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Abstract

Improvements in semiconductor technology have 
made it possible to include multiple processor cores 
on a single die. Chip Multi-Processors (CMP) are an 
attractive choice for future billion transistor architec
tures due to their low design complexity, high clock 
frequency, and high throughput. In a typical CMP ar
chitecture, the L2 cache is shared by multiple cores 
and data coherence is maintained among private L1s. 
Coherence operations entail frequent communication 
over global on-chip wires. In future technologies, com
munication between different L1s will have a signif
icant impact on overall processor performance and 
power consumption.

On-chip wires can be designed to have different 
latency, bandwidth, and energy properties. Like
wise, coherence protocol messages have different la
tency and bandwidth needs. We propose an intercon
nect comprised of wires with varying latency, band
width, and energy characteristics, and advocate intel
ligently mapping coherence operations to the appro
priate wires. In this paper, we present a comprehen
sive list of techniques that allow coherence protocols 
to exploit a heterogeneous interconnect and present 
preliminary data that indicates the potential of these 
techniques to significantly improve performance and 
reduce power consumption. We further demonstrate 
that most of these techniques can be implemented at a 
minimum complexity overhead.

1. Introduction

Advances in process technology have led to the 
emergence of new bottlenecks in future micropro
cessors. One of the chief bottlenecks to perfor
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mance is the high cost of on-chip communication 
through global wires [19]. Power consumption has 
also emerged as a first order design metric and wires 
contribute up to 50% of total chip power in some 
processors [28]. Future microprocessors are likely to 
exploit huge transistor budgets by employing a chip 
multi-processor (CMP) architecture [30, 32]. Multi
threaded workloads that execute on such processors 
will experience high on-chip communication latencies 
and will dissipate significant power in interconnects. 
In the past, the design of interconnects was primarily 
left up to VLSI and circuit designers. However, with 
communication emerging as a larger power and per
formance constraint than computation, architects may 
wish to consider different wire implementations and 
identify creative ways to exploit them [6]. This paper 
presents a number of creative ways in which coherence 
communication in a CMP can be mapped to different 
wire implementations with minor increases in com
plexity. We present preliminary results that demon
strate that such an approach can both improve perfor
mance and reduce power dissipation.

In a typical CMP, the L2 cache and lower lev
els of the memory hierarchy are shared by multiple 
cores [22, 32]. Sharing the L2 cache allows high cache 
utilization and avoids duplicating cache hardware re
sources. L1 caches are typically not shared as such 
an organization entails high communication latencies 
for every load and store. Maintaining coherence be
tween the individual L1s is a challenge in CMP sys
tems. There are two major mechanisms used to en
sure coherence among L1s in a chip multiprocessor. 
The first option employs a bus connecting all of the 
L1s and a snoopy bus-based coherence protocol. In 
this design, every L1 cache miss results in a coherence 
message being broadcast on the global coherence bus. 
Individual L1 caches perform coherence operations on 
their local data in accordance with these coherence
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messages. The second approach employs a central
ized directory in the L2 cache that tracks sharing in
formation for all cache lines in the L2 and implements 
a directory-based coherence protocol. In this design, 
every L1 cache miss is sent to the L2 cache, where 
further actions are taken based on directory state. Nu
merous studies [1, 10, 20, 23, 27] have characterized 
the high frequency of cache misses in parallel work
loads and the high impact these misses have on total 
execution time. On a cache miss, a variety of protocol 
actions are initiated, such as request messages, inval
idation messages, intervention messages, data block 
writebacks, data block transfers, etc. Each of these 
messages involves on-chip communication with laten
cies that are projected to grow to tens of cycles in fu
ture billion transistor architectures [2].

VLSI techniques enable a variety of different wire 
implementations that are typically not exploited at the 
microarchitecture level. For example, by tuning wire 
width and spacing, we can design wires with varying 
latency and bandwidth properties. Similarly, by tun
ing repeater size and spacing, we can design wires 
with varying latency and energy properties. To take 
advantage of VLSI techniques and better match the 
interconnect design to communication requirements, 
heterogeneous interconnects have been proposed [6], 
where every link consists of wires that are optimized 
for either latency, energy, or bandwidth. In this study, 
we explore optimizations that are enabled when such a 
heterogeneous interconnect is employed for coherence 
traffic. For example, on a cache write miss, the re
questing processor may have to wait for data from the 
home node (a two hop transaction) and for acknowl
edgments from other sharers of the block (a three hop 
transaction). Since the acknowledgments are on the 
critical path and have low bandwidth needs, they can 
be mapped to wires optimized for delay, while the data 
block transfer is not on the critical path and can be 
mapped to wires that are optimized for low power.

The paper is organized as follows. Section 2 re
views techniques that enable different wire implemen
tations and the design of a heterogeneous interconnect. 
Section 3 describes the proposed innovations that map 
coherence messages to different on-chip wires. Sec
tion 4 presents preliminary results that indicate the po
tential of our proposed techniques. Section 5 discusses 
related work and we conclude in Section 6.

We begin with a quick review of factors that influ
ence wire properties. It is well-known that the delay 
of a wire is a function of its RC time constant (R is 
resistance and C is capacitance). Resistance per unit 
length is (approximately) inversely proportional to the 
width of the wire [19]. Likewise, a fraction of the ca
pacitance per unit length is inversely proportional to 
the spacing between wires, and a fraction is directly 
proportional to wire width. These wire properties pro
vide an opportunity to design wires that trade off band
width and latency. By allocating more metal area per 
wire and increasing wire width and spacing, the net ef
fect is a reduction in the RC time constant. This leads 
to a wire design that has favorable latency properties, 
but poor bandwidth properties (as fewer wires can be 
accommodated in a fixed metal area). Our analysis [6] 
shows that in certain cases, nearly a three-fold reduc
tion in wire latency can be achieved, at the expense of a 
four-fold reduction in bandwidth. Further, researchers 
are actively pursuing transmission line implementa
tions that enable extremely low communication laten
cies [12, 16]. However, transmission lines also entail 
significant metal area overheads in addition to logic 
overheads for sending and receiving [8, 12]. If trans
mission line implementations become cost-effective at 
future technologies, they represent another attractive 
wire design point that can trade off bandwidth for low 
latency.

Similar trade-offs can be made between latency and 
power consumed by wires. Global wires are usually 
composed of multiple smaller segments that are con
nected with repeaters [5]. The size and spacing of re
peaters influences wire delay and power consumed by 
the wire. When smaller and fewer repeaters are em
ployed, wire delay increases, but power consumption 
is reduced. The repeater configuration that minimizes 
delay is typically very different from the repeater con
figuration that minimizes power consumption. Baner- 
jee et al. [7] show that at 50nm technology, a five-fold 
reduction in power can be achieved at the expense of a 
two-fold increase in latency.

Thus, by varying properties such as wire 
width/spacing and repeater size/spacing, we can 
implement wires with different latency, bandwidth, 
and power properties. If a data packet has 64 bits, 
global interconnects are typically designed to min-
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imize delay for the transfer of 64-bit data, while 
not exceeding the allocated metal area. We refer 
to these wires as B-Wires. In addition to this base 
64-bit interconnect, there are at least three other wire 
implementations that are potentially beneficial:

P-Wires: Wires that are power-optimal. The 
wires have longer delays as they employ small re
peater size and wide repeater spacing.

W-Wires: Wires that are bandwidth-optimal. The 
wires have minimum width and spacing and have 
longer delays.

• L-Wires: Wires that are latency-optimal. These 
wires employ very wide wires and have low band
width.

To limit the range of possibilities, P-Wires and W- 
Wires can be combined to form a single wire imple
mentation PW-Wires, that have poor delay characteris
tics, but allow low power and high bandwidth. While a 
traditional architecture would employ the entire avail
able metal area for B-Wires, we propose the design of 
a heterogeneous interconnect, where part of the avail
able metal area is employed for B-Wires, part for L- 
Wires, and part for PW-Wires. Thus, any data transfer 
has the option of using one of three sets of wires to 
effect the communication. Figure 1 demonstrates the 
differences between the wire implementations. In the 
next section, we will demonstrate how these options 
can be exploited to improve performance and reduce 
power consumption. If the mapping of data to a set of 
wires is straightforward, the logic overhead for the de
cision process is likely to be minimal. This issue will 
be treated in more detail in subsequent sections.

3. Optimizing Coherence Traffic

The previous section outlines wire implementation 
options available to an architect. For each cache coher
ence protocol, there exist myriad coherence operations 
with varying bandwidth and latency needs. Because of 
this diversity, there are numerous opportunities to im
prove performance and power characteristics by em
ploying a heterogeneous interconnect. The goal of this 
section is to present a comprehensive listing of such 
opportunities. In Section 3.1 we focus on protocol- 
specific optimizations. We then discuss a variety of 
protocol-independent techniques in Section 3.2. Fi
nally, we discuss the implementation complexity of the 
various techniques in Section 3.3.

3.1. Protocol-dependent Techniques

We begin by examining the characteristics of coher
ence operations in both directory-based and snooping 
bus-based coherence protocols. We then describe how 
these coherence operations can be mapped to the ap
propriate set of wires. In a bus-based design, the abil
ity of a cache to directly respond to another cache’s 
request leads to low L1 cache-to-cache miss latencies. 
L2 cache latencies are relatively higher as a proces
sor core has to acquire the bus before sending the re
quest to L2. It is difficult to support a large number 
of processor cores with a single bus due to the band
width and electrical limits of a centralized bus [11]. 
In a directory-based design [14, 25], each L1 connects 
to the L2 cache through a point-to-point link. This de
sign has low L2 hit latency and scales better. However, 
each L1 cache-to-cache miss must be forwarded by the 
L2 cache, which implies high L1 cache-to-cache laten
cies. The performance comparison between these two 
design choices depends on the cache size, miss rate,
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number of outstanding memory requests, working-set 
size, sharing behavior of the targeted benchmarks, etc. 
Since either option may be attractive to chip manufac
turers, we will consider both forms of coherence pro
tocols in our study.
Write-Invalidate Directory-based Protocol

Write-invalidate directory-based protocols have 
been implemented in existing dual-core CMPs [32] 
and will likely be used in larger scale CMPs as well. 
In a directory-based protocol, every cache line has a 
directory where the states of the block in all L1s are 
stored. Whenever a request misses in an L1 cache, a 
coherence message is sent to the directory at the L2 to 
check the cache line’s global state. If there is a clean 
copy in the L2 and the request is a READ, it is served 
by the L2 cache. Otherwise, another L1 must hold an 
exclusive copy and the READ request is forwarded to 
the exclusive owner, which supplies the data. For a 
WRITE request, if any other L1 caches hold a copy of 
the cache line, coherence messages are sent to each 
of them requesting that they invalidate their copies. 
When each of these invalidation requests is acknowl
edged, the L2 cache can supply an exclusive copy of 
the cache line to the requesting L1 cache.

Hop imbalance is quite common in a directory- 
based protocol. To exploit this imbalance, we can send 
critical messages on fast wires to increase performance 
and send non-critical messages on slow wires to save 
power. For the sake of this discussion, we assume that 
the hop latencies of different wires are in the following 
ratio: L-wire : B-wire : PW-wire :: 1 : 2 : 3

Proposal I: Read exclusive request for block in 
shared state
In this case, the L2 cache’s copy is clean, so it pro
vides the data to the requesting L1 and invalidates all 
shared copies. When the requesting L1 receives the 
reply message from the L2, it collects invalidation ac
knowledgment messages from the other L1s before re
turning the data to the processor core1. Figure 2 de
picts all generated messages.

The reply message from the L2 takes only one hop, 
while the invalidation acknowledgment messages take 
two hops -  an example of hop imbalance. Since there 
is no benefit to receiving the cache line early, latencies 
for each hop can be chosen that equalize communica

1 Some coherence protocols may not impose all of these con
straints, thereby deviating from a sequentially consistent memory 
model.

F ig u re  2. R ead e x c lu s iv e  re q u e s t fo r  a b lo c k  
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tion latency for the cache line and the acknowledgment 
messages. Acknowledgment messages include iden
tifiers so they can be matched against the outstand
ing request in the L1’s MSHR. Since there are only 
a few outstanding requests in the system, the identi
fier requires few bits, allowing the acknowledgment to 
be transferred on low-bandwidth low-latency L-Wires. 
Simultaneously, the data block transmission from the 
L2 can happen on low-power PW-Wires and still finish 
before the arrival of the acknowledgments. This strat
egy improves performance (because acknowledgments 
are often on the critical path) and reduces power con
sumption (because the data block is now transferred on 
power-efficient wires). While circuit designers have 
frequently employed different types of wires within a 
circuit to reduce power dissipation without extending 
the critical path, the proposals in this paper represent 
some of the first attempts to exploit wire properties at 
the architectural level.

Proposal II: Read request for block in exclusive 
state
In this case, the value in the L2 is likely to be stale and 
the following protocol actions are taken. The L2 cache 
sends a speculative data reply to the requesting L1 and 
forwards the read request as an intervention message to 
the exclusive owner. If the cache copy in the exclusive 
owner is clean, an acknowledgment message is sent to 
the requesting L1, indicating that the speculative data 
reply from the L2 is valid. If the cache copy is dirty, 
a response message with the latest data is sent to the
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requesting L1 and a write-back message is sent to the 
L2. Since the requesting L1 cannot proceed until it re
ceives a message from the exclusive owner, the specu
lative data reply from the L2 (a single hop transfer) can 
be sent on slower PW-Wires. The forwarded request 
to the exclusive owner is on the critical path, but in
cludes the block address. It is therefore not eligible for 
transfer on L-Wires. If the owner's copy is in the ex
clusive clean state, a low-bandwidth acknowledgment 
to the requestor can be sent on L-Wires. If the owner's 
copy is dirty, the cache block can be sent over B-Wires, 
while the low priority writeback to the L2 can happen 
on PW-Wires. With the above mapping, we acceler
ate the critical path by using faster L-Wires, while also 
lowering power consumption by sending non-critical 
data on PW-Wires. The above protocol actions apply 
even in the case when a read-exclusive request is made 
for a block in the exclusive state.

Proposal III: NACK messages 
When the directory state is busy, incoming requests are 
often NACKed by the home directory, i.e., a negative 
acknowledgment is sent to the requester rather than 
buffering the request. Typically the requesting cache 
controller reissues the request and the request is seri
alized in the order in which it is actually accepted by 
the directory. A NACK message can be matched by 
comparing the request id (MSHR index) rather than 
the full address, so a NACK is eligible for transfer 
on low-bandwidth L-Wires. When network contention 
is low, the home node should be able to serve the re
quest when it arrives again, in which case sending the 
NACK on fast L-Wires can improve performance. In 
contrast, when network contention is high, frequent 
backoff-and-retry cycles are experienced. In this case, 
fast NACKs only increase traffic levels without provid
ing any performance benefit. In order to save power, 
NACKs can be sent on PW-Wires.

Write-Invalidate Bus-Based Protocol
We next examine techniques that apply to bus-based 
snooping protocols. The role of the L1s and the L2 
in a bus-based CMP system are very similar to that of 
the L2s and memory in a bus-based SMP (symmetric 
multiprocessor) system.

Proposal IV: Signal wires 
Three wired-OR signals are typically used to avoid in
volving the lower/slower memory hierarchy [15]. Two 
of these signals are responsible for reporting the state 
of snoop results and the third indicates that the snoop

result is valid. The first signal is asserted when any L1 
cache, besides the requester, has a copy of the block. 
The second signal is asserted if any cache has the block 
in the exclusive state. The third signal is an inhibit 
signal, asserted until all caches have completed their 
snoop operations. When the third signal is asserted, 
the requesting L1 and the L2 can safely examine the 
other two signals. Since all of these signals are on the 
critical path, implementing them using low-latency L- 
Wires can improve performance.

Proposal V: Voting wires 
Another design choice is whether to use cache-to- 
cache transfers if the data is in the shared state in a 
cache. The Silicon Graphics Challenge [17] and the 
Sun Enterprise use cache-to-cache transfers only for 
data in the modified state, in which case there is a 
single supplier. On the other hand, in the full Illinois 
MESI protocol, a block can be preferentially retrieved 
from another cache rather than from memory. How
ever, when multiple caches share a copy, a “voting” 
mechanism is required to decide which cache will sup
ply the data, and this voting mechanism can benefit 
from the use of low latency wires.

3.2. Protocol-independent Techniques

Proposal VI: Narrow Bit-Width Operands for Syn
chronization Variables
Synchronization is one of the most important factors 
in the performance of a parallel application. Synchro
nization is not only often on the critical path, but it 
also contributes a large percentage (up to 40%) of co
herence misses [27]. Locks and barriers are the two 
most widely used synchronization constructs. Both of 
them use small integers to implement mutual exclu
sion. Locks often toggle the synchronization variable 
between zero and one, while barriers often linearly in
crease a barrier variable from zero to the number of 
processors taking part in the barrier operation. Such 
data transfers have limited bandwidth needs and can 
benefit from using L-Wires.

This optimization can be further extended by exam
ining the general problem of cache line compaction. 
For example, if a cache line is comprised mostly of
0 bits, trivial data compaction algorithms may reduce 
the bandwidth needs of the cache line, allowing it to be 
transferred on L-Wires instead of B-Wires. If the wire 
latency difference between the two wire implementa
tions is greater than the delay of the compaction/de
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compaction algorithm, performance improvements are 
possible.

Proposal VII: Assigning Writeback Data to PW- 
Wires
Writeback data transfers result from cache replace
ments or external request/intervention messages. 
Since writeback messages are rarely on the critical 
path, assigning them to PW-Wires can save power 
without incurring significant performance penalties.

Proposal VIII: Assigning Narrow Messages to L- 
Wires
Coherence messages that include the data block ad
dress or the data block itself are many bytes wide. 
However, many other messages, such as acknowl
edgments and NACKs, do not include the address 
or data block and only contain control information 
(source/destination, message type, MSHR id, etc.). 
Such narrow messages can be assigned to low latency 
L-Wires.

3.3. Implementation Complexity

In a conventional multiprocessor interconnect, a 
subset of wires are employed for addresses, a subset 
for data, and a subset for control signals. Every bit 
of communication is mapped to a unique wire. When 
employing a heterogeneous interconnect, a communi
cation bit can map to multiple wires. For example, 
data returned by the L2 in respose to a read-exclusive 
request may map to B-Wires or PW-Wires depending 
on whether there are other sharers for that block (Pro
posal I). Thus, every wire must be associated with a 
multiplexor and de-multiplexor.

The decision process in selecting the right set of 
wires is minimal. For example, in Proposal I, an OR 
function on the directory state for that block is enough 
to select either B- or PW-Wires. In Proposal II, the 
decision process involves a check to determine if the 
block is in the exclusive state. To support Proposal
III, we need a mechanism that tracks the level of con
gestion in the network (for example, the number of 
buffered outstanding messages). There is no decision 
process involved for Proposals IV, V, and VII. Pro
posals VI and VIII require logic to compute the width 
of an operand, similar to logic used in the PowerPC 
603 [18] to determine the latency of integer multiply.

Cache coherence protocols are already designed to 
be robust in the face of variable delays for different 
messages. In all proposed innovations, a data packet

is not distributed across different sets of wires. There
fore, different components of an entity do not arrive at 
different periods of time, thereby eliminating any tim
ing problems. It may be worth considering sending the 
critical word of a cache line on L-Wires and the rest of 
the cache line on PW-Wires. Such a proposal may en
tail non-trivial complexity to handle corner cases and 
is not discussed further in this paper.

In a snooping bus-based coherence protocol, trans
actions are serialized by the order in which addresses 
appear on the bus. None of our proposed innovations 
for snooping protocols affect the transmission of ad
dress bits (address bits are always transmitted on B- 
Wires), so the transaction serialization model is pre
served.

The use of heterogeneous interconnects does not 
imply an increase in metal area. Rather, we advocate 
that the available metal area be partitioned among dif
ferent wire implementations.

4. Results

4.1. Methodology

The evaluation is performed with a detailed CMP 
architecture simulator based on UVSIM [34], a cycle- 
accurate execution-driven simulator. The CMP cores 
are out-of-order superscalar processors with private L1 
caches, shared L2 cache and all lower level memory 
hierarchy components. Contention for memory hier
archy resources (ports, banks, buffers, etc.) are mod
eled in detail. In order to model an aggressive future 
generation CMP, we assume 16 processor cores, con
nected by a two-level tree interconnect. The simulated 
on-chip interconnect is based on SGI’s NUMALink-4. 
A set of four processor cores is connected through a 
crossbar router, allowing low-latency communication 
to neighboring cores. As shown in Figure 3, the cross
bar routers are connected to the root router, where the 
centralized L2 lies. We do not model contention within 
the routers, but do model port contention on the net
work interfaces. Each cache line in the L2 cache has a 
directory which saves sharing information for the pro
cessor cores. Every L1 cache miss is sent to the L2 
cache, where further actions are taken based on the 
directory state. We model the directory-based cache 
coherence protocol that is employed in the SGI Origin 
3000 [31]. It is an MESI write-invalidate protocol with
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Parameter Value
Processor 
LI I-cache 
LI D-cache 
On-chip Network 
L2 cache 
MSHR per CPU

4-issue, 48-entry active list, 2GHz 
2-way, 64KB, 64B lines, 1-cycle lat. 
2-way, 64KB, 64B lines, 2-cycle lat.
10 processor cycles per hop 
4-way, 8MB, 64B lines, 4-cycle bank-lat. 
16

DRAM 16 16-bit-data DDR channels

T ab le  1. S y s te m  c o n f ig u ra t io n .

F ig u re  3. In te rc o n n e c t T o p o lo g y

migratory optimization. The migratory optimization 
causes a read (shared) request to return exclusive own
ership if the requested cache line is in the UNOWN 
state. Important simulation parameters are listed in Ta
ble 1.

To test our ideas, we employ a workload consisting 
of all programs from the SPLASH-2 [33] and NAS 
parallel benchmark [4] suites that were compatible 
with our simulator. The programs were run to com
pletion, but all experimental results reported in this pa
per are for the parallel phase of these applications and 
employ the default input sets for SPLASH-2 and the 
S-class for NAS.

4.2. Preliminary Results

While Section 3 provides a comprehensive list of 
potential optimizations, our preliminary study only ex
amines the effect of one class of optimizations on a 
directory-based cache coherence protocol. Our base 
model assumes a fat-tree structure with four children 
on each non-leaf node. Processor cores are on the leaf 
node, and four neighboring cores are grouped into a 
sub-tree. We define the hop number as the number of 
routers used to transfer a network message between

two processor cores. As illustrated in Figure 3, it takes 
one network hop to transfer a message between two 
processors in the same domain (sub-tree), and three 
network hops to transfer a message between any two 
processors which belong to different domains (sub
trees). The latencies on the interconnects would de
pend greatly on the technology, processor layout, and 
available metal area. The estimation of some of these 
parameters is beyond the scope of this study. For the 
base case, we assume the metal layer is comprised en
tirely of B-Wires, and one hop latency is 10 processor 
cycles. This assumption is based on projections [2, 3] 
that claim on-chip wire delays of the order of tens of 
cycles.

In the base case, each processor can issue a sin
gle 64-bit packet every cycle that is transmitted on B- 
Wires. In our proposed heterogeneous interconnect, 
we again assume that each processor can issue a single 
packet every cycle, but that packet can be transmitted 
on one of three possible sets of wires. The transmis
sion can either happen on a set of 64 B-Wires, a set of 
64 PW-Wires, or a set of 16 L-Wires. While we have 
kept the packet throughput per processor constant in 
the base and proposed cases, the metal area cost of the 
heterogeneous interconnect is higher than that of the 
base case. The comparison of designs that consume 
equal metal area is part of future work. The experi
ments in this paper are intended to provide preliminary 
best-case estimates of the potential of a heterogeneous 
interconnect. Relative energy and delay estimates of 
wires have been derived in [6]. L-Wires (latency- 
optimal) have a latency of five cycles for each network 
hop and consume about 45% more dynamic energy 
than B-Wires. PW-Wires (low power and high band
width) have a latency of 15 cycles per hop and con
sume about half the dynamic energy of B-Wires. We 
assume that every interconnect is perfectly pipelined. 
It must be noted that L-Wires can yield lower latency 
than B-Wires even when sending messages larger than 
16 bits (and lower than 112 bits). However, send
ing large messages through L-Wires will increase wait 
time for other messages, resulting in overall lower per
formance.

We will consider only the simplest subset of tech
niques proposed in Section 3, that entail the least com
plexity in mapping critical data transfers to L-Wires 
and non-critical data transfers to PW-Wires. Firstly, 
not all critical messages are eligible for transfer on L-
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Wires. Since we assume 16 L-Wires and 64-bit ad
dresses, a message that includes the full address is 
always sent on B-Wires or PW-Wires. To identify 
what messages can be sent through B-Wires and PW- 
Wires, we classify all coherence messages into six cat
egories: REQUEST, WRITE, PROBE, REPLY2MD, 
RESPONSE, and REPLY2PI.

Every memory transaction that misses in the local 
L1 cache will send out a REQUEST message to the 
L2 cache. A REQUEST message includes request type 
(READ, RDEXC, UPGRADE, etc.), source id, MSHR 
id, and data address. Although REQUEST messages 
are mostly on the critical path, they are too wide to 
benefit from L-Wires. Therefore, REQUEST mes
sages are always transmitted on B-Wires.

WRITE messages result from L1 cache replace
ment. WRITE messages are often not on the critical 
path and they can be always sent on PW-Wires with
out degrading performance.

PROBE messages happen in cache-to-cache misses 
and can be further classified as INTERVENTION mes
sages and INVALIDATE messages. An INTERVEN
TION request retrieves the most recent data for a line 
from an exclusive copy that may exist within a remote 
cache. An INVALIDATE request removes copies of a 
cache line that may exist in remote caches. Both IN
TERVENTION and INVALIDATE messages include 
request type, source id, address, and the MSHR id 
of the REQUEST message that generated the PROBE 
message. PROBE messages are usually critical, but 
can only be sent through B-Wires due to the bandwidth

F ig u re  5. P e rfo rm a n c e  im p ro v e m e n ts

limitation of L-Wires.
When a processor receives a PROBE message, it 

sends a REPLY2MD message to the home directory (if 
it has a dirty copy of the cache line) and a RESPONSE 
message to the processor that generated the REQUEST 
message. Response messages can have data, in which 
case, they must be sent on B-Wires. In most cases, the 
message is simply an acknowledgment that only needs 
reply type (4 bits), source id (4 bits in 16-core CMP), 
and MSHR id (4 bits), and can be sent on L-Wires. 
REPLY2MD is often off the critical path and can be 
sent on PW-Wires.

REPLY2PI messages are the messages sent from 
the home directory to the requester. Some REPLY2PI 
messages include data, while others only include con
trol bits (such as NACK or the reply for an UPGRADE 
request). REPLY2PI messages not only have variable 
bandwidth needs, but also have variable criticality, as 
discussed in Section 3. For example, in cache-to-cache 
misses, REPLY2PI messages tend to arrive at the re
quester faster than the PROBE/RESPONSE messages 
and are therefore off the critical path.

In order to simplify the decision process in map
ping data to wires, we adopt the following policy: (i) 
WRITE and REPLY2MD messages are always sent on 
PW-Wires, (ii) all other messages that are narrower 
than 16 bits are sent on L-Wires, and (iii) all other 
messages that are wider than 16 bits are sent on B- 
Wires. Thus, we are only incorporating Proposal VII, 
Proposal VIII, and parts of Proposal III in our sim
ulation model. Detailed evaluations of other proposals 
are left for future work.

Figure 4 shows the percentage of messages sent
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through different sets of wires, while assuming the al
location policy described above. It must be noted that a 
significant fraction of all messages are narrow enough 
that they can be sent on L-Wires. Messages sent on 
B- and PW-Wires are wider than messages sent on L- 
Wires. As a result, the fraction of bits transmitted on 
L-Wires is lower than that indicated in Figure 4. If we 
assume that dynamic energy consumed by transmis
sions on B, L, and PW-Wires are in the ratio 1: 1.45:
0.52 (as estimated in a prior study [6]), interconnect 
dynamic energy in the proposed design is reduced by 
40%. Further, this reduction in interconnect energy is 
accompanied by improvements in performance. Fig
ure 5 shows the performance speedup achieved by the 
transmission of some signals on low-latency L-Wires. 
The overall average improvement across the bench
mark set is 13.3%.

5. Related Work

Beckmann et al. [9] address the problem of long 
L2 cache access times in a chip multiprocessor by em
ploying low latency, low bandwidth transmission lines. 
They utilize transmission lines to send data from the 
center of the L2 cache to different banks. Kim et al.
[21] proposed a dynamic non-uniform cache access 
(DNUCA) mechanism to accelerate cache access. Our 
proposal is orthogonal to the above technique and can 
be combined with non-uniform cache access mecha
nisms to improve performance.

A recent study by Citron et al. [13] examines en
tropy within data being transmitted on wires and iden
tifies opportunities for compression. Unlike the pro
posed technique, they employ a single interconnect to 
transfer all data. Balasubramonian et al. [6] utilize 
heterogeneous interconnects for the transmission of 
register and load/store values to improve energy-delay 
characteristics in a partitioned microarchitecture.

Recent studies [20, 24, 26, 29] have proposed sev
eral protocol optimizations that can benefit from het
erogeneous interconnects. For example, in the Dy
namic Self Invalidation scheme proposed by Lebeck 
et al. [26], the self-invalidate [24, 26] messages can 
be effected through power-efficient PW-Wires. In a 
processor model implementing token coherence, the 
low-bandwidth token messages [29] are often on the 
critical path and thus, can be effected on L-Wires. A 
recent study by Huh et al. [20] reduces the frequency

of false sharing by employing incoherent data. For 
cache lines suffering from false sharing, only the shar
ing states need to be propagated and such messages are 
a good match for low-bandwidth L-Wires.

6. Conclusions and Future Work

Coherence traffic in a chip multiprocessor has di
verse needs. Some messages can tolerate long laten
cies, while others are on the program critical path. Fur
ther, messages have varied bandwidth demands. On- 
chip global wires can be designed to optimize latency, 
bandwidth, or power. We advocate partitioning avail
able metal area across different wire implementations 
and intelligently mapping data to the set of wires best 
suited for its communication. This paper presents nu
merous novel techniques that can exploit a heteroge
neous interconnect to simultaneously improve perfor
mance and reduce power consumption.

Our preliminary evaluation of a subset of the pro
posed techniques shows that a large fraction of mes
sages have low bandwidth needs and can be trans
mitted on low latency wires, thereby yielding a per
formance improvement of 13%. At the same time, 
a 40% reduction in interconnect dynamic energy is 
observed by transmitting non-critical data on power- 
efficient wires. These improvements are achieved at a 
marginal complexity cost as the mapping of messages 
to wires is extremely straightforward.

For future work, we plan to strengthen our evalua
tions by comparing processor models with equal metal 
area. We will carry out a sensitivity analysis with re
spect to important processor parameters such as laten
cies, interconnect topologies, etc. We will also evalu
ate the potential of other techniques listed in this paper.
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