbers is allocated

by the MC worker once at the beginning. In our target implementation on nVidia Tesla C1060,

2GBytes are allocated, which can accommodate 512MBytes of single-precision Gaussian random

number. Such memory constraints may lead to the completed number of simulations to be less than

the requested number of simulations, which will be notified by the MC worker to its parent.

In the path simulation procedure of Asian option pricing, each thread simulates the price movement

path as in the CVMC Algorithm and computes the Asian and European option result in the shared

memory. In the path simulation procedure of GARCH asset simulation, each thread simulates the

volatility dynamics as in Equation 2.9 and updates the asset price accordingly.

5.5.3 CPU kernels

In both applications, we implement the CPU kernels in the C language and use the Intel Math Kernel

Library (MKL) for the random number generation. The Mersenne Twister algorithm is used as the

random number base and Box-Muller is used for Gaussian number transformation. The code is com-

piled with Intel compiler (icc) 11.1 with -O3 maximum speed optimization options and SSE enabled.

OpenMP is used to parallelize the computation with the multi-core capabilities of CPUs. The parallel

FOR #pragma directive is used to parallelize the main loop, so that loop iterations can be executed

in parallel using multiple CPUs.

5.6. Performance Evaluation 85

Table 5.2: Performance of Asian option pricing

FPGA GPU CPUs Collaboration Collaboration
(Upper bound) (Actual)

Brand Xilinx Nvidia AMD - -
Type Virtex-5 Tesla Phenom - -
Model xc5vlx330t C1060 9650 - -
Freq. 200MHz 1.3GHz 2.3GHz - -
Qty 1 1 2 1+1+2 1+1+2
Time 18.3s 25.5s 399.6s 10.4s 11.8s
Speedup 21.8x 15.7x 1x 38.4x 33.8x

5.6 Performance Evaluation

In this section, we evaluate the results of the two applications used in our framework. We investi-

gate the effect of different dynamic scheduling policies on the computational performance using the

Asian options pricing engine in Section 5.6.1. The performance, energy consumption and efficient

accelerator allocation will be discussed using the GARCH asset simulation example in Section 5.6.2.

We carry out our experiments on an accelerator cluster, which consists of 8 server nodes. Each server

node consists of two AMD Phenom 9650 Quad-Core 2.3GHz CPUs, one nVidia Tesla C1060 GPU

and one Xilinx Virtex-5 xc5vlx330t FPGA.

5.6.1 Dynamic scheduling analysis of a single node

The performance of different accelerator combinations for the pricing of an Asian call option is stud-

ied. The computational and load-balancing performance of different dynamic scheduling policies

is also presented. We choose a 10-year arithmetic Asian call option with parameters S0 = 100,

K = 105, v = 0.15, r = 0.1, T = 10 and steps = 365. The number of Monte-Carlo simulations is

10,000,000.

The performance comparison for the pricing of Asian option with individual accelerators and multi-

accelerator collaboration is shown in Table 5.2. The optimized multi-threaded CPU kernel executed

by two AMD Phenom 9650 quad-core CPUs is used as the comparison reference. It can be seen that

a speedup of 21.8 times is achieved by the xc5vlx330t FPGA. For the GPU, a speedup of 15.7 times

86 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

is achieved by the Tesla C1060. For the collaboration with FPGA, GPU and 2 CPUs, a speedup of

33.8 times is achieved using Linear-Incremental policy with TSinit = 1000.

The collaborative computation time results of using FPGA, GPU and CPU kernels in one node

with different scheduling policies are shown in Fig. 5.6. The Constant-Size, Linear-Incremental and

Exponential-Incremental policies are used in the MC distributor with different TSinit values. From

the figure, when TSinit is small, the Constant-Size policy suffers from large overhead and thus long

computation time. For large TSinit, all policies suffer from reduced performance due to the waiting of

the completion of the slowest kernel. The shortest computation time achieved is 11.8 seconds when

Linear-Incremental policy is used with TSinit = 1000, and it is used as the result for Table 5.2.

The theoretical upper bound of the collaborative computation time is defined by assuming no commu-

nication overhead between devices such that the aggregated throughput is the sum of the throughput

of each device. It is defined with the following equation:

ttc = (
∑

t−1
i)

−1
(5.6)

where ttc is the theoretical upper bound of the collaborative computation time, ti is the computation

time using device i. The theoretical upper bound of the collaborative computation time using all

computational devices is 10.4 seconds for the pricing of Asian option. In our experiments, our best

timing achieved is 11.8 seconds which is within 14% of the theoretical upper bound. This best timing

is achieved by using a Linear-Incremental scheduling policy. Linear-Incremental scheduling policy is

an example policy aiming at slowly increasing the allocated task sizes for the computing devices in or-

der to match their throughput ratio. Therefore, we expect that a collaborative computation time closer

to the theoretical upper bound could be achieved if the scheduling policy can be further optimised

such that the allocated task sizes can match the device throughput quicker and the communication

messages can be reduced.

In this Asian option pricing application, maximum performance is achieved when TSinit = 1000 un-

der Linear-Incremental policy. However, other applications may achieve the maximum performance

under different policy and with different variables. It is because each application has its particular

5.6. Performance Evaluation 87

10

100

1000

100 1000 10000 100000TS_init

Time (s)
Constant-size
Linear-incremental (c=TS_init)
Exponential-incremental (m=2)

Figure 5.6: The performance comparison for different scheduling policies.

set of parameters, and different communication overhead. Fig. 5.6 is just a demonstration of how the

performance can differ with different starting task size under different dynamic scheduling policies.

5.6.2 Performance, energy and efficiency analysis of accelerator allocation of

a cluster

Acceleration performance versus energy consumption is an important factor when considering the

efficiency of an accelerator. As a result, it is also one of the main concerns in our evaluation of the

proposed framework and we use the GARCH asset simulation application for the evaluation. We study

5 different methods for allocating computational devices in the cluster for collaborative computation:

• CPUs only: use two Phenom CPUs in each node

• FPGA only: use one xc5vlx330t FPGA in each node

• GPU only: use one Tesla C1060 GPU in each node

• FPGA and GPU: use one xc5vlx330t FPGA and one Tesla C1060 GPU together in each node

• FPGA, GPU and CPUs: use one xc5vls330t, one Tesla C1060 and two Phenom CPUs together

in each node

We measure the additional power consumption for computation (APCC) with a power monitor. APCC

is defined as the power usage during the computation time (run-time power) minus the power usage

88 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

Table 5.3: Performance of the GARCH asset simulation of different accelerators and number of
collaborative nodes

Using 2 CPUs per node only
Number of nodes 1 2 4 8
Time (ms) 1,162,725 660,687 360,129 162,018
APCC (W) 49 78 146 300
AECC (J) 56,973.53 51,533.58 52,587.83 48,605.40

Using FPGA per node only
Number of nodes 1 2 4 8
Time (ms) 38,969 19,691 10,458 5,418
APCC (W) 5 11 21 43
AECC (J) 194.85 216.60 219.62 232.97

Using GPU per node only
Number of nodes 1 2 4 8
Time (ms) 64,299 32,308 16,310 8,252
APCC (W) 97 192 350 676
AECC (J) 6237.00 6203.14 5708.50 5578.35

Using FPGA and GPU per node
Number of nodes 1 2 4 8
Time (ms) 24,706 12,822 6,825 3,636
APCC (W) 102 203 392 683
AECC (J) 2520.01 2602.86 2675.40 2483.40

Using both FPGA, GPU and 2 CPUs per node
Number of nodes 1 2 4 8
Time (ms) 24,595 12,884 7,167 4,391
APCC (W) 130 270 506 908
AECC (J) 3197.35 3478.68 3626.50 3987.03

at idle time (static power). The static power of each cluster node is approximately 210W. In other

words, APCC is the dynamic power consumption for that particular computation. The additional

energy consumption for computation (AECC) is defined by the following equation:

AECC = APCC× Total Computational Time. (5.7)

Therefore, AECC measures the actual additional energy consumed for that particular computation.

The speed and power consumption of the GARCH asset simulation for different accelerator combina-

tion in the multi-accelerator cluster is studied. The number of Monte-Carlo simulations is 100,000,000

and one asset is simulated. Linear-Incremental scheduling policy is employed on each MC distributor

of the cluster node with TSinit = 1000. Constant-Size scheduling policy is employed at the higher

5.6. Performance Evaluation 89

level MC distributor in the user node with TSinit = 100M, 50M, 25M and 12.5M for a cluster with

1, 2, 4 and 8 nodes. The computation time, APCC and AECC results are shown in Table 5.3.

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 8
Number of nodes

Time (ms) FPGA only
GPU only
FPGA+GPU
FPGA+GPU+2CPUs

Figure 5.7: The computation time of GARCH asset simulation.

As expected, an increase in the number of active nodes generally decreases the time for computation.

From the results, we can see that the cluster activating 8 FPGAs and 8 GPUs as MC worker processes

is the fastest (3.6s) even when compared with the cluster activating all 8 FPGAs, 8 GPUs and 16

CPUs as MC worker processes. This can be explained by the fact that activating CPUs as MC worker

processes decreases the system response time. Therefore, the computational performance gain of

using CPUs as MC worker processes is offset by the decrease in response time of the MC distributer

process, reducing the overall performance in this application. The cluster activating 8 xc5vlx330t

FPGAs and 8 Tesla C1060 GPUs is 44 times faster than the cluster activating 16 AMD Phenom 9650

CPUs. A graphical summary about the computational time is shown in Fig. 5.7.

The increased number of active nodes increases the APCC proportionally. However, the AECC re-

mains roughly the same level as the computation time is decreased proportionally at the same time.

We can see from the result that the cluster using a single FPGA has the lowest AECC. A graphical

summary about the AECC is shown in Fig. 5.8.

90 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

01000200030004000500060007000

1 2 4 8Number of nodes

AECC (J) FPGA onlyGPU onlyFPGA+GPUFPGA+GPU+2CPUs

Figure 5.8: The AECC of GARCH asset simulation.

We used an approach for identifying speed and energy efficient accelerator allocation, called Efficient

Allocation Line (EAL). A scatter plot graph is firstly constructed with the computation time versus

energy consumption for all accelerator allocation combinations. The EAL is then constructed by

drawing a line linking the leftmost and bottommost allocations. The allocations of computational

devices along the EAL are called “efficient” compared with the other allocations, as they are either

energy efficient (the lowest energy consumption at a given computational time budget), or speed

efficient (the lowest computational time at a given energy budget). In other words, the allocations of

computational devices along the EAL are the Pareto optimum points. Fig. 5.9 shows the computation

time versus the energy consumption (AECC) of different accelerator allocations for the GARCH asset

simulation in our 8-node cluster. The solid line is the EAL.

In this GARCH asset simulation application, FPGA is both faster and more energy efficient than the

other two computational devices (GPU and CPU). We can simply allocate as many FPGAs as possible

in the cluster. However, in the case of one accelerator is more speed efficient, but less energy efficient

than the others, identifying the optimized device allocation will be much more challenging. The EAL

can then be used for optimizing accelerator allocation. A dynamic scheduling policy based on the

EAL could also be developed such that it allocates the tasks to the accelerators based on a certain

energy budget or time budget which can vary during run time.

5.7. Summary 91

024
6810

121416
1820

100 1000 10000
4f
8f 8f8g 4f4g8c 8g2f2g4c 4g2f

Energy consumption (J)

Time (s)

8f8g16c4f4g
2f2g

Figure 5.9: The computation time and energy consumption for GARCH asset simulation in our clus-
ter. The solid line is the Efficient Allocation Line (EAL). 2f2g4c denotes a design with 2 FPGAs, 2
GPUs and 4 CPUs.

5.7 Summary

In this chapter, we propose a dynamic scheduling Monte-Carlo framework for collaborative com-

putation in a multi-accelerator heterogeneous cluster. The load balancing process is automated by

employing dynamic scheduling policies using the proposed framework. The framework is scalable

and extensible for a variety of dynamic scheduling policies. We have shown that the proposed frame-

work is viable by mapping two applications involving financial computation.

From our results, the overall performance of a Monte-Carlo simulation can be improved by allowing

heterogeneous accelerators to work collaboratively. We explore different schemes of scheduling the

workloads to the processing units to better utilize the computing resources. We also explore the speed

and energy consumption trade-off for different accelerator allocation, and we propose the Efficient

Allocation Line (EAL) as a method to identify the most efficient accelerator allocations.

We shows that pricing an Asian option using an FPGA, a GPU and two CPUs collaboratively on a

single node under our proposed framework is 33.8 times faster than using two CPUs only. We also

shows that a cluster using 8 FPGAs and 8 GPUs is 44 times faster than a cluster using 16 CPUs for the

92 Chapter 5. Distributed Financial Computing in Heterogeneous Cluster

GARCH asset simulation problem under our proposed framework. There is no comparable related

work or related performance result as we known. The closest application is a N-body simulation

problem described in [94]. They demonstrated that a cluster using 16 FPGAs and 16 GPUs is 22

times faster than a cluster using 32 CPUs in a N-body simulation using manual task partitioning. They

used the same types and same ratio of accelerators as in this chapter. We shows that we can achieve

a better speedup figure (44 times faster) than them (22 times faster) using our proposed dynamic

task partitioning and scheduling scheme. However, N-body simulation and Monte-Carlo simulation

are two different types of problem and should not be compared directly. Another related work on

multi-accelerator heterogeneous cluster is the Quadro Plex (QP) Cluster presented in [93]. Their

cluster consists of both FPGAs and GPUs but there is no application performed using collaborative

computing. A cosmology data analysis application running on 8 FPGAs is 6.3 times faster than 8

CPUs in their cluster.

Chapter 6

Optimising Performance of Monte-Carlo

Methods with Mixed Precision

6.1 Motivation

The ability to support customizable data-paths of different precisions is an important advantage of re-

configurable hardware. Reduced-precision data-paths usually have higher clock frequencies, consume

fewer resources and offer a higher degree of parallelism for a given amount of resources compared

with full precision data-paths. In Chapter 3, we presented the design and optimisation techniques

to use FPGA as an accelerator for option pricing with control variate Monte-Carlo method. In this

chapter, we aim at increasing the performance further by exploiting the precision flexibility of recon-

figurable hardware.

This chapter introduces a novel mixed precision methodology for accurate Monte-Carlo simulations.

The key difference between the proposed methodology and previous FPGA Monte-Carlo designs

lies in the way finite precision errors are handled. Instead of keeping the output error within certain

tolerance, the FPGA data-path is initially constructed with an aggressively reduced precision. This

produces a result with finite precision error exceeding a given error tolerance. An auxiliary sampling

process using both a high precision reference and the reduced precision is then used to correct the

error. The output accuracy of the proposed technique is not limited by the precision of the data-paths.

93

94 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

The proposed methodology can also exploit the synergy between different processors in a reconfig-

urable accelerator system. Reference precision computations required in the auxiliary sampling can

be carried out by a Central Processing Unit (CPU) in a host PC, while reduced precision computations

target customized data-paths on the FPGA. This allows different processors to work in precisions for

which they are specialised, leading to higher overall performance.

The major contributions of this chapter are:

• error analysis that separates finite precision error and sampling error for reduced precision

Monte-Carlo simulations, and a novel mixed precision methodology to correct finite precision

errors through auxiliary sampling (Section 6.2 and Section 6.3).

• techniques for partitioning workloads of different precisions for auxiliary sampling to a recon-

figurable accelerator system consisting of FPGA(s) and CPU(s) (Section 6.4).

• optimisation method based on an analytical model for the execution time of a Monte-Carlo sim-

ulation on a reconfigurable accelerator system, and Mixed Integer Geometric Programming to

find optimal precision for the FPGA’s data-paths and optimal resource allocation (Section 6.5).

• evaluation of the proposed methodology using four case studies, with performance gains of 2.9

to 7.1 times speedup over FPGA only designs using double precision arithmetic. The mixed

precision designs are also 44 to 106 times faster and 41 to 104 times more energy efficient

compared with software design on a quad-core CPU (Section 6.6 and 6.7).

6.2 Error Analysis

This section provides an error analysis for Monte-Carlo simulations. The total error εtotal of a Monte-

Carlo simulation can be divided into two components: Sampling error εS and finite precision error

εfin. Sampling error εS is the error due to having a finite number of samplings and finite precision error

εfin is due to non-exact arithmetic. The finite precision error εfin is accumulated in a datapath due to

truncating or rounding of the number representation after each operation. It is assumed that when a

6.2. Error Analysis 95

sufficiently accurate precision, such as IEEE-754 double precision, is used, the finite precision error

is negligible. We call this value the reference precision. Let us recall some background knowledge

from Chapter 2, Section 2.2.1 and begin with sampling error. For a sequence of mutually independent,

identically distributed random variables, Xi from a MC simulation, If, SumN =
∑N

i=1 Xi, and the

expected value, I , exists, the Weak Law of Large Numbers states that if p(x) is the probability of x,

for ε > 0, the approximation approaches the mean for large N [46],

lim
N→∞

p

(
|SumN

N
− I| > ε

)
= 0 (6.1)

Moreover, if the variance σ2 exists, the Central Limit Theorem states that for every fixed a,

lim
N→∞

p

(
SumN −NI

σ
√

N
< a

)
=

1√
2π

∫ a

−∞
e−z2/2dz (6.2)

that is, the distribution of the standard error is normal.

In practice, we must deal with finite N . If the sampling function f represents a mathematical expres-

sion defining the quantity being sampled, ~xi is the input vector of length s from a uniform distribution

1 [0, 1)s, N is the number of sample points and 〈fH〉N is the sampled mean value of the quantity, the

conventional MC sampling process2 can form an approximation to I ,

I ≈ 〈fH〉N =
1

N

N∑
i=1

fH(~xi) (6.3)

Thus a sampling error εS(〈fH〉N) = I−〈fH〉N with approximately normal distribution is introduced:

εS(〈fH〉N) ∼ N (0, σ2
fH

/N) (6.4)

Equation 6.4 shows that the bound of the sampling error can be constructed as a confidence interval.

Given the same confidence level, the interval is proportional to the standard deviation of the sam-

1Some MC simulations require non-uniformly distributed ~x values, for example in many option pricing simulations
normally distributed ~xi are required.

2Throughout the chapter, we use the subscript H and L to denote quantities evaluated with the reference precision
arithmetic and the reduced precision arithmetic respectively. We use 〈X〉 to denote the sampled mean value of a random
variable X and 〈X〉N to denote the sampled mean value of X calculated by N samples.

96 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

0

100

200

300

400

500

600

700

5.4 5.6 5.8 6 6.2 6.4

fr
eq

u
en

cy

s12e8

double precision

mean finite
precision error

Ir I

Figure 6.1: Distribution of 10k runs of a reduced precision and a double precision Monte-Carlo.

pling function, σfH
, and inversely proportional to the square root of the number of sample points,

N . Hence quadrupling the number of sample points halves the confidence interval of the sampling

error εS(〈fH〉N). We assume there is no precision error associated with the sampling error. In FPGA

designs, the sampling function f is usually evaluated using a low reduced precision, fL, compared to

the high reference precision, fH . The reduced precision design is smaller and faster, at the expense of

higher error. However, reduced precision increases the error. We call the difference between a refer-

ence precision computation and a reduced precision computation, fH(x)− fL(x), the finite precision

error.

6.3 Mixed precision methodology

Our novel mixed precision methodology is motivated by two ideas. First, we can correct the finite

precision error when both its magnitude and sign are known. Second, in Monte-Carlo simulations,

we are only interested in the finite precision error in the final result but not the finite precision errors

of individual sample points.

When a reduced precision data-path is used in a Monte-Carlo simulation, the reduced precision ex-

pected value Ir is approximated by the following equation, where NL is the number of sample points:

6.3. Mixed precision methodology 97

Ir ≈ 〈fL〉NL
=

1

NL

NL∑
i=1

fL(~xi) (6.5)

Due to the effect of finite precision error, the reduced precision sample mean 〈fL〉N cannot be used to

approximate the expected value I directly as I might not equal to Ir. We define the difference of the

two expected means as the mean finite precision error, µεfin
, where

µεfin
= I − Ir (6.6)

Figure 6.1 shows the distributions of Monte-Carlo simulations using a reduced precision (s12e8) data-

path and a double precision data-path of for pricing Asian options. The reduced precision floating

operators are from Xilinx core generator which employs round-to-nearest rounding mode. In each

MC simulation, N = 32,768 sample points are used and each of the reduced and double precision

MC simulation is repeated for 10,000 times with different random seeds. As shown in the figure, the

magnitude of the mean finite precision error µεfin
between the expected value of I and Ir is significant.

The error bound of an MC simulation using this reduced precision data-path would be at least 2µεfin
,

and cannot be improved by increasing the number of sample points. This is the fundamental limit of

conventional reduced precision MC simulations.

To find both the magnitude and the signs of the mean finite precision error µεfin
, we define an auxiliary

sampling function fa(~x):

fa(~x) = fH(~x)− fL(~x) = εfin(~x) (6.7)

where εfin is the finite precision error for each ~x. Therefore, with an sufficient large sample size Na,

we can approximate the mean finite precision error µεfin
:

µεfin
≈ 〈fa〉Na =

1

Na

Na∑
i=1

fa(~xi) (6.8)

98 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

The sampling error of this auxiliary sampling εS(〈fa〉Na) = µεfin
− 〈fa〉Na is approximately normal

distributed:

εS(〈fa〉Na) ∼ N (0, σ2
fa

/Na) (6.9)

Finally, we can approximate the true mean I by two sets of sampling:

Imixed = 〈fL〉NL
+ 〈fa〉Na (6.10)

E(Imixed) = E(〈fL〉NL
) + E(〈fa〉Na)

= Ir + (I − Ir) = I (6.11)

As shown in Equation 6.11, the expected value of the auxiliary sampling is I − Ir. Hence the ex-

pected mean of the mixed precision approximation Imixed is exactly the same as the expected mean I

computed in reference precision. Equation 6.10 can thus be viewed as the reduced precision sample

mean plus the correction for the mean finite precision error.

Since two samplings are used in the proposed mixed precision methodology, there are two sampling

errors in the result and they can be found using Equation 6.13 and 6.14. As both sampling errors

are approximately normally distributed, their sum is also approximately normally distributed and has

a variance equal to the sum of their individual variances as shown in Equation 6.15 if two sets of

uncorrelated random numbers are used. By using the proposed mixed precision methodology, we

effectively replace the finite precision error of reduced precision data-paths by the sampling error of

the auxiliary sampling. A confidence interval can also be constructed using the combined variance.

εS(Imixed) = εS(〈fL〉NL
) + εS(〈fa〉Na) (6.12)

εS(〈fL〉NL
) ∼ N (0, σ2

fL
/NL) (6.13)

εS(〈fa〉Na) ∼ N (0, σ2
fa

/Na) (6.14)

εS(Imixed) ∼ N (0, σ2
fL

/NL + σ2
fa

/Na) (6.15)

Although the proposed mixed precision methodology is analysed mathematically, we also show its

6.3. Mixed precision methodology 99

0

100

200

300

400

500

600

700

5.85 5.9 5.95 6 6.05 6.1 6.15 6.2 6.25 6.3

fr
eq

u
en

cy
double precision
mixed precision

Figure 6.2: Distribution of 10k runs of a mixed precision and a double precision Monte-Carlo.

desired effect through experiments. Using Equation 6.15, we find that a mixed precision MC run

using a precision of s12e8 with Na = 1078 and NL = 33,773 should yield the same error as a double

precision sampling with N = 32,768. We repeat both the mixed precision and the double precision

MC for 10,000 times using different random seeds, and their distributions are shown in Fig. 6.2. Note

that both distributions have roughly the same variance and the same mean. The result agrees with our

mathematical model and no finite precision error exists between the double precision Monte-Carlo

and our mixed precision Monte-Carlo runs.

The proposed mixed precision methodology provides several advantages over previous FPGA de-

signs.

1. The final result is adjusted with an approximated mean finite precision error µεfin
. This is a

novel approach which enables us to obtain a probably more accurate result by adjusting the

reduced precision result instead of passively finding the error bound.

2. Since there are only sampling errors in the output, we can achieve a more accurate result by

increasing the number of sample points NL and Na.

3. The methodology is independent of the function f . Therefore, it could be applied to other

Monte-Carlo simulation problems directly without performing accuracy analysis of the func-

tion.

Although the proposed mixed precision methodology enables us to aggressively exploit reduced pre-

100 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

cision data-paths while maintaining the accuracy of the final result using auxiliary sampling, each

auxiliary sampling still requires a costly evaluation of the sampling function f at the reference preci-

sion.

The effectiveness of the proposed technique depends heavily on how resources are allocated among

the reduced precision hardware and auxiliary sampling hardware. To find the optimal resource al-

location, we should consider a number of factors such as the cost of evaluating fL and fH , the area

available on the FPGA, the bandwidth between the FPGA and CPU, and the reduced precision values

being used.

In the next section, we propose different schemes for partitioning workloads. An analytical model

is developed in Section 6.5 based on the partitioning schemes which enables us to find the optimal

resource allocation and optimal reduced precision using mixed integer geometric programming.

6.4 Workload partitioning

Central Processing Units (CPUs) are optimised for standard precisions such as IEEE-754 single/double

precision. CPUs can also employ reduced precision via multiple precision software libraries such as

MPFR [111]. Multiple standard precision instructions are required to complete a reduced precision

computation even if the reduced precision format has a smaller wordlength. Hence, it is usually not

cost effective to use CPUs for reduced precision computations. On the other hand, FPGA data-paths

are customizable. Lower precision are usually preferred over higher precision ones because they usu-

ally have higher clock frequency, consume less resources and allow higher degrees of parallelism

given the same amount of resources. It is thus better to perform reduced precision computations on

the FPGA and leave reference precision computations to the CPU.

Since the sampling of 〈fL〉NL
involves only reduced precision evaluations of f , we assume it is

achieved by using reduced precision sampling data-paths on FPGA as shown in figure 6.3. A seed

is fed into the random number generator from the CPU. The random numbers are converted into the

reduced precision format and scaled to the sampling domain. Although only a small fraction of bits

generated by the RNG are used in reduced precision sampling, we keep the bit-width of the RNG the

6.4. Workload partitioning 101

RNGprecision conversion& scalingf evaluator(reduced precision)
reference precision accumulator

seedfrom CPU

fL datapathaccumulated resultto CPUΣfL
fLconvert toreference precision

Figure 6.3: Reduced precision sampling data-path.

same as that for reference precision sampling. The scaled random number is then evaluated by the

reduced precision sampling function evaluator. The accumulation is performed in reference precision

to avoid lost of accuracy due to insufficient dynamic range in the accumulator. Finally, the accumu-

lated result is sent back to the CPU. Multiple reduced precision sampling data-paths can be used with

different seeds, and the averaging of the final results is done in the CPU.

Figure 6.4 shows the workload partitioning of the auxiliary sampling. It consists of 4 main stages:

(1) random number generation, (2) evaluation of the sampling function f in reference and reduced

precision, (3) computing the difference e between fL and fH in reference precision, and (4) accumu-

late the difference. Since the auxiliary sampling is the process to figure out the mean finite precision

error (µεfin
) between the reduced and the reference precision data-paths under the same set of random

inputs, we decided to implement the random number generator using the FPGA and sent results back

to the CPU. This method utilise highly efficient RNG generation on FPGAs since they are usually an

102 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed PrecisionRNGprecision conversion& scalingf evaluator(reduced precision)
seedfrom CPU

fLconvert toreference precision f evaluator(reference precision)
precision conversion& scaling

subtractoraccumulatorfaΣfa
fHCPU

FPGAXL XH

Figure 6.4: Workload partitioning of the auxiliary sampling. Operations in CPU are shaded.

order of magnitudes faster than CPU based RNGs [112]. The trade-off for this partitioning method

is the increased bandwidth. For each sample point of the auxiliary sampling, we need to transfer s

reference precision random numbers and one reference precision evaluation result from the FPGA to

the CPU where s is the dimension of the sampling function.

6.5 Mixed precision optimisation

In this section, we develop analytical models for determining the required execution time of the pro-

posed mixed precision method on a reconfigurable accelerator system. Figure 6.5 shows the system

architecture for the reconfigurable system in our analytical model. The CPU is connected to an I/O

hub (i.e. North Bridge) through a high bandwidth communication channel such as the Intel QPI or the

AMD HyperTransport link. The FPGAs are connected to the I/O hub through another bus, usually

PCI express. Thus communication between the CPU and the FPGA has to pass through the two kinds

of communication link.

6.5. Mixed precision optimisation 103

Table 6.1: Parameters in our analytical model.

Problem parameters
σtol output error tolerance, in terms of standard deviation of the output
s dimension of the sampling function

σfL standard deviation of reduced precision sampling
σfa

standard deviation of auxiliary sampling
L the reduced precision data format, denoted as sAeB where A is the number of significand (mantissa)

bits and B is the number of exponent bits
Resource allocation parameters

pL ∈ Z number of reduced precision sampling data-paths
paux ∈ R effective number of auxiliary sampling data-paths

FPGA parameters (for each FPGA)
Atotal total available area
Acom cost of communication infrastructure
RS slack ratio

freq clock frequency
c number of clock cycles to compute a sample point

Ared cost of a reduced precision sampling data-paths as shown in figure 6.3
Aaux cost of auxiliary sampling data-path

CPU parameters
Taux time required to compute a sample point

System parameters
Ncore number of cores in each CPU
Ncpu number of CPUs in the system
Nfpga number of FPGAs in the system
BWcpu bandwidth between the CPU and I/O the hub (in terms of number of reference precision data / sec)
BWfpga bandwidth between each FPGA and I/O the hub

Output
t time required for the system to get output with specific error tolerance

Table 6.1 shows the parameters in our analytical model. It should be noted that all FPGA cost re-

lated parameters such as Atotal and Ared should be applied to every kind of FPGA resource that is

involved. For example, there will be 4 different Atotal parameters for FPGA’s look up table (LUT),

registers, embedded DSP blocks and block memory respectively. Some other assumptions are made

in the model. First, we assume a fixed amount of FPGA resources is used for the communication

infrastructure between the FPGA and the I/O hub. Second, we assume the entire FPGA is running at

a single clock frequency. Finally, we assume that a certain percentage of the FPGA’s resource (the

slack ratio) is left intentionally unused to avoid over-congestion in placement and routing.

Since the aggregated throughput of the auxiliary sampling on CPU does not always match the through-

put of an auxiliary sampling data-path on the FPGA, we assume the effective number of auxiliary

sampling data-paths can take fractional values. For example, paux = 0.75 means there is one aux-

104 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

core

core

core

core

GPP

BWfpga

BWfpga

FPGA

FPGA

I/O hub

(north bridge)

BWgpp

BWgpp

core

core

core

core

GPP

Figure 6.5: System architecture of the reconfigurable accelerator system in our analytical model.

iliary sampling data-path on the FPGA but only 75% of its outputs are computed by the CPU. The

remaining 25% of the outputs are discarded.

Let THred and THaux be the aggregated throughput of reduced precision sampling and auxiliary

sampling of the entire system. Using Equation 6.15, the required execution time for the system to

produce an output with error equal to σtol can be found by Equation 6.16:

σ2
tol =

σ2
fL

t× THred

+
σ2

fa

t× THaux

=⇒

t =
σ2

fL

σ2
tol × THred

+
σ2

fa

σ2
tol × THaux

(6.16)

The aggregated throughput of the reduced precision sampling and the auxiliary sampling of all FPGAs

can be modelled as:

THred = Nfpga × pL × freq/c

THaux = Nfpga × paux × freq/c (6.17)

The execution time for the mixed precision methodology is:

t(pL, paux) =
c

σ2
tol ×Nfpga × freq

×
(

σ2
fL

pL

+
σ2

fa

paux

)
(6.18)

The following constraint should be applied to ensure the architecture described by the resource allo-

6.5. Mixed precision optimisation 105

cation parameters can fit within the FPGA. We round paux to the next larger integer. The constraint

(6.19) is transformed into two new constraints (6.20-6.21) using a new integer variable paux i to avoid

the ceiling function:

pL × Ared + dpauxe × Aaux ≤ Atotal × (1−RS)− Acom (6.19)

pL × Ared + paux i × Aaux ≤ Atotal × (1−RS)− Acom (6.20)

p−1
aux i × paux ≤ 1 (6.21)

The number of auxiliary samplings that each CPU can perform is Ncore/Taux and the aggregated

throughput of all CPUs is Ncpu × Ncores/Taux. Hence the effective number of auxiliary sampling

data-paths on each FPGA is constrained by the following equation:

Nfpga × paux × freq/c ≤ Ncpu ×Ncore/Taux (6.22)

One evaluated value of f and s random numbers must be sent every cycle to the CPU to complete the

subtraction and accumulation for each auxiliary sampling, hence the bandwidth constraints are:

paux × freq/c× (s + 1) ≤ BWfpga (6.23)

Ncore/Taux × (s + 1) ≤ BWcpu (6.24)

The optimal resource allocation among the reduced precision sampling and the auxiliary sampling

can be found by applying the following optimisation:

min
pL∈Z,paux∈R,paux i∈Z

t(pL, paux, paux i)

s.t. constraints (6.20)-(6.24) are satisfied

Since the objective function t(pL, paux) and all the constraints are posynomial, the optimisation can

be solved using mixed integer geometric programming (MIGP) [113]. The globally optimal pL, paux

106 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

values and the optimal precision can be found using enumeration from Algorithm 3, where Lmin and

Lmax are the minimum and maximum choice of reduced precision in the system respectively.

Algorithm 3 Enumeration process for optimal reduced precision and optimal resource allocation.
1: tglobal ← huge value
2: for L = Lmin → Lmax do
3: apply MIGP on t(pL, paux) for the minimum execution time tmin in precision L
4: if tmin < tglobal then
5: tglobal = tmin

6: paux(global) = paux, pL(global) = pL

7: end if
8: end for

6.6 Case studies

6.6.1 Asian option pricing

The first case study for our mixed precision methodology is an arithmetic Asian call option pricing

problem. It has no closed-form solution and the payoff is calculated based on the arithmetic mean of

the assets price at all observation points. The payoff equation of an arithmetic Asian call is shown in

Section 2.1 as Equation 2.8. In Chapter 3, we have already presented the FPGA accelerated designs

of Asian option pricer based on control variate Monte-Carlo method. In this chapter, we use an Asian

option pricer based on pure Monte-Carlo as an application using our mixed precision methodology.

The pricing algorithm of an Asian option based on pure Monte-Carlo is presented as Algorithm 2 in

Chapter 3.

6.6.2 The GARCH volatility model

Our second case study is for pricing of a fixed strike lookback call option under the GARCH model.

This option pays the owner max(Sceil − K) at maturity, where K is the strike price and Sceil is the

maximum day closing price of the underlying asset within the lifetime of the option.

6.6. Case studies 107

In the original Black-Scholes model, the volatility of an asset is assumed to be constant. However,

this assumption may not be realistic. A solution is to employ a stochastic volatility model such as

the generalised autoregressive conditional heteroskedasticity (GARCH) model proposed by Boller-

slev [114]. It is presented in Section 2.1.3 and the volatility σi in each time step i is simulated accord-

ing to Equation 2.9. with an additional Gaussian random number generator and price an European

option accordingly. The implementation of lookback option pricing is similar to the Asian option

pricer, except that drift and vsqrtdt are updated every time step with the updated σi. An additional

random number source is also required.

6.6.3 Numerical integration

Our last case study is multi-dimensional integral evaluation using the Monte-Carlo integration method.

Multi-dimensional integrals arise in many areas such as engineering, biology, chemistry and physics

modellings and they are not always solvable with analytical methods. Equation 6.25 shows multi-

dimensional integration where ai and bi are the lower and upper bounds of the integration domain of

the ith dimension. To evaluate the integral using Monte-Carlo simulation, random input vectors are

generated within the integration domain and the average value of the integration function f is sam-

pled. The approximated value for the integration value can be found by multiplying the average with

the hypercube V of the integration domain as shown in Equation 6.26. The Monte Carlo integration

method is preferable over quadrature based integration methods (Section 2.2.3) for high dimensional

integrals, because MC integrations always converge with a rate of O(1/
√

N) and the complexity of

MC integration does not increase exponentially as quadrature based numerical integration methods as

we described in Chapter 4. Typically, an integration with the number of dimensions larger than four

will be evaluated use Monte-Carlo integration.

I =

∫ b1

a1

dx1

∫ b2

a2

dx2 · · ·
∫ bn

an

dxnf(x1, x2, · · · xn) (6.25)

I ∼ V × 〈f〉

V =
n∏

i=1

(bi − ai) (6.26)

108 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

Table 6.2: Parameters of the current system and other hypothetical systems.

current I II III
Ncpu 1 8 1 1
Nfpga 1 1 4 8

BWcpu(GB/s) 2 2 4×2 8×2
BWfpga(GB/s) 2 8×2 2 2

We picked Genz’s “Discontinuous” multi-dimensional integral in this case study (6.27). It is a com-

mon test integral being used in evaluation of different numerical integration methods. In our tests we

use n = 8 as the dimension and an integration domain [0, 1)8. Fully parallelised designs are used in

our FPGA implementations and the data-paths can compute a single sample point per clock cycle,

with constants ci and wi:

fdis =

0 if x0 > w0 or x1 > w1

exp(
∑n

i=1(ci × xi)) otherwise
(6.27)

6.7 Evaluation

6.7.1 Reconfigurable accelerator system

We use the MaxWorkstation reconfigurable accelerator system from Maxeler Technologies for our

evaluation. It has a MAX3424A card with a Xilinx Virtex-6 SX475T FPGA. The card is connected

to an Intel i7-870 CPU through a PCI express link with a measured bandwidth of 2 GB/s. The Intel

CPU has 4 physical cores.

An important advantage of having an analytical model for our mixed precision methodology is that

system designers can predict the performance of a hypothetical system based on parameters of the

current system and the analytical model. Table 6.2 shows the parameters for our current system

and three hypothetical systems. The hypothetical systems are constructed in such a way that the

aggregated computational power of the FPGAs or the CPUs are 4 or 8 times higher than the current

system, and the bandwidth is scaled proportionally.

The Intel Compiler (ICC) and the Intel Math Kernel Library are used in our software implementations.

6.7. Evaluation 109

We use the SFMT random number generator and the Box-Muller transformation in the Intel Vector

Statistical Library (VSL) for the random number generation. Every effort has been made to ensure the

software implementations are optimised, and the comparisons are fair and accurate. For the FPGA

implementations, we use the MaxCompiler as our development system, which adopts a streaming

programming model similar to [115] and supports customisable data formats so that floating point

can be exploited with different precisions. All the FPGA results reported in this chapter are post place

and route results.

The error tolerance σtol of the three financial case studies is set to 2.5e-3 such that 99.99% (4σ) of

the time the error is less than a cent, given that the pricing is in dollars. For the numerical integration

case study, the tolerance is set to 2.5e-4 since most scientific applications require high accuracy.

6.7.2 Applying optimisation

There are a few steps to apply Algorithm 3 in Section 6.5 in order to use the proposed mixed precision

methodology optimally on a reconfigurable accelerator system. The first step is to find the system

parameters such as Ncore, Ncpu, Nfpga, BWcpu and BWfpga. These parameters can usually be found

in the specification of the reconfigurable accelerator system.

The second step is to collect application specific FPGA and CPU parameters. In the MaxCompiler

system, we describe the precision of the entire sampling data-path using a global variable and scripts

are used to automatically generate data-paths with varying number of significand bits. Figure 6.6

shows the place and routed result of reduced precision data-paths of the Asian option problem. It is

clearly shown that all the resource requirement increase with precision. Moreover, due to the function

approximator in the exponential function, the block memory usage increases exponentially with the

precision. The figure shows the Ared parameters of different precisions used in our model. Other

FPGA parameters such as the Aaux parameters can be found using a similar method. The cost of

communication infrastructure Acom is assumed to be constant. We also estimate the CPU parameter

Taux by writing a software benchmark program, which implements the data-flow in Figure 6.4 for

certain iterations, and the average time required for an iteration is used as Taux.

110 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

0

20

40

60

80

100

120

140

160

0

2000

4000

6000

8000

10000

12000

14000

16000

8 13 18 23 28 33 38 43

D
S

P
/

B
R

A
M

L
U

T
s

/ R
eg

is
te

rs

number of significand bits

LUT
REG
BRAM
DSP

Figure 6.6: Cost of reduced precision sampling data-paths of the Asian option problem.

The next step of using the proposed method is the estimation of the standard deviations for reduced

precision sampling, σfL
, and for auxiliary sampling, σfa . An FPGA bit-stream with auxiliary sam-

pling data-paths with different precisions is loaded and the results of the sampling function evalu-

ations in different reduced precisions are sent back to the host PC. Using these results and the ref-

erence precision sampling function evaluations result from the CPU. The two standard deviations

can be estimated using the two-pass algorithm on the host PC [116]. Figure 6.7 shows how the two

standard deviations change with different precisions in the Asian option problem, using the parame-

ters (S0 = K = 100, T = 1, v = 0.2, r = 0.05, steps = 360).

It is interesting to note that the standard deviation of the auxiliary sampling σfa decreases exponen-

tially with increasing precision. However the standard deviation of the reduced precision sampling

σfL
is low when the precision is low; it increases rapidly to reach a constant maximum value with

further increases in precision. The same pattern is also observed in the standard deviations of other

case studies. A possible explanation is that when the reduced precision is low, different values are

compressed to the same numerical representation and hence the standard deviation is reduced. The

standard deviation grows with reduced precision because there are more possible representations, and

will finally converge to a value where the value is the same as the standard deviation of the reference

6.7. Evaluation 111

1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01

1.E-02

1.E+00

1.E+02

8 18 28 38 48
number of significand bits

�fL�fa

Figure 6.7: The standard deviations of the reduced precision sampling and the auxiliary sampling
verse different precisions.

precision sampling (i.e. σfH
). The observed exponential reduction of σfa could be explained by the

fact that finite precision error decreases exponentially with the number of significand bits in floating

point formats.

Using parameters collected in the previous steps, we can apply geometric programming to find the

optimal precision and resource allocation. A major assumption of this flow is that the two standard

deviations do not change with input parameters (e.g. strike price of an option). If this assumption is

not valid, we can profile the common σfL
and σfa combinations and generate an optimal bit-stream

for each of these combinations. When the input parameters change, we profile the two standard

deviations again, run the geometric programming solver and load the bit-stream closest to the optimal

configuration.

It is important to note that the choice of error tolerance σtol affects the execution time of our mixed

precision methodology as shown in Equation 6.16. However, the optimal reduced precision and

resource allocation do not change with the error tolerance. Hence when a new error tolerance is

applied, we just update the required execution time according to Equation 6.16 – there is no need for

applying geometric programming again.

112 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

0

5

10

15

20

25

30

35

40

45

5.E-01

5.E+00

5.E+01

8 13 18 23 28 33 38

p
ar

al
le

lis
m

 (p
L

, p
au

x)

re
q

u
ir

ed
 e

xe
cu

ti
o

n
 t

im
e

(s
)

number of significand bits

execution time
pL
paux

optimal precision =
s12e8
required time =
0.65 seconds

Figure 6.8: Results of Asian option pricing versus different number of significand bits.

Table 6.3: Execution time, optimal reduced precision and the pL/paux ratio of the same Asian option
pricing under different system parameters.

current I II III
execution time (s) 0.65 0.65 0.19 0.09
optimal precision s12e8 s12e8 s15e8 s16e8
pL/paux 23.9 13 73.9 147.9

6.7.3 Performance: parallelism versus precision

Figure 6.8 shows the execution time and the degree of parallelism of the Asian option pricing problem

for different reduced precision in the current system as evaluated by our analytical model. The optimal

reduced precision in this benchmark is s12e8. The performance curve and the optimal point can be

explained by considering Figures 6.6 and 6.7. If the reduced precision is lower than the optimal one,

the auxiliary sampling error σfa is high, and more computations must be included. This will take a

longer time even though parallelism is increased due to smaller data-paths. If the reduced precision is

higher than the optimal one, the decrease of the auxiliary sampling error is marginal and cannot offset

the disadvantage of reduced parallelism.

6.7. Evaluation 113

We also investigate the relationship between the optimal reduced precision and system parameters.

Table 6.3 shows that when the aggregated FPGA computational power is increased (II and III), the

optimal reduced precision will increase because the system can perform more reduced precision sam-

pling (i.e. higher pL/paux ratio), and can thus afford a higher σfL
. Investing for higher aggregated

CPU computational power (I) seems to have marginal effect in this benchmark as the sampling error

in reduced precision already dominates the sampling error in the auxiliary sampling.

6.7.4 Comparison: CPU/FPGA double precision

Table 6.4 shows comparisons of the 3 MC case studies running on a CPU only system with double

precision arithmetic, an FPGA only system with double precision arithmetic, and a reconfigurable

accelerator system with our proposed mixed precision methodology. All designs are run for a specific

time such that the 3 systems have the same accuracy. As shown in the table, the mixed precision

methodology requires 5-11 % additional sample function evaluations but only 1-4 % of total eval-

uations are computed in reference precision. This clearly shows the trade-offs between number of

computations and the contribution of each computation in increasing the accuracy of the final re-

sult. Using the mixed precision methodology, we achieve 2.9 to 7.1 times speedup over the double

precision FPGA designs and 44 to 106 times speed up over the quad-core CPU designs.

We also compare the energy efficiency of the three settings. The average power consumption is

measured using a remote power measuring socket from Oslon R© electronics with an measuring interval

of 1 second. As shown in Table 6.4, although the mixed precision designs using both the FPGA

and the CPUs have the highest power consumption compared with the CPU only or the FPGA only

settings, they consume the least total energy to achieve the required accuracy because the execution

times are significantly reduced thanks to our technique for workload partitioning. Our mixed precision

methodology achieves 1.4 to 3.1 times energy saving compared with the FPGA only designs with

double precision, and 41 to 104 times energy saving compared with CPU only designs, while meeting

the same output accuracy requirement.

114 Chapter 6. Optimising Performance of Monte-Carlo Methods with Mixed Precision

Table 6.4: Comparison of MC simulations using CPU only system (SW), double precision FPGA
only system (FP) and mixed precision methodology using both CPU and FPGA (Mixed).

Asian option GARCH Numerical integration
SW FP Mixed SW FP Mixed SW FP Mixed

clock freq. (GHz) 2.93 0.175 0.1751 2.93 0.175 0.1751 2.93 0.175 0.161

num. of cores2 4 5 36/1.5 4 5 24/0.9 4 5 16/0.18
num. of fL evaluations (M) 0 0 12 0 0 321 0 0 2320
num. of fH evaluations (M) 11.3 11.3 0.47 317 317 11.6 2230 2230 26.8
num. of total evaluations (M) 11.3 11.3 12.5 317 317 333 2230 2230 2347
additional evaluation (%) - - 10.6 - - 4.8 - - 5.2
evaluations in reference precision (%) 100 100 3.8 100 100 3.5 100 100 1.1
execution time (sec.) 29 4.7 0.66 1560 131 26.6 95.8 2.6 0.9
normalised speedup 1x 6.2x 44x 1x 12x 59x 1x 37x 106x
mixed precision gain - 1x 7.1x - 1x 4.9x - 1x 2.9x
power consumption (W) 3 183 85 192 179 90 181 184 90 189
energy consumption (kJ)4 5.3 0.4 0.13 280 11.8 4.8 17.6 0.23 0.17
normalised energy 41x 3.1x 1x 58x 2.5x 1x 104x 1.4x 1x
1 Only the FPGA clock frequencies are reported and the 4 CPU cores are all running at 2.93 GHz.
2 For the mixed precision design, all the 4 CPU cores are used and the number of reduced precision

sampling and auxiliary sampling data-paths (pL/paux) are shown.
3 The idle power consumption of the system is 80W .
4 Energy consumption = power consumption × execution time.
5 The optimal precision of the 4 mixed precision designs is s12e8.

6.7.5 Comparison: GPU

We also compare our mixed precision methodology on reconfigurable accelerator system with a

graphical processor unit (GPU). Table 6.5 compares the execution time and power consumption of

our mixed precision methodology with a NVIDIA Tesla C2070 GPU in the Asian option pricing

problem. The GPU has 448 cores running at 1.15 GHz and has a peak double precision performance

of 515 GFlops. Using our mixed precision methodology, an Virtex-6 ST475X FPGA and an i7-870

CPU are able to out-perform the GPU by 4.6 times. We also achieved 5.5 times energy saving com-

pared with the GPU.

6.8 Summary

This chapter proposes a novel mixed precision methodology for Monte-Carlo simulation in reconfig-

urable accelerator systems. The methodology covers any Monte-Carlo applications and exploits the

6.8. Summary 115

Table 6.5: Comparison with CPU and GPU.

CPU
only

GPU
FPGA
only

FPGA
+
CPU

precision double double double mixed
execution time (s) 29 3 4.7 0.65
power (W) 183 236 85 192
energy (kJ) 5.3 0.71 0.4 0.13

normalised speedup 1x 9.7x 6.2x 44.6x
normalised energy 40.7x 5.5x 3.1x 1x

synergy between FPGA and CPU to produce results as accurate as users would require. An analyt-

ical model and an optimisation method is developed for locating the optimal precision and optimal

resource allocation. Experimental results on three realistic case studies show that auxiliary sampling

would only require 5 % to 11 % additional evaluations and less than 4 % of total evaluations are com-

puted in the reference precision (Table 6.4). We demonstrate that reconfigurable accelerator system

using our methodology can be up to 4.6 times faster than state-of-the-art GPU, 7.1 times faster than a

baseline FPGA design using double precision, and 106 times faster than optimised software running

on a quad-core CPU. It can also be up to 5.5 times more energy efficient than a GPU and 104 times

more energy efficient than a quad-core software design.

There is no comparable performance result from previous work for this novel mixed precision method-

ology. The closest previous work is in [16], where an FPGA accelerated Monte-Carlo simulation on

BGM interest rate model with optimised precision is presented and shows a speedup of 25 times over

a comparable CPU. Although the reference FPGA and CPU used in [16] are different from the refer-

ence FPGA and CPU used in this chapter, both works used a comparable set of FPGA and CPU at the

time of research and both works used precision optimisation techniques for a Monte-Carlo problem.

The speedup figure achieved in this chapter using our mixed precision methodology (106 times faster)

is far more than the speedup figure achieved in [16] (25 times faster).

Chapter 7

Optimising Performance of Quadrature

Methods with Reduced Precision

7.1 Motivation

Using quadrature methods to price a single simple option is fast and can typically be performed

in milliseconds on desktop computers. However, quadrature methods can become a computational

bottleneck, for example, when a huge number of complex options are being revalued overnight under

many different scenarios for risk management. Moreover, energy consumption of computation is a

major concern when the computation is performed 24 hours a day, 7 days a week.

In Chapter 4, we presented the design and optimisation techniques to use FPGA as an accelerator for

option pricing with quadrature method. In this chapter, we aim at increasing the performance and

energy efficiency further by exploiting the precision flexibility of reconfigurable hardware.

The ability to support customisable precision is an important advantage of reconfigurable hardware

as it could be exploited to provide additional speedup. The use of reduced precision affects the accu-

racy of the numerical results. However, with a higher throughput capacity using reduced precision,

the integration grid spacing could be reduced which might actually increase accuracy. This chapter

introduces a novel optimisation methodology for determining the optimal combination of operator

116

7.2. Optimisation Modeling 117

precision and integration grid spacing in order to maximize the performance of quadrature method on

reconfigurable hardware. The major contributions of this chapter include:

• optimisation modeling based on a step-by-step accuracy analysis and performance model. A

discrete moving barrier option pricer is used as an example to graphically illustrate the analysis

and to provide empirical evidence for the model (Section 7.2);

• a methodology and algorithms to determine the optimal mantissa bit-width and the integration

grid density for a given integration problem by finding the Pareto frontier satisfying the error

tolerance level (Section 7.3);

• case studies of two financial applications and one benchmark quadrature problem using the pro-

posed methodology, namely a discrete moving barrier option pricer, a 3-dimensional European

option pricer, and a discontinuous integration benchmark (Section 7.4);

• performance comparison of the optimised FPGA implementation versus GPU and CPU. Our

results show that the bit-width optimisation increases performance by around 4x, resulting in a

total speed-up over double-precision software of 15.1x while maintaining the same error level.

The optimised FPGA designs over a comparable GPU design is 1.2 times faster and 42.2 times

more energy efficient. (Section 7.5).

7.2 Optimisation Modeling

The proposed optimisation objective function is based on a step-by-step accuracy analysis and perfor-

mance modeling. A barrier option pricer is used as an example to illustrate the relationship between

accuracy, throughput, integration grid density and the precision of floating-point operations.

7.2.1 Accuracy Analysis

There are two sources of error affecting the “accuracy” of the integration result, namely integration

error εint and finite precision error εfin. The total error εtotal is a function of both error sources.

118 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

1.00E-02

1.00E-01

1.00E+00

1.00E+01

4 5 6 7 8 9 10 11 12

εrms

1.00E-05

1.00E-04

1.00E-03

1.00E-02

Density factor (df)

Figure 7.1: The εrms for different df at mw=53.

Integration error εint is the error due to having a finite number of integration points within an in-

tegration interval. Finite precision error εfin is the error due to non-exact floating-point arithmetic.

Floating-point number representation in computer has a finite significant bit-width. The rounding of

the intermediate or final result leads to precision loss. We define grid density factor df as a variable

which is inversely proportional to the integration grid spacing and we define mw as the width of the

mantissa (significant bits). Therefore, we have εint(df) and εfin(mw) respectively to represent their

relationships.

To measure εtotal(mw, df), the root-mean-squared error εrms(mw, df) comparing with a set of ref-

erence results is used as the proxy. The set of reference results are computed using a large value of

mw and df .

We investigate the result of εrms(mw, df) by computing a portfolio of 30 barrier options using dif-

ferent mantissa bit-width and density factor. The computed option values are compared with a set

of reference values using mw = 53 (double precision) and df = 20. Fig. 7.1 shows the graph of

εrms(53, df). We can see that the total error is decreasing with respect to df . One interesting ob-

servation is that the error decrease rapidly at the beginning and then decrease slowly after around

df = 5.8. One reason behind is that the function has discontinuous points, therefore a misalignment

of integration grid points lead to a large error. When the density increase, the effect of misalignment

7.2. Optimisation Modeling 119

1.00E-011.00E+001.00E+01 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
εrms

1.00E-051.00E-041.00E-031.00E-02
Mantissa bit-width (mw)

Figure 7.2: The εrms for different mw at df=12.

diminishes.

Fig. 7.2 shows the graph of εrms(mw, 12). This figure shows that with a sufficient large density factor,

the total error of the result decreases with increasing mantissa bit-width. In addition, this figure also

indicates that at df = 12, increasing mantissa bit-width for more than 33 would not increase the

accuracy significantly. It is because the εtotal is dominated by εint but not εfin after mw reached 33.

Therefore, using more than 33 bits of mantissa is consuming unnecessary resources.

Fig. 7.3 shows the contour plot of εrms(mw, df) at different error levels for the barrier option pricer

and provides an overview of the total error using different mw and df combinations.

7.2.2 Performance Modeling

The performance of the system is defined with the following equation:

φint(mw, df) =
φpt(mw)

Npt(df)
(7.1)

φint is the throughput in aggregated integrations per second per FPGA, φpt is the throughput in aggre-

gated number of integration points per second per FPGA and Npt is the number of integration points

per integration. Furthermore, we define pL as the degree of parallelism (number of replicated cores)

120 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

ε r
m

s

 4

 5

 6

 7

 8

 9

 10

 11

 12
 11 15 19 23 27 31 35 39 43 47 51

εrms < 10-4

εrms < 10-3

εrms < 10-2

εrms < 10-1

εrms < 100

df

mw

Figure 7.3: The contour plot of εrms of barrier option pricer for different mw and df .

and freq as the clock frequency of the FPGA. With multiple replicated and fully pipelined integration

cores running in parallel, φpt is defined as:

φpt(mw) = pL(mw) · freq (7.2)

because each core can process one integration point per clock cycle. φpt and pL is monotonically

decreasing with mw. A higher mw leads to a larger core, so fewer cores will fit in the FPGA, reducing

degree of parallelism pL and lower aggregated integration points throughput φpt. φpt is also monoton-

ically decreasing with df , as a higher df leads to more integration points per integration Npt and less

integrations could be computed per second. Therefore, we have the following inequalities:

φint(mwx , df) ≥ φint(mwy , df),∀mwx < mwy (7.3)

φint(mw, dfx) ≥ φint(mw, dfy),∀dfx < dfy (7.4)

7.2. Optimisation Modeling 121

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

throughput (φint)

df

mw

throughput (φint)

Figure 7.4: The aggregated FPGA throughput.

Fig. 7.4 shows the 3D graph of aggregated FPGA throughput φint(mw, df) of the barrier option pricer

which is consistent with the above inequalities.

7.2.3 Optimisation Objective Equation

Our objective is to determine the set of (mw, df) which produces the design with optimal performance

while maintaining the same level of accuracy. We define εtol as error tolerance level. With the results

from Equation 7.1 and 7.2, the following 2-dimensional optimisation problem can be formulated:

max
mw,df

(
pL(mw) · freq

Npt(df)

)
, mw ∈ Z+, df ∈ R+, εrms(mw, df) < εtol (7.5)

For example, Fig. 7.5 and Fig. 7.6 show the 3D plots of the optimisation result of barrier option pricer

at εtol = 10−4 and εtol = 10−3 respectively by using the result of Fig. 7.3 and Fig. 7.4. We can see

from the figures that the optimal aggregated throughputs are 350 and 1078 integrations per second.

The corresponding (mw, df) sets are (31,9.8) and (26,5.8).

122 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 50

 100

 150

 200

 250

 300

 350

throughput (φint)

df

mw

throughput (φint)

Figure 7.5: The aggregated FPGA throughput satisfying εrms(mw, df) < 10−4.

7.3 Optimisation Algorithm and Methodology

This section provides the algorithms and a systematic way to apply the precision optimisation tech-

nique for a quadrature problem. The optimisation algorithm uses the property that the throughput

of the integration decreases monotonically with respect to both mw and df as shown in inequalities

(7.3) and (7.4). The optimal throughput will only occur at the Pareto frontier points (Pareto set S)

of (mw, df) satisfying εrms < εtol and, therefore, it is not necessary to obtain the εrms values for

all (mw, df) combinations. Fig. 7.7 shows the Pareto frontier of a barrier option pricer and the cor-

responding throughput as an illustration. The point (mw, df) = (26, 5.8) is the optimal point as it

produced the maximum aggregated throughput with a high enough degree of parallelism and a low

enough number of grid points while satisfying the minimum accuracy requirement.

The detailed steps of our proposed one-pass optimisation process are:

1. Prepare a set of sample inputs.

2. Evaluate the results of the sample inputs as reference values.

7.3. Optimisation Algorithm and Methodology 123

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 200

 400

 600

 800

 1000

 1200

throughput (φint)

df

mw

throughput (φint)

Figure 7.6: The aggregated FPGA throughput satisfying εrms(mw, df) < 10−3.

3. Apply Algorithm 4 to obtain a Pareto set S.

4. Apply Algorithm 5 on S to obtain the optimal φint.

In step 2, we will typically use double precision (mw=53) and a sufficiently large df to obtain the

reference values such that the reference values are known to be accurate. In step 4, the algorithm

requires the values of function Npt(df) and pL(mw) in order to compute φint. The function Npt(df)

could easily be determined with the knowledge of the integration problem. The parameters pL can be

either obtained directly after the full FPGA implementation, or estimated using the resource usage of a

single core FPGA design. Fig. 7.8 shows our estimation of pL and the resource usage of a single-core

barrier option pricer.

The whole optimisation process is completely automated in our case studies by designing the hard-

ware implementation as a parametric template, with mw and pL as parameters. The hardware im-

plementations for different values of mw are generated, placed and routed automatically from the

template for the use of step 3 and 4.

124 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

Algorithm 4 Algorithm for obtaining Pareto set S
1: S ← ∅
2: for mw ∈ mmin

w ..mmax
w do do

3: perform binary search for min df s.t εrms(mw, df) < εtol

4: if found then
5: add tuple (mw, df) to S
6: end if
7: end for

Algorithm 5 Algorithm for determining the optimal precision and density factor
1: φmax ← 0
2: for (mw, df) ∈ S do do
3: if φint(mw, df) > φmax then
4: φmax ← φint(mw, df)
5: Soptimal ← (mw, df)
6: end if
7: end for

7.4 Case Studies

The hardware architectures of two financial applications and one benchmark integration problem are

designed. Simpson’s rule is used in all three case studies. The optimal combination of (mw, df) is

determined using the optimisation methodology and algorithms as described in the previous two sec-

tions with εtol = 10−3. As the range of the floating-point numbers is known to be small, the exponent

size of the floating-point operators is set to 8. The accumulation is performed in double precision

(mw = 53) to minimise the loss of accuracy due to insufficient dynamic range in the accumulator.

7.4.1 Discrete Moving Barrier Option pricer

The first case study is the pricing of discrete barrier options, which is a real-world pricing problem

for which there is no closed-form solution. The pricing equation of an barrier option using quadrature

methods is derived from the Black and Scholes partial differential equation [117]. For an option with

an underlying asset following geometric Brownian motion and having continuous dividend yield:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r −Dc)S

∂V

∂S
− rV = 0 (7.6)

7.4. Case Studies 125

600

800

1000

1200

8

9

10

11

12

13

Th
ro
ug

hp
ut

df
pareto frontier
throughput

optimal throughput = 1078

(m ,d) = (26, 5.8)

0

200

400

4

5

6

7

23 26 29 32 35 38 41 44

Th
ro
ug

hp
ut

mw
Pareto frontier line for εrms < 10^-3

(mw,df) = (26, 5.8)

Figure 7.7: The Pareto frontier line of barrier option pricer when εtol = 10−3.

where V (S, t) is the price of the option, S is the value of the underlying asset, t is time, r is risk-free

interest rate, σ is volatility of the underlying asset, K is exercise price, and Dc is continuous dividend

yield.

The following standard transformations

x = log(St/K), y = log(St+∆t/K)

give us the solution of V (x, t) as:

V (x, t) = A(x)

∫ +∞

−∞
E(x, y)V (y, t + ∆t)dy (7.7)

where

A(x) =
1√

2σ2π∆t
e(−kx/2)−(σ2k2∆t/8)−r∆t (7.8)

E(x, y) = e(yC2−(x−y)2C1), C1 =
1

2σ2∆t
, C2 =

2(r −Dc)− σ2

2σ2
(7.9)

Since C1 and C2 will not change during the whole pricing process, they can be precomputed in

software. Eq. (7.7) is the basic building block for quadrature option pricing. To price a down-and-out

126 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

30

40

50

60

6.00%

8.00%

10.00%

12.00%

14.00%

pL

Sin
gle

 co
re

ut
ilis

ati
on

LUTs
FFs
BRAMs
DSPs
pL

0

10

20

0.00%

2.00%

4.00%

6.00%

11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

Sin
gle

 co
re

ut
ilis

ati
on

mantissa bit-width (mw)
Figure 7.8: pL estimation and the single core resource utilisation of barrier option pricer.

discrete moving barrier option with m time steps and Bm as the barrier price at time step m, we define

the transformed position of bm as:

bm = log(Bm/K), (7.10)

then the option price Vm at time step m can be computed using the equation:

Vm(x, tm) ≈ A(x)

∫ ymaxm

yminm

E(x, y)Vm+1(y, tm+1)dy, (7.11)

where

ymaxm = x + 10σ
√

tm+1 − tm (7.12)

yminm = max(bm, x− 10σ
√

tm+1 − tm) (7.13)

The barrier option value is calculated iteratively backward from the expiry date to present date as

shown in Fig. 7.9. The main data-path for the hardware barrier core is shown in Fig. 7.10.

As the change of price exhibits a Brownian motion, the value of y fluctuates proportional to
√

∆t.

Therefore, the size of δy should also be defined proportional to
√

∆t. We define the grid density

factor df as
√

∆t
δy

. Using the methods from Section 7.3, the optimal (mw, df) is found to be (26,5.8).

7.4. Case Studies 127

V
V (S,T0)

T0 T1 T2 T3

Price

Time

0

M

N

Figure 7.9: The backward barrier option iteration process.

exp

cnt

Ii
Acc C1

0.5∆y

C2

xbnV

y

out

Figure 7.10: The hardware barrier option pricing core.

7.4.2 Multi-dimensional European Option pricer

The second application is a multi-dimensional European option pricer. The option pricing equation

with multiple underlying assets using quadrature methods is based on the multi-asset version of Black

and Scholes partial differential equation [39]:

∂V

∂t
+

1

2

d∑
i=1

d∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

+
d∑

i=1

(r −Di)Si
∂V

∂Si

− rV = 0 (7.14)

where r is the risk-free interest rate, d is the number of underlying assets, Si are the underlying asset

values, σi and Di are the corresponding volatilities and dividend yields, and ρij is the correlation

coefficient between underlying asset values Si and Sj . Note that |ρij| ≤ 1, ρii = 1 and ρij = ρji. We

128 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

make the logarithmic transformations

xi = log(Si), yi = log(Si)

to be the chosen nodes at t and t + ∆t. Let R be the matrix such that element R(i, j) = ρij .The

solution is:

V (x1, . . . , xd, t) = C

∫ +∞

−∞
. . .

∫ +∞

−∞
V (y1, . . . , yd, t + ∆t)

E(x1, . . . , xd, yi, . . . , yd)dy1 . . . dyd (7.15)

C = e−r∆t(2π∆t)−n/2(|R|)−1/2(σ1σ2 . . . σd)
−1, (7.16)

E(x1, . . . , xd, yi, . . . , yd) = exp(−1

2
αT R−1α), (7.17)

αi =
xi − yi + (r −Di − σ2

i

2
)∆t

σi(∆t)1/2
(7.18)

We define the grid density factor df as
√

∆t
δy

such that it is inversely proportional to the grid spacing.

The optimal (mw, df) is found to be (20,23).

7.4.3 Genz’s “Discontinuous” benchmark integral

Our last case study is Genz’s “Discontinuous” benchmark multi-dimensional integral(7.19). It is

a common test integral being used in evaluation of different numerical integration methods. This

benchmark integral has been used as an application in the mixed precision Monte-Carlo framework in

Chapter 6. In the tests in this chapter, we set the number of dimensions to four as a higher dimension

would be better handled using Monte-Carlo integration. The integration domain is [0, 1)4. Fully

parallelised designs are used in our FPGA implementations and the data-paths can compute a single

7.5. Result and Evaluation 129

sample point per clock cycle, with constants ci and wi:

I =

∫ ∫
· · ·

∫
fdis(x1, x2, · · · xn)dx1dx2 · · · dxn (7.19)

fdis =

0 if x0 > w0 or x1 > w1

exp(
∑n

i=1(ci × xi)) otherwise
(7.20)

In this problem, we define df = N since its grid density should depends on the number of grid points

only. The optimal (mw, df) is found to be (11,96).

7.5 Result and Evaluation

We use the MaxWorkstation reconfigurable accelerator system from Maxeler Technologies for our

evaluation. It has a MAX3424A card with a Xilinx Virtex-6 SX475T (xc6vsx475t) FPGA. The

xc6vsx475t FPGA has a total of 297,600 LUTs, 595,200 FFs, 1,064 DSPs and 2,016 BRAMs. We set

the target clock frequency at 100MHz (freq). The card is connected to an Intel i7-870 CPU through

a PCI express link with a measured bandwidth of 2 GB/s. The Intel CPU has 4 physical cores.

The Intel Compiler (ICC) is used in our software implementations with optimisation flag -fast and

SSE4.2 enabled. The software implementation is manually optimised in order to achieve the max-

imum throughput. Multiple processes are launched simultaneously in order to utilise all 4 physical

cores of the quad-core i7-870 CPU.

For the FPGA implementations, we use the MaxCompiler as our development system, which adopts

a streaming programming model similar to [115] and supports customisable data formats so that

floating-point calculations can be performed with different mantissa bit-widths. The hardware imple-

mentations are synthesized, placed and routed using Xilinx 13.1 ISE.

For the GPU performance result, we use NVIDIA Tesla C2070 GPU to measure the performance of

our 3-dimensional European option pricer. The GPU has 448 cores running at 1.15 GHz and has a

130 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

Table 7.1: Comparison of different applications using i7-870 quad-core CPU, NVIDIA Tesla C2070
GPU, double precision xc6vsx475t FPGA and reduced precision optimised xc6vsx475t FPGA.

Discrete barrier option 3D European option Genz’s benchmark
CPU FPGA CPU GPU FPGA CPU FPGA

arithmetic double double optimised double double double optimised double double optimised
clk freq. (GHz) 2.93 0.1 0.1 2.93 1.15 0.1 0.1 2.93 0.1 0.1
num. of cores 4 7 35 4 448 5 18 4 6 36
exec. time (sec.) 313 86.3 22.3 145 11.45 34.5 9.6 328.56 169.98 28.33
norm. speedup 1x 3.6x 14.0x 1x 12.7x 4.2x 15.1x 1x 1.9x 11.6x
opti. gain - 1x 3.9x - - 1x 3.6x - 1x 6.0x
APCC(W) 1,2 89 13 16 69 117 4 5 81 4 4
AECC(J) 3 27857.0 1121.9 356.8 10005.0 2026.7 138.1 48.0 26613.4 679.9 113.3
norm. energy 78.1x 3.1x 1x 208.4x 42.2x 2.9x 1x 234.9x 6x 1x

1 APCC = run-time power consumption - idle power consumption.
2 The idle power is 80W for FPGA and CPU system, and 154W for GPU system.
3 AECC = APCC × execution time.
4 In all applications, εtol = 10−3.

peak double precision performance of 515 GFlops.

The experiments are performed to compute a portfolio of 100 barrier options, a portfolio of 576 3D-

European options, and a set of 1120 Genz’s benchmark integrals.

7.5.1 Performance Comparison

Table 7.1 shows comparisons of the implementations running on a CPU with double precision arith-

metic, an FPGA with double precision arithmetic, and an FPGA with optimised precision using our

proposed methodology. The GPU result of the multi-dimensional European option pricer is also

presented. The computed results of all designs are all optimised for εtol = 10−3 and have the same ac-

curacy level. The measured execution time includes the data transfer time, which means the speedup

figures are measured end-to-end.

Using the reduced precision optimisation techniques with xc6vsx475t FPGA, we achieve 3.6 to

6.0 times speedup gain over the original double precision FPGA designs. These optimised FPGA

designs running on xc6vsx475t are 11.6 to 15.1 times faster than multi-threaded software designs

running on a quad-core Intel i7-870, and 1.2 times faster than a GPU design running on a Tesla

C2070.

7.6. Summary 131

7.5.2 Energy Comparison

We also compare the energy efficiency of the three applications on different devices. The average

power consumption is measured using a remote power measuring socket from Oslon R© electronics

with an measuring interval of 1 second. Additional power consumption for computation (APCC) is

defined as the power usage during the computation time (run-time power) minus the power usage at

idle time (static power). In other words, APCC is the dynamic power consumption for that particular

computation. Since the dynamic power consumption fluctuates a little, we take the average value

of dynamic power to be the APCC. The additional energy consumption for computation (AECC) is

defined by the following equation:

AECC = APCC× Total Computational Time. (7.21)

Therefore, AECC measures the actual additional energy consumed for that particular computation.

As shown in Table 7.1, the precision optimised FPGA designs demonstrate the greatest energy ef-

ficiency over both CPU and GPU. It is 78.1 - 234.9 times more energy efficient than Intel i7-870

quad-core CPU, and 42.2 times more energy efficient than Tesla C2070 GPU.

7.6 Summary

We presented a precision optimisation methodology for the generic quadrature method using reconfig-

urable hardware. Our novel methodology optimises the performance by considering both integration

grid density and mantissa bit-width of the floating-point operators. Increasing the integration grid

density reduces integration error but increases the required amount of computation, while increas-

ing the mantissa bit-width improves precision but decreases the computation speed, due to reduced

parallelism. Our proposed algorithm allows us to identify the optimal balance between the num-

ber of integration points and the precision of the floating-point operator, such that the throughput is

maximised while the accuracy remains in a given error tolerance level.

Our three case studies demonstrate that using our proposed optimisation methodology, the reduced

132 Chapter 7. Optimising Performance of Quadrature Methods with Reduced Precision

precision FPGA designs are up to 6 times faster than comparable FPGA designs with double precision

arithmetic. They are up to 15.1 times faster and 234.9 times more energy efficient than an i7-870

quad-core CPU, and are 1.2 times faster and 42.2 times more energy efficient than a Tesla C2070

GPU.

We are unable to compare this chapter with other previous works as there is no similar work which

accelerates quadrature methods in option pricing with reduced precision using FPGA. If we compare

this chapter with Chapter 4 which is about FPGA-accelerated option pricing using quadrature meth-

ods, we can see that the performance has been increased significantly using our reduced precision

methodology as the speedup of FPGA over a comparable CPU has been improved from 4.6 times to

15.1 times.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

The research in this thesis has contributed to reconfigurable financial computing and satisfied our three

main objectives: Generic architecture for derivatives pricing, Automated management and Precision

optimisation. There are three main achievements.

• First, we proposed novel reconfigurable designs for generic derivative pricing using both Monte-

Carlo and quadrature methods. Optimisation techniques such as control variate method and

automation of multi-dimensional designs generation are proposed and explored. Significant

speedups and energy savings are achieved using our reconfigurable designs over both CPU and

GPU.

• Second, we proposed a scalable distributed framework for financial computing on multi-accelerator

heterogeneous clusters. In this framework, different computational devices including FPGAs,

GPUs and CPUs work collaboratively on the same financial problem based on dynamic schedul-

ing policy. The speed and energy consumption trade-off of different accelerator allocation is

explored and analysed.

• Finally, we proposed a mixed precision methodology and a reduced precision methodology for

optimising the performance of Monte-Carlo and quadrature methods. These methodologies en-

133

134 Chapter 8. Conclusion and Future Work

able us to obtain the optimal throughput of the reconfigurable design by using reduced precision

datapath while maintaining the same accuracy of the results.

Table 8.1: Summary of the key results

Research Area Key results
Monte-Carlo Methods for
Option Valuation
(Chapter 3)

• The FPGA design under the proposed novel parallel hardware framework using
the control variate Monte-Carlo method for pricing exotic options is 24 and 2.4
times faster than comparable CPU and GPU designs.

• The FPGA design using control variate Monte-Carlo method is 2 times faster than
the FPGA design using pure Monte-Carlo method for a given accuracy. Therefore,
the reduced number of cores in FPGA for the control variate method is more than
compensated by the benefit of reduced variance.

Quadrature Methods for
Option Valuation
(Chapter 4)

• The FPGA design under the proposed novel parallel architecture using quadrature
methods is 4.6 and 1.8 times faster than comparable CPU and GPU designs.

• The FPGA design is up to 25 times more energy efficient than comparable CPU
and GPU implementations.

Distributed Financial
Computing in
Heterogeneous Cluster
(Chapter 5)

• Two applications are implemented using our proposed scalable framework on
multi-accelerator heterogeneous cluster with three sample dynamic policies. A
speedup of 33.8 times is achieved by using both FPGA, GPU and CPUs collabo-
ratively in one node of the multi-accelerator heterogeneous cluster.

• There is a trade-off between performance and energy consumption for different
accelerator allocations in a cluster. The Efficient Allocation Line (EAL) approach
can be used to determine the most efficient accelerator allocation for our given
objective.

Optimising Performance
of Monte-Carlo Methods
with Mixed Precision
(Chapter 6)

• A reconfigurable accelerator system using our proposed mixed precision method-
ology for Monte-Carlo simulation is 4.6 times faster than a comparable GPU sys-
tem, 7.1 times faster than an original FPGA system using double precision, and up
to 106 times faster than a software design running on a comparable CPU system.

• The mixed precision FPGA design is also 5.5 times more energy efficient than a
GPU design and 104 times more energy efficient than a software design running
on a quad-core CPU.

Optimising Performance
of Quadrature Methods
with Reduced Precision
(Chapter 7)

• The reduced precision FPGA designs using our proposed reduced precision opti-
misation methodology and technique are up to 1.2 times faster than a comparable
GPU design, 6 times faster than the original FPGA designs using double precision,
and 15.1 times faster than a software design running on a comparable CPU.

• The reduced precision FPGA design is also 42.2 times more energy efficient than a
GPU design and 234.9 times more energy efficient than a software design running
on a quad-core CPU.

The key results of each chapter in this thesis are summarised in Table 8.1. These results are impor-

tant for accelerating financial computing. Our designs, methodologies and techniques are available

to be applied in the financial industry to enhance computing throughput and reduce energy consump-

tion. Our experimental results also provide insights into the general comparisons of performance

8.2. Impact 135

and energy efficiency between different computational devices including FPGAs, GPUs and CPUs.

These comparison results are key consideration aspects for financial institutions to make decision on

designing their derivative pricing infrastructure.

8.2 Impact

There are three main impacts of this thesis. First, the reconfigurable designs of quadrature and Monte-

Carlo option pricers described in this thesis have an impact on satisfying the high computational

demand in the financial industry. Second, the optimisation techniques described in this thesis have

an impact on providing optimisation techniques of using reconfigurable hardware as accelerator in

financial applications. Lastly, the performance comparison results in this thesis have an impact on

determining the right combination of accelerators in financial applications.

8.2.1 Satisfying high computational demand in the financial industry

Financial institutions continually invent new financial products in order to satisfy the needs of differ-

ent investors as well as to diversify the risk. Many financial derivatives involve multiple underlying

assets. The computation complexity increases exponentially with the number of underlying assets

(i.e. the number of dimensions), finding ways to accelerate the option pricing computation becomes a

significant challenge. In order to calculate the overall risk exposure, thousands of computing servers

are required for financial institutions to test different risk scenarios. A huge amount of energy is

consumed by these computing servers and the corresponding cooling equipments. In 2010, it is esti-

mated that 41 million servers on the planet consumed around 18,118 billion kWh electricity each year

when the energy for associated cooling and power distribution is included [3]. Therefore, each addi-

tional computing server consumes 442 thousand kWh of electricity each year in average. Accelerate

financial computing in an energy efficient way is therefore one of our major goals.

It has been predicted that the performance of processors in 2024 will have only 7.9 times average

speedup over the processors in 2008 [7]. In Chapter 7, we shown that our FPGA design of quadra-

136 Chapter 8. Conclusion and Future Work

ture option pricer using reduced precision optimisation methodology is 15.1 times faster and 234.9

times more energy efficient than a software design running on a comparable CPU. This would be a

significant impact on the financial industry as it meets the high computation demand in the financial

industry in a much more energy efficient way even when comparing with the predicted processors in

2024.

8.2.2 Providing optimisation techniques in financial application domain

Moore’s Law [4] (the doubling of transistors on chip every 18 months) and Dennard scaling [5]

has been the fundamental drivers of computing technology for the previous years. Since the end of

Dennard scaling in 2005, processor designers have increased core counts to continue exploit Moore’s

Law scaling [6]. However, the increasing number of components on a chip, combined with decreasing

energy scaling, is leading to the phenomenon of “Dark Silicon” [7], where chips have a too high

power density to use all components at once. These challenges are changing the computer technology

to emphasize on efficiency, and are forcing chips to use multiple different components, each carefully

optimised to efficiently execute a particular type of task.

According to the Europe’s premier organisation for coordinating research - HiPEAC (European Net-

work of Excellence on High Performance and Embedded Architecture and Compilation), the solution

to improved energy efficiency is to use application-optimised processors and accelerators [8]. By

optimising these components for specific application, their energy efficiency can be increased by or-

ders of magnitude. Therefore, “efficiency” of heterogeneous computing systems is one of the major

research objectives in the roadmap of HiPEAC.

Optimisation techniques described in this thesis including the control-variate optimisation in Chap-

ter 3, the mixed precision optimisation in Chapter 6 and the reduced precision optimisation in Chap-

ter 7 are in line with the research roadmap of HiPEAC for enhancing the performance and energy

efficiency of FPGA as accelerators in financial applications. The performance of these optimisation

techniques is compared in detail with the original design in each of the chapter. These techniques

have an impact on designing and optimising energy efficient financial application when using recon-

8.3. Future Work 137

figurable hardware as accelerators in the future.

8.2.3 Determining the right combination of accelerators

According to the 2011/12 roadmap of HiPEAC (European Network of Excellence on High Perfor-

mance and Embedded Architecture and Compilation) [8], determining the right mix or choice of

processor and accelerators for a specific application domain in order to maximise the efficiency is one

of the major research goals for computing systems.

In this thesis, the performance comparisons between FPGA, GPU and CPU for different types of

financial applications including the use of quadrature and Monte-Carlo methods are presented which

enable us to determine the right choice of accelerators for different types of financial applications. In

addition, in Chapter 5, we proposed a methodology to dynamically partition and schedule the tasks

and so to select accelerators depending on the optimisation goal. Therefore, this thesis has an impact

on determining the right mix or choice of accelerators for financial applications, which is one of the

main future challenges in this era of changing technology of computing systems.

8.3 Future Work

8.3.1 Quadrature methods in other problem domain

Accelerating quadrature methods with reconfigurable hardware can be applied to other problem do-

main apart from option pricing. In Chapter 4 and 7, we presented the architectures and techniques of

hardware accelerated quadrature methods in option pricing. Similar architectures and techniques can

be applied on other applications if the computations can be expressed in an integral form. Some of the

possible applications include the solutions of electromagnetic problems [41], calculations involving

photon distribution [42] and modeling of credit risk [40].

138 Chapter 8. Conclusion and Future Work

8.3.2 Accelerating adaptive quadrature methods

Adaptive quadrature method is a process in which the integral of a function f(x) is approximated

using quadrature rules on adaptively refined subintervals of the integration range. Adaptive quadrature

methods are as efficient as traditional quadrature methods for “well-behaved” integrands, but are

also effective for “badly-behaved” integrands for which traditional algorithms fail [118]. Adaptive

quadrature algorithm uses an estimate of the error from calculating a definite integral. If the error

exceeds a user-specified tolerance, the algorithm calls for subdividing the interval of integration in

two and applying adaptive quadrature algorithm to each subinterval in a recursive manner.

In Chapter 4 and 7, we demonstrated the effectiveness of hardware accelerated quadrature methods

using static integration interval only. One of the future work is to extend it to cover adaptive quadra-

ture. There are two issues when designing hardware accelerated adaptive quadrature method. First,

an additional control logic is required for estimating the error, subdividing the interval and recom-

puting the integral. How to effectively design this control logic such that the whole design is fully

parallel and pipelined is one of the key challenge. Second, the run-time of the adaptive algorithm

is non-deterministic. An additional protocol is needed for the hardware to notify the host when the

computation is finished.

8.3.3 Monte-Carlo method in other problem domain

Hardware accelerated Monte-Carlo method could be applied to other problem domain apart from

option pricing. Many existing problems are solved by Monte-Carlo methods, such as calculation

of particles transport in Physics [119], Bayesian network learning in the field of Biology [120] and

modeling evolution of galaxies in Astrophysics [121]. They could be implemented in reconfigurable

hardware by designing a hardware simulation core.

In Chapter 3 and 6, we demonstrated the effectiveness of hardware accelerated Monte-Carlo methods

for option pricing with optimisation techniques including control variate method and mixed precision

methodology. The control variate techniques could also be applied in other applications as well

provided that there is a control variable to be used as a proxy.

8.3. Future Work 139

8.3.4 Interest rate derivative pricing

The derivatives priced in this thesis are mainly equity derivatives. The same techniques can also

be applied to the pricing of interest rate derivatives with models such as BGM model [16] or HJM

model [122]. The design complexity will be increased as those model involves non-constant interest

rate. The critical difference is that in each Monte-Carlo path of interest rate derivatives, the interest

rates in different time steps are also simulated using Monte-Carlo method. As a result, there is an

additional dimension to simulate compared to equity derivatives.

8.3.5 Accelerating Quasi Monte-Carlo methods

Quasi Monte-Carlo (QMC) methods is similar to regular Monte-Carlo methods except that low-

discrepancy sequences are used instead of random numbers [123]. QMC approach in pricing some

types of financial derivatives is faster than regular Monte-Carlo method for a given accuracy [124].

In Chapter 3 and 6, we presented hardware accelerated Monte-Carlo methods for option pricing with

optimisation techniques including control variate method and mixed precision. If the random num-

ber generators were changed to low-discrepancy sequence generators such as Sobol-sequence gen-

erators [45], we could get a hardware accelerated Quasi Monte-Carlo option pricer. However, the

optimisation technique of control variate methods and mixed precision methodology are based on the

statistical random nature of regular Monte-Carlo method. Therefore, they are not directly applicable

on Quasi Monte-Carlo methods.

8.3.6 Other grid-based pricing methods

Quadrature methods presented in Chapter 4 and 7 are one of the grid-based option pricing methods.

There are other grid-based numerical methods for option pricing such as finite-difference methods and

tree-based methods as described in Chapter 2. Although they have been studied in other research [36,

38], optimisation techniques described in this thesis could be applied on those works such as the

reduced precision methodology described in Chapter 7.

140 Chapter 8. Conclusion and Future Work

8.3.7 Sophisticated dynamic scheduling policies

In Chapter 5, we demonstrated that different computational devices can work collaboratively on the

same problem with dynamic scheduling policies. There could be a further improvement by developing

more sophisticated dynamic scheduling polices. For example, a policy that minimise communication

overhead, a policy that minimise energy consumption and a policy that optimise for load-balancing

across nodes could be designed and employed in the framework described in Chapter 5. Experiments

of these more sophisticated dynamic scheduling policies could be carried in order to verify their

effectiveness.

8.3.8 Algorithmic Trading

Algorithmic trading is a computer-based approach to execute buy and sell orders on financial instru-

ment. Financial traders exercise investment strategies using autonomous high-frequency algorithmic

trading by real-time market events. To take advantage of the timely market information, the algorith-

mic trading engine must be able to respond quickly. Existing pure software solutions are no longer

able to provide low latency solutions. There is a need for hardware acceleration for the algorithmic

trading engine and reconfigurable hardware is a highly desirable platform.

Research on algorithmic trading engine using reconfigurable hardware has been focusing on equity

trading only. An implementation of “Participate” algorithms for trading equity orders in reconfig-

urable hardware is presented and shows a 133 times speedup over a software implementation [53].

In this thesis, we designed option pricing engine and presented performance optimisation techniques.

The input parameters of the option pricing engine could be obtained from live market data-feed, and

the pricing result could be used as an decision input of an algorithmic trading engine. Therefore, our

work could be used for extending an algorithmic trading engine to support the trading of options.

Bibliography

[1] David Dorfman and Don Canning. The actuarys high-performance computing challenge. Win-

dows in Financial Services, 2007.

[2] M.B. Haugh and A.W. Lo. Computational challenges in portfolio management. Computing in

Science Engineering, 3(3):54 –59, may 2001.

[3] J.G. Koomey. Growth in data center electricity use 2005 to 2010. Technical report, Standord

University, 2011.

[4] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE,

86(1):82 –85, jan 1998.

[5] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. Leblanc.

Design of ion-implanted mosfet’s with very small physical dimensions. Proceedings of the

IEEE, 87(4):668 –678, apr 1999.

[6] Mark Bohr. A 30 year retrospective on Dennard’s MOSFET scaling paper. Solid-State Circuits

Newsletter, IEEE, 12(1):11–13, winter 2007.

[7] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug

Burger. Dark Silicon and the End of Multicore Scaling. In Proceedings of the 38th Interna-

tional Symposium on Computer Architecture (ISCA), 2011.

[8] M. Duranton, D. Black-Schaffer, and K. De Bosschere S. Yehia. Computing systems: Research

challenges ahead the HiPEAC vision 2011/ 2012.

141

142 BIBLIOGRAPHY

[9] K. McLaughlin, N. O’Connor, and S. Sezer. Exploring cam design for network processing

using fpga technology. In Telecommunications, 2006. AICT-ICIW ’06. International Confer-

ence on Internet and Web Applications and Services/Advanced International Conference on,

page 84, feb. 2006.

[10] Liang Lu, J.V. McCanny, and S. Sezer. Reconfigurable motion estimation architecture for

multi-standard video compression. In Application-specific Systems, Architectures and Proces-

sors, 2007. ASAP. IEEE International Conf. on, pages 253 –259, Jul 2007.

[11] K.H. Tsoi, D. Rueckert, C.H. Ho and W. Luk. Reconfigurable Acceleration of 3D Image

Registration. In Proc. Southern Programmable Logic Conference (SPL), pages 95–100, 2009.

[12] C.K. Wong and P.H.W. Leong. An FPGA-Based Electronic Cochlea with Dual Fixed-Point

Arithmetic. In Proc. International Conference on Field Programmable Logic and Applications

(FPL), pages 1–6, 2006.

[13] Adrien Le Masle, Wayne Luk, Jared Eldredge, and Kris Carver. Parametric encryption hard-

ware design. In Reconfigurable Computing: Architectures, Tools and Applications, volume

5992 of Lecture Notes in Computer Science, pages 68–79. Springer Berlin / Heidelberg, 2010.

[14] Melissa C. Smith, Jeffery S. Vetter, and Xuejun Liang. Accelerating scientific applications

with the SRC-6 reconfigurable computer: Methodologies and analysis. In IEEE International

Parallel and Distributed Processing Symposium IPDPS ’05, pages 157b–157b, 2005.

[15] C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, P.H.W. Leong, R. Ludewig, P. Zipf,

A.G. Ortiz, and M. Glesner. Arbitrary function approximation in hdls with application to the

n-body problem. In Proc. International Conference on Field Programmable Technology (FPT),

pages 84–91, Dec. 2003.

[16] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi., Dong-U Lee, C.C.C. Cheung, R.C.C. Cheung,

and W. Luk. Reconfigurable acceleration for Monte-Carlo based financial simulation. In Proc.

Int. Conf. on Field-Programmable Technology, pages 215–224. IEEE, 2005.

BIBLIOGRAPHY 143

[17] David B. Thomas and Wayne Luk. Credit risk modelling using hardware accelerated monte-

carlo simulation. In Proc. IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), 2008.

[18] Stephen Weston, Jean-Tristan Marin, James Spooner, Oliver Pell, and Oskar Mencer. Ac-

celerating the computation of portfolios of tranched credit derivatives. In High Performance

Computational Finance (WHPCF), 2010 IEEE Workshop on, pages 1–8, Nov. 2010.

[19] Stephen Weston, James Spooner, Sebastien Racaniere, and Oskar Mencer. Rapid computation

of value and risk for derivatives portfolios. Concurrency and Computation: Practice and

Experience, 2011.

[20] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. On the utility of graphics cards to

perform massively parallel simulation of advanced Monte Carlo methods. Journal of Compu-

tational and Graphical Statistics, pages 769 –789, 2010.

[21] Ari D. Andricopoulos, Martin Widdicks, Peter W. Duck, and David P. Newton. Universal

option valuation using quadrature methods. Journal of Financial Economics, 67(3):447–471,

March 2003.

[22] Anson H. T. Tse, David B. Thomas, K. H. Tsoi, and Wayne Luk. Efficient reconfigurable

design for pricing asian options. SIGARCH Comput. Archit. News, 38:14–20, Jan 2011.

[23] Anson H. T. Tse, David B. Thomas, K.H. Tsoi, and Wayne Luk. Reconfigurable control variate

monte-carlo designs for pricing exotic options. In Proc. International Conference on Field

Programmable Logic and Applications (FPL), 2010.

[24] A. H. T. Tse, D. Thomas, and W. Luk. Design exploration of quadrature methods in option

pricing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (Accepted for

publication), 2012.

[25] Anson H. T. Tse, David B. Thomas, and Wayne Luk. Accelerating quadrature methods for

option valuation. In Proc. IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), 2009.

144 BIBLIOGRAPHY

[26] A. H. T. Tse, D.B. Thomas, and W. Luk. Option pricing with multi-dimensional quadrature

architectures. In Proc. International Conference on Field Programmable Technology (FPT),

pages 427 –430, dec 2009.

[27] A. H. T. Tse, D.B. Thomas, K.H. Tsoi, and W. Luk. Dynamic scheduling Monte-Carlo frame-

work for multi-accelerator heterogeneous clusters. In Proc. International Conference on Field

Programmable Technology (FPT), pages 233 –240, dec. 2010.

[28] G. C. T. Chow, A. H. T. Tse, Jin Q., D.B. Thomas, P. Leong, and W. Luk. A mixed precision

Monte Carlo methodology for reconfigurable accelerator systems. In Proc. ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays (FPGA) (Accepted for publication),

2012.

[29] A. H. T. Tse, G. C. T. Chow, Jin Q., D.B. Thomas, and W. Luk. Optimising performance

of quadrature methods with reduced precision. Proc. International Symposium on Applied

Reconfigurable Computing (Accepted for publication), 2012.

[30] Robert James Elliott and P.E. Kopp. Mathematics of financial markets. Springer, 2005.

[31] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of

Political Economy, 81(3):637–654, 1973.

[32] Robert C Merton. On the pricing of corporate debt: The risk structure of interest rates. Journal

of Finance, 29(2):449–70, May 1974.

[33] A. G. Z. Kemna and A. C. F. Vorst. A pricing method for options based on average asset values.

Journal of Banking & Finance, 14(1):113–129, March 1990.

[34] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics, 31(03):307–327, 1986.

[35] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A simplified approach.

Journal of Financial Economics, 7(3):229 – 263, 1979.

BIBLIOGRAPHY 145

[36] Qiwei Jin, David B. Thomas, Wayne Luk, and Benjamin Cope. Exploring reconfigurable ar-

chitectures for binomial-tree pricing models. In Proceedings of the 4th international workshop

on Applied Reconfigurable Computing, pages 245–255. LNCS 4943. Springer-Verlag, 2008.

[37] J.C. Hull. Options, Futures and Other Derivatives. Prentice Hall, 6th edition, 2005.

[38] Qiwei Jin, D.B. Thomas, and W. Luk. Exploring reconfigurable architectures for explicit fi-

nite difference option pricing models. In Proc. Int. Conf. on Field Programmable Logic and

Applications, pages 73 –78, 2009.

[39] Ari D. Andricopoulos, Martin Widdicks, David P. Newton, and Peter W. Duck. Extending

quadrature methods to value multi-asset and complex path dependent options. Journal of Fi-

nancial Economics, 83(2):471 – 499, 2007.

[40] Mark H. A. Davis and Juan Carlos Esparragoza-Rodriguez. Large portfolio credit risk model-

ing. International Journal of Theoretical and Applied Finance, 10(04):653–678, 2007.

[41] Alexandre Masserey, Jacques Rappaz, Roland Rozsnyo, and Marek Swierkosz. Numerical

integration of the three-dimensional green kernel for an electromagnetic problem. Journal of

Computational Physics, 205(1):48 – 71, 2005.

[42] T. Humphries, A. Celler, and M.R. Trammer. Improved numerical integration for analyti-

cal photon distribution calculation in spect. Nuclear Science Symposium Conference IEEE,

5:3548–3554, 2007.

[43] D.B. Thomas, J.A. Bower, and W. Luk. Automatic generation and optimisation of recon-

figurable financial Monte-Carlo simulations. In Int. Conf. on Application-Specific Systems,

Architectures and Processors. IEEE, 2007.

[44] G.W. Morris and M. Aubury. Design space exploration of the European option benchmark

using hyperstreams. In Proc. Int. Conf. on Field Programmable Logic and Applications. IEEE,

2007.

146 BIBLIOGRAPHY

[45] Xiang Tian and K. Benkrid. American option pricing on reconfigurable hardware using least-

squares monte carlo method. In Proc. Int. Conf. on Field-Programmable Technology, pages

263 –270, 2009.

[46] George S. Fishman. Monte Carlo Concepts, Algorithms, and Applications. Springer, 1995.

[47] L. Le Cam. The Central Limit Theorem Around 1935. Statistical Science, 1(1):78–91, 1986.

[48] S.F. Arnold. Mathematical statistics. Prentice-Hall International editions. Prentice-Hall Inter-

national, 1990.

[49] John Hull and Alan White. The use of the control variate technique in option pricing. Journal

of Financial and Quantitative Analysis, 23(03):237–251, September 1988.

[50] Endre Sueli and David F. Mayers. An Introduction to Numerical Analysis. Cambridge Univer-

sity Press, 2006.

[51] Katherine Heires. Budgeting for latency: If i shave a microsecond, will i see a 10x profit?

Security Industry, 2010.

[52] G.W. Morris, D.B. Thomas, and W. Luk. Fpga accelerated low-latency market data feed pro-

cessing. In Proc. IEEE Symposium on High Performance Interconnects, pages 83 –89, aug

2009.

[53] Stephen Wray, Wayne Luk, and Peter Pietzuch. Exploring algorithmic trading in reconfigurable

hardware. In Application-specific Systems Architectures and Processors (ASAP), 2010 21st

IEEE International Conference on, pages 325 –328, Jul 2010.

[54] S. Wray, W. Luk, and P. Pietzuch. Run-time reconfiguration for a reconfigurable algorithmic

trading engine. In Proc. International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 163 –166, Sep 2010.

[55] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and Hans-Arno Jacob-

sen. Efficient event processing through reconfigurable hardware for algorithmic trading. Proc.

VLDB Endow., pages 1525–1528, Sep 2010.

BIBLIOGRAPHY 147

[56] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and V. Natoli. Low-latency fpga based

financial data feed handler. In Proc. IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pages 93 –96, may 2011.

[57] Lei Pan, Lixu Gu, and Jianrong Xu. Implementation of medical image segmentation in cuda.

Proc. Int. Conf. on Technology and Applications in Biomedicine, pages 82–85, May 2008.

[58] Honghoon Jang, Anjin Park, and Keechul Jung. Neural network implementation using cuda

and openmp. Computing: Techniques and Applications, 2008. DICTA ’08.Digital Image, pages

155–161, Dec. 2008.

[59] J.E. Stone, D. Gohara, and Guochun Shi. Opencl: A parallel programming standard for het-

erogeneous computing systems. Computing in Science Engineering, 12(3):66 –73, may-jun

2010.

[60] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance comparison of CUDA and

OpenCL. CoRR, 2010.

[61] Jianbin Fang, A.L. Varbanescu, and H. Sips. A comprehensive performance comparison of

CUDA and OpenCL. In Parallel Processing (ICPP), 2011 International Conference on, pages

216 –225, sept. 2011.

[62] L. Lu, J.V. McCanny, and S. Sezer. Reconfigurable system-on-a-chip motion estimation archi-

tecture for multi-standard video coding. Computers Digital Techniques, IET, 4(5):349 –364,

Sep 2010.

[63] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong. FPGA implementation of a microcoded

elliptic curve cryptographic processor. In Proc. IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 68 –76, 2000.

[64] K.K. Ting, S.C.L. Yuen, K.H. Lee and P.H.W. Leong. An FPGA Based SHA-256 Processor. In

Proc. International Conference on Field Programmable Logic and Applications (FPL), pages

577–585, 2002.

148 BIBLIOGRAPHY

[65] K.H. Tsoi, K.H. Leung and P.H.W Leong. High Performance Physical Random Number Gen-

erator. Computers and Digital Techniques, IET, 1(4):349–352, July 2007.

[66] P.H.W. Leong and C.K. Chung. A FPGA Based Runtime Configurable Clause Evaluator for

SAT Problems. Electronics Letters, 35(19):1618–1619, 1999.

[67] P.H.W Leong, C.W. Sham, W.C. Wong, H.Y. Wong, W.S. Yuen and M.P. Leong. A Bitstream

Reconfigurable FPGA Implementation of the WSAT algorithm. 9(1):197–201, Feb 2001.

[68] K.H. Tsoi, C.H. Ho, H.C. Yeung and P.H.W. Leong. An Arithmetic Library and Its Application

to the N-body Problem. In Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 68–78, 2004.

[69] L. Musa. FPGAS in high energy physics experiments at CERN. In Proc. International Con-

ference on Field Programmable Logic and Applications (FPL), pages 2–2, 2008.

[70] George A. Constantinides. Word-length optimization for differentiable nonlinear systems.

ACM Trans. Des. Autom. Electron. Syst., 11:26–43, 2006.

[71] Ki-Il Kum and Wonyong Sung. Combined word-length optimization and high-level synthesis

of digital signal processing systems. 20(8):921 –930, 2001.

[72] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen. Fast, accurate static analysis for fixed-point

finite-precision effects in DSP designs. In IEEE/ACM international conference on Computer-

aided design, pages 275–282, 2003.

[73] Altaf Abdul Gaffar, Oskar Mencer, Wayne Luk, and Peter Y. K. Cheung. Unifying bit-width

optimisation for fixed-point and floating-point designs. In FCCM, pages 79–88, 2004.

[74] Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. Minibit: bit-width optimiza-

tion via affine arithmetic. In DAC, pages 837–840, 2005.

[75] Dong-U Lee, Altaf Abdul Gaffar, Ray C. C. Cheung, Oskar Mencer, Wayne Luk, and

George A. Constantinides. Accuracy-guaranteed bit-width optimization. IEEE Trans. on CAD

of Integrated Circuits and Systems, 25(10):1990–2000, 2006.

BIBLIOGRAPHY 149

[76] William G. Osborne, Ray C. C. Cheung, José Gabriel F. Coutinho, Wayne Luk, and Oskar

Mencer. Automatic accuracy-guaranteed bit-width optimization for fixed and floating-point

systems. In Proc. International Conference on Field Programmable Logic and Applications

(FPL), pages 617–620, 2007.

[77] W.G. Osborne, J.G.F. Coutinho, R.C.C. Cheung, W. Luk, and O. Mencer. Instrumented multi-

stage word-length optimization. In Proc. International Conference on Field Programmable

Technology (FPT), pages 89 –96, 2007.

[78] A.B. Kinsman and N. Nicolici. Finite precision bit-width allocation using SAT-Modulo theory.

In Proc. Design automation and test in Europe (DATE), pages 1106 –1111, 2009.

[79] D. Boland and G.A. Constantinides. Automated precision analysis: A polynomial algebraic

approach. In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 157 –164, 2010.

[80] G. C. T. Chow, K.W. Kwok, W. Luk, and P. Leong. Mixed precision processing in reconfig-

urable systems. In Proc. IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 17 –24, May 2011.

[81] Maya Gokhale, Janette Frigo, Christine Ahrens, and Ron Minnich. Monte Carlo radiative heat

transfer simulation on a reconfigurable computer. In Proc. International Conference on Field

Programmable Logic and Applications (FPL), pages 95–104, 2004.

[82] Alexander Kaganov, Asif Lakhany, and Paul Chow. FPGA acceleration of multifactor CDO

pricing. ACM Trans. Reconfigurable Technol. Syst., 4:20:1–20:17, 2011.

[83] Akila Gothandaraman, Gregory D. Peterson, G.L. Warren, Robert J. Hinde, and Robert J.

Harrison. FPGA acceleration of a quantum Monte Carlo application. Parallel Computing,

34(4-5):278 – 291, 2008.

[84] Ramon Edgar Moore. Interval arithmetic and automatic error analysis in digital computing.

PhD thesis, Stanford University, 1963.

150 BIBLIOGRAPHY

[85] C.F. Fang, Tsuhan Chen, and R.A. Rutenbar. Floating-point error analysis based on affine arith-

metic. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,

volume 2, pages II–561–4, 2003.

[86] Xiang Tian and K. Benkrid. Design and implementation of a high performance financial

Monte-Carlo simulation engine on an FPGA supercomputer. In Proc. International Confer-

ence on Field Programmable Technology (FPT), pages 81–88, 2008.

[87] Xiang Tian and Christos-Savvas Bouganis. A run-time adaptive FPGA architecture for Monte

Carlo simulations. In Proc. International Conference on Field Programmable Logic and Ap-

plications (FPL), 2011.

[88] Dave Strenski. The Cray XD1 computer and its reconfigurable architecture. Technical report,

Cray Inc., July 2005.

[89] R. Baxter et al. Maxwell – a 64 FPGA supercomputer. Engineering Letters, 16(3):426–433,

2008.

[90] nVidia. nVidia CUDA Programming Guide v2.1, 2008.

[91] Toshio Endo and Satoshi Matsuoka. Massive supercomputing coping with heterogeneity of

modern accelerators. In IEEE International Symposium on Parallel and Distributed Process-

ing, IPDPS’08, pages 1–10, 2008.

[92] Lokman A. Abbas-Turki, Stephane Vialle, Bernard Lapeyre, and Patrick Mercier. High dimen-

sional pricing of exotic European contracts on a GPU cluster, and comparison to a CPU cluster.

In International Parallel and Distributed Processing Symposium, pages 1–8, 2009.

[93] M. Showerman et al. QP: A heterogeneous multi-accelerator cluster. In 10th LCI International

Conference on High-Performance Clustered Computing, Boulder, Colorado, March 2009.

[94] Kuen Hung Tsoi and Wayne Luk. Axel: a heterogeneous cluster with FPGAs and GPUs. In

Proc. ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),

pages 115–124, 2010.

[95] Celoxica. Handel-C Language Reference Manual.

BIBLIOGRAPHY 151

[96] Celoxica. Hyperstreams User Manual.

[97] Celoxica. DSM API Reference Manual.

[98] Maxeler Technologies. MaxCompiler Manual.

[99] David B. Thomas and Wayne Luk. A framework for development and distribution of hard-

ware acceleration. Reconfigurable Technology: FPGAs and Reconfigurable Processors for

Computing and Communications, Proceedings of SPIE, 4867:60–70, 2002.

[100] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. The design of a

configurable and reconfigurable middleware platform. Distrib. Comput., 15(2):109–126, 2002.

[101] J.G.F. Coutinho, J. Jiang, and W. Luk. Interleaving behavioral and cycle-accurate descriptions

for reconfigurable hardware compilation. In Proc. IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 245–254, April 2005.

[102] Anthony L. Slade, Brent E. Nelson, and Brad L. Hutchings. Reconfigurable computing ap-

plication frameworks. Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), 0:251, 2003.

[103] W. Cescirio, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A.A.

Jerraya, and M. Diaz-Nava. Component-based design approach for multicore socs. pages

789–794, 2002.

[104] V. Schaumont and I. Verbauwhede. A component-based design environment for esl design.

Design and Test of Computers, IEEE, 23(5):338–347, May 2006.

[105] Satnam Singh and David J. Greaves. Kiwi: Synthesis of fpga circuits from parallel programs.

In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 3–12, April 2008.

[106] Roberto Szechtman. Control variate techniques for monte carlo simulation. In WSC ’03:

Proceedings of the 35th conference on Winter simulation, pages 144–149. Winter Simulation

Conference, 2003.

152 BIBLIOGRAPHY

[107] David B. Thomas and Wayne Luk. Non-uniform random number generation through piecewise

linear approximations. In Proc. Int. Conf. on Field Programmable Logic and Applications,

pages 1–6, 2006.

[108] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8:3–

30, Jan 1998.

[109] Gianluca Fusai and Maria Cristina Recchioni. Analysis of quadrature methods for pricing

discrete barrier options. Journal of Economic Dynamics and Control, 31(3):826–860, March

2007.

[110] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann.

Math. Statist., 29(02):610–611, 1958.

[111] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.

MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans.

Math. Softw., 33, 2007.

[112] David Barrie Thomas, Lee Howes, and Wayne Luk. A comparison of CPUs, GPUs, FPGAs,

and massively parallel processor arrays for random number generation. In Proc. ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 63–72, 2009.

[113] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on geo-

metric programming. Optimization and Engineering, 8:67–127, 2007.

[114] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics, 31(3):307–327, 1986.

[115] O. Mencer. ASC: a stream compiler for computing with FPGAs. 25(9):1603 –1617, 2006.

[116] Eric W. Weisstein. Sample variance computation. http://mathworld.wolfram.com/

SampleVarianceComputation.html, accessed Sept. 2011.

[117] Fischer Black and Myron S Scholes. The pricing of options and corporate liabilities. Journal

of Political Economy, 81(3):637–54, May-June 1973.

http://mathworld.wolfram.com/SampleVarianceComputation.html
http://mathworld.wolfram.com/SampleVarianceComputation.html

BIBLIOGRAPHY 153

[118] John R. Rice. A metalgorithm for adaptive quadrature. Journal of the ACM, 22:61–82, Jan

1975.

[119] D Heifetz, D Post, M Petravic, J Weisheit, and G Bateman. A monte-carlo model of neutral-

particle transport in diverted plasmas. Journal of Computational Physics, 46(2):309 – 327,

1982.

[120] Michael D. Linderman, Robert Bruggner, Vivek Athalye, Teresa H. Meng, Narges Bani Asadi,

and Garry P. Nolan. High-throughput bayesian network learning using heterogeneous multicore

computers. In Proceedings of the 24th ACM International Conference on Supercomputing, ICS

’10, pages 95–104, 2010.

[121] A. Mucke, Ralph Engel, J.P. Rachen, R.J. Protheroe, and Todor Stanev. Monte Carlo simula-

tions of photohadronic processes in astrophysics. Computer Physics Communications, 124(2-

3):290 – 314, 2000.

[122] Robert Jarrow and Yildiray Yildirim. Pricing treasury inflation protected securities and related

derivatives using an hjm model. Journal of Financial and Quantitative Analysis, 38(02):337–

358, 2003.

[123] Xiaoqun Wang and Kai-Tai Fang. The effective dimension and quasi-monte carlo integration.

Journal of Complexity, 19(2):101 – 124, 2003.

[124] N.A. Woods and T. VanCourt. FPGA acceleration of quasi-Monte Carlo in finance. In Proc.

International Conference on Field Programmable Technology (FPT), pages 335 –340, Sept.

2008.

	Declaration
	Abstract
	Acknowledgements
	Dedication
	Publications
	Abbreviations
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation: Demand from the financial industry
	1.2 Motivation: Change of the computing technology
	1.3 Objectives
	1.4 Research Approach and Contributions
	1.5 Thesis Organisation

	2 Background
	2.1 Option Pricing
	2.1.1 Option Pricing Model
	2.1.2 Exotic Option
	2.1.3 Stochastic Volatility

	2.2 Numerical Methods for Option Pricing
	2.2.1 Monte-Carlo Methods
	2.2.2 Control Variate Monte-Carlo Method
	2.2.3 Quadrature Methods

	2.3 Algorithmic Trading
	2.4 Computational Devices
	2.4.1 CPU
	2.4.2 GPU
	2.4.3 FPGA

	2.5 Bit-width Optimisation with Reconfigurable Hardware
	2.5.1 Bit-width Optimisation of Monte-Carlo Method

	2.6 Multi-Accelerator Heterogeneous Cluster
	2.7 Hardware Description Language
	2.8 Summary

	3 Accelerating Monte-Carlo Methods for Option Valuation
	3.1 Motivation
	3.2 Parallel Hardware Architecture for Exotic Options Pricing
	3.3 Case Study: Asian Options Pricing
	3.3.1 FPGA design: CVMC core
	3.3.2 FPGA design: Coordination Block
	3.3.3 FPGA design: Pure MC core
	3.3.4 GPU design

	3.4 Performance Comparison
	3.5 Summary

	4 Accelerating Quadrature Methods for Option Valuation
	4.1 Motivation
	4.2 Option pricing and quadrature methods
	4.3 Parallel Architecture
	4.3.1 System architecture

	4.4 Multi-dimensional Quadrature Analysis
	4.5 FPGA and GPU designs
	4.5.1 Single dimension QUAD evaluation core on FPGA
	4.5.2 Multiple dimensions QUAD evaluation core on FPGA
	4.5.3 QUAD evaluation core on GPU

	4.6 Evaluation and comparison
	4.6.1 Performance Analysis
	4.6.2 Energy consumption analysis

	4.7 Summary

	5 Distributed Financial Computing in Heterogeneous Cluster
	5.1 Motivation
	5.2 Heterogeneous Framework
	5.2.1 Overall hierarchy
	5.2.2 MC processes

	5.3 Scheduling Policies
	5.3.1 Constant-Size policy
	5.3.2 Linear-Incremental policy
	5.3.3 Exponential-Incremental policy
	5.3.4 Throughput-Proportional policy
	5.3.5 Energy-Proportional policy
	5.3.6 Other possible policies

	5.4 Applications
	5.4.1 Asian option pricing using control variate method
	5.4.2 GARCH asset simulation

	5.5 FPGA and GPU designs
	5.5.1 FPGA kernels
	5.5.2 GPU kernels
	5.5.3 CPU kernels

	5.6 Performance Evaluation
	5.6.1 Dynamic scheduling analysis of a single node
	5.6.2 Performance, energy and efficiency analysis of accelerator allocation of a cluster

	5.7 Summary

	6 Optimising Performance of Monte-Carlo Methods with Mixed Precision
	6.1 Motivation
	6.2 Error Analysis
	6.3 Mixed precision methodology
	6.4 Workload partitioning
	6.5 Mixed precision optimisation
	6.6 Case studies
	6.6.1 Asian option pricing
	6.6.2 The GARCH volatility model
	6.6.3 Numerical integration

	6.7 Evaluation
	6.7.1 Reconfigurable accelerator system
	6.7.2 Applying optimisation
	6.7.3 Performance: parallelism versus precision
	6.7.4 Comparison: CPU/FPGA double precision
	6.7.5 Comparison: GPU

	6.8 Summary

	7 Optimising Performance of Quadrature Methods with Reduced Precision
	7.1 Motivation
	7.2 Optimisation Modeling
	7.2.1 Accuracy Analysis
	7.2.2 Performance Modeling
	7.2.3 Optimisation Objective Equation

	7.3 Optimisation Algorithm and Methodology
	7.4 Case Studies
	7.4.1 Discrete Moving Barrier Option pricer
	7.4.2 Multi-dimensional European Option pricer
	7.4.3 Genz's ``Discontinuous'' benchmark integral

	7.5 Result and Evaluation
	7.5.1 Performance Comparison
	7.5.2 Energy Comparison

	7.6 Summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Impact
	8.2.1 Satisfying high computational demand in the financial industry
	8.2.2 Providing optimisation techniques in financial application domain
	8.2.3 Determining the right combination of accelerators

	8.3 Future Work
	8.3.1 Quadrature methods in other problem domain
	8.3.2 Accelerating adaptive quadrature methods
	8.3.3 Monte-Carlo method in other problem domain
	8.3.4 Interest rate derivative pricing
	8.3.5 Accelerating Quasi Monte-Carlo methods
	8.3.6 Other grid-based pricing methods
	8.3.7 Sophisticated dynamic scheduling policies
	8.3.8 Algorithmic Trading

	Bibliography

