
W i r e M a n a g e m e n t f o r C o h e r e n c e T r a f f i c i n C h i p M u l t i p r o c e s s o r s

Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian, John Carter
School of Computing, University of Utah *

Abstract

Improvements in semiconductor technology have
made it possible to include multiple processor cores
on a single die. Chip Multi-Processors (CMP) are an
attractive choice for future billion transistor architec
tures due to their low design complexity, high clock
frequency, and high throughput. In a typical CMP ar
chitecture, the L2 cache is shared by multiple cores
and data coherence is maintained among private L1s.
Coherence operations entail frequent communication
over global on-chip wires. In future technologies, com
munication between different L1s will have a signif
icant impact on overall processor performance and
power consumption.

On-chip wires can be designed to have different
latency, bandwidth, and energy properties. Like
wise, coherence protocol messages have different la
tency and bandwidth needs. We propose an intercon
nect comprised of wires with varying latency, band
width, and energy characteristics, and advocate intel
ligently mapping coherence operations to the appro
priate wires. In this paper, we present a comprehen
sive list of techniques that allow coherence protocols
to exploit a heterogeneous interconnect and present
preliminary data that indicates the potential of these
techniques to significantly improve performance and
reduce power consumption. We further demonstrate
that most of these techniques can be implemented at a
minimum complexity overhead.

1. Introduction

Advances in process technology have led to the
emergence of new bottlenecks in future micropro
cessors. One of the chief bottlenecks to perfor

*This work was supported in part by NSF grant CCF-0430063
and by Silicon Graphics Inc.

mance is the high cost of on-chip communication
through global wires [19]. Power consumption has
also emerged as a first order design metric and wires
contribute up to 50% of total chip power in some
processors [28]. Future microprocessors are likely to
exploit huge transistor budgets by employing a chip
multi-processor (CMP) architecture [30, 32]. Multi
threaded workloads that execute on such processors
will experience high on-chip communication latencies
and will dissipate significant power in interconnects.
In the past, the design of interconnects was primarily
left up to VLSI and circuit designers. However, with
communication emerging as a larger power and per
formance constraint than computation, architects may
wish to consider different wire implementations and
identify creative ways to exploit them [6]. This paper
presents a number of creative ways in which coherence
communication in a CMP can be mapped to different
wire implementations with minor increases in com
plexity. We present preliminary results that demon
strate that such an approach can both improve perfor
mance and reduce power dissipation.

In a typical CMP, the L2 cache and lower lev
els of the memory hierarchy are shared by multiple
cores [22, 32]. Sharing the L2 cache allows high cache
utilization and avoids duplicating cache hardware re
sources. L1 caches are typically not shared as such
an organization entails high communication latencies
for every load and store. Maintaining coherence be
tween the individual L1s is a challenge in CMP sys
tems. There are two major mechanisms used to en
sure coherence among L1s in a chip multiprocessor.
The first option employs a bus connecting all of the
L1s and a snoopy bus-based coherence protocol. In
this design, every L1 cache miss results in a coherence
message being broadcast on the global coherence bus.
Individual L1 caches perform coherence operations on
their local data in accordance with these coherence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

messages. The second approach employs a central
ized directory in the L2 cache that tracks sharing in
formation for all cache lines in the L2 and implements
a directory-based coherence protocol. In this design,
every L1 cache miss is sent to the L2 cache, where
further actions are taken based on directory state. Nu
merous studies [1, 10, 20, 23, 27] have characterized
the high frequency of cache misses in parallel work
loads and the high impact these misses have on total
execution time. On a cache miss, a variety of protocol
actions are initiated, such as request messages, inval
idation messages, intervention messages, data block
writebacks, data block transfers, etc. Each of these
messages involves on-chip communication with laten
cies that are projected to grow to tens of cycles in fu
ture billion transistor architectures [2].

VLSI techniques enable a variety of different wire
implementations that are typically not exploited at the
microarchitecture level. For example, by tuning wire
width and spacing, we can design wires with varying
latency and bandwidth properties. Similarly, by tun
ing repeater size and spacing, we can design wires
with varying latency and energy properties. To take
advantage of VLSI techniques and better match the
interconnect design to communication requirements,
heterogeneous interconnects have been proposed [6],
where every link consists of wires that are optimized
for either latency, energy, or bandwidth. In this study,
we explore optimizations that are enabled when such a
heterogeneous interconnect is employed for coherence
traffic. For example, on a cache write miss, the re
questing processor may have to wait for data from the
home node (a two hop transaction) and for acknowl
edgments from other sharers of the block (a three hop
transaction). Since the acknowledgments are on the
critical path and have low bandwidth needs, they can
be mapped to wires optimized for delay, while the data
block transfer is not on the critical path and can be
mapped to wires that are optimized for low power.

The paper is organized as follows. Section 2 re
views techniques that enable different wire implemen
tations and the design of a heterogeneous interconnect.
Section 3 describes the proposed innovations that map
coherence messages to different on-chip wires. Sec
tion 4 presents preliminary results that indicate the po
tential of our proposed techniques. Section 5 discusses
related work and we conclude in Section 6.

We begin with a quick review of factors that influ
ence wire properties. It is well-known that the delay
of a wire is a function of its RC time constant (R is
resistance and C is capacitance). Resistance per unit
length is (approximately) inversely proportional to the
width of the wire [19]. Likewise, a fraction of the ca
pacitance per unit length is inversely proportional to
the spacing between wires, and a fraction is directly
proportional to wire width. These wire properties pro
vide an opportunity to design wires that trade off band
width and latency. By allocating more metal area per
wire and increasing wire width and spacing, the net ef
fect is a reduction in the RC time constant. This leads
to a wire design that has favorable latency properties,
but poor bandwidth properties (as fewer wires can be
accommodated in a fixed metal area). Our analysis [6]
shows that in certain cases, nearly a three-fold reduc
tion in wire latency can be achieved, at the expense of a
four-fold reduction in bandwidth. Further, researchers
are actively pursuing transmission line implementa
tions that enable extremely low communication laten
cies [12, 16]. However, transmission lines also entail
significant metal area overheads in addition to logic
overheads for sending and receiving [8, 12]. If trans
mission line implementations become cost-effective at
future technologies, they represent another attractive
wire design point that can trade off bandwidth for low
latency.

Similar trade-offs can be made between latency and
power consumed by wires. Global wires are usually
composed of multiple smaller segments that are con
nected with repeaters [5]. The size and spacing of re
peaters influences wire delay and power consumed by
the wire. When smaller and fewer repeaters are em
ployed, wire delay increases, but power consumption
is reduced. The repeater configuration that minimizes
delay is typically very different from the repeater con
figuration that minimizes power consumption. Baner-
jee et al. [7] show that at 50nm technology, a five-fold
reduction in power can be achieved at the expense of a
two-fold increase in latency.

Thus, by varying properties such as wire
width/spacing and repeater size/spacing, we can
implement wires with different latency, bandwidth,
and power properties. If a data packet has 64 bits,
global interconnects are typically designed to min-

2. W ire Im p lem en ta tio n s

2

A A A A A A A A

A A A A A A A A

Delay Optimized Bandwidth Optimized Power Optimized Power and Bandwidth Optimized

F ig u re 1. E x a m p le s o f d if fe re n t w ire im p le m e n ta tio n s . P o w e r o p tim iz e d w ire s h a ve fe w e r a n d s m a lle r
re p e a te rs , w h ile b a n d w id th o p t im iz e d w ire s h a ve n a rro w w id th s a n d s p a c in g .

imize delay for the transfer of 64-bit data, while
not exceeding the allocated metal area. We refer
to these wires as B-Wires. In addition to this base
64-bit interconnect, there are at least three other wire
implementations that are potentially beneficial:

P-Wires: Wires that are power-optimal. The
wires have longer delays as they employ small re
peater size and wide repeater spacing.

W-Wires: Wires that are bandwidth-optimal. The
wires have minimum width and spacing and have
longer delays.

• L-Wires: Wires that are latency-optimal. These
wires employ very wide wires and have low band
width.

To limit the range of possibilities, P-Wires and W-
Wires can be combined to form a single wire imple
mentation PW-Wires, that have poor delay characteris
tics, but allow low power and high bandwidth. While a
traditional architecture would employ the entire avail
able metal area for B-Wires, we propose the design of
a heterogeneous interconnect, where part of the avail
able metal area is employed for B-Wires, part for L-
Wires, and part for PW-Wires. Thus, any data transfer
has the option of using one of three sets of wires to
effect the communication. Figure 1 demonstrates the
differences between the wire implementations. In the
next section, we will demonstrate how these options
can be exploited to improve performance and reduce
power consumption. If the mapping of data to a set of
wires is straightforward, the logic overhead for the de
cision process is likely to be minimal. This issue will
be treated in more detail in subsequent sections.

3. Optimizing Coherence Traffic

The previous section outlines wire implementation
options available to an architect. For each cache coher
ence protocol, there exist myriad coherence operations
with varying bandwidth and latency needs. Because of
this diversity, there are numerous opportunities to im
prove performance and power characteristics by em
ploying a heterogeneous interconnect. The goal of this
section is to present a comprehensive listing of such
opportunities. In Section 3.1 we focus on protocol-
specific optimizations. We then discuss a variety of
protocol-independent techniques in Section 3.2. Fi
nally, we discuss the implementation complexity of the
various techniques in Section 3.3.

3.1. Protocol-dependent Techniques

We begin by examining the characteristics of coher
ence operations in both directory-based and snooping
bus-based coherence protocols. We then describe how
these coherence operations can be mapped to the ap
propriate set of wires. In a bus-based design, the abil
ity of a cache to directly respond to another cache’s
request leads to low L1 cache-to-cache miss latencies.
L2 cache latencies are relatively higher as a proces
sor core has to acquire the bus before sending the re
quest to L2. It is difficult to support a large number
of processor cores with a single bus due to the band
width and electrical limits of a centralized bus [11].
In a directory-based design [14, 25], each L1 connects
to the L2 cache through a point-to-point link. This de
sign has low L2 hit latency and scales better. However,
each L1 cache-to-cache miss must be forwarded by the
L2 cache, which implies high L1 cache-to-cache laten
cies. The performance comparison between these two
design choices depends on the cache size, miss rate,

3

number of outstanding memory requests, working-set
size, sharing behavior of the targeted benchmarks, etc.
Since either option may be attractive to chip manufac
turers, we will consider both forms of coherence pro
tocols in our study.
Write-Invalidate Directory-based Protocol

Write-invalidate directory-based protocols have
been implemented in existing dual-core CMPs [32]
and will likely be used in larger scale CMPs as well.
In a directory-based protocol, every cache line has a
directory where the states of the block in all L1s are
stored. Whenever a request misses in an L1 cache, a
coherence message is sent to the directory at the L2 to
check the cache line’s global state. If there is a clean
copy in the L2 and the request is a READ, it is served
by the L2 cache. Otherwise, another L1 must hold an
exclusive copy and the READ request is forwarded to
the exclusive owner, which supplies the data. For a
WRITE request, if any other L1 caches hold a copy of
the cache line, coherence messages are sent to each
of them requesting that they invalidate their copies.
When each of these invalidation requests is acknowl
edged, the L2 cache can supply an exclusive copy of
the cache line to the requesting L1 cache.

Hop imbalance is quite common in a directory-
based protocol. To exploit this imbalance, we can send
critical messages on fast wires to increase performance
and send non-critical messages on slow wires to save
power. For the sake of this discussion, we assume that
the hop latencies of different wires are in the following
ratio: L-wire : B-wire : PW-wire :: 1 : 2 : 3

Proposal I: Read exclusive request for block in
shared state
In this case, the L2 cache’s copy is clean, so it pro
vides the data to the requesting L1 and invalidates all
shared copies. When the requesting L1 receives the
reply message from the L2, it collects invalidation ac
knowledgment messages from the other L1s before re
turning the data to the processor core1. Figure 2 de
picts all generated messages.

The reply message from the L2 takes only one hop,
while the invalidation acknowledgment messages take
two hops - an example of hop imbalance. Since there
is no benefit to receiving the cache line early, latencies
for each hop can be chosen that equalize communica

1 Some coherence protocols may not impose all of these con
straints, thereby deviating from a sequentially consistent memory
model.

F ig u re 2. R ead e x c lu s iv e re q u e s t fo r a b lo c k
in s h a re d s ta te

tion latency for the cache line and the acknowledgment
messages. Acknowledgment messages include iden
tifiers so they can be matched against the outstand
ing request in the L1’s MSHR. Since there are only
a few outstanding requests in the system, the identi
fier requires few bits, allowing the acknowledgment to
be transferred on low-bandwidth low-latency L-Wires.
Simultaneously, the data block transmission from the
L2 can happen on low-power PW-Wires and still finish
before the arrival of the acknowledgments. This strat
egy improves performance (because acknowledgments
are often on the critical path) and reduces power con
sumption (because the data block is now transferred on
power-efficient wires). While circuit designers have
frequently employed different types of wires within a
circuit to reduce power dissipation without extending
the critical path, the proposals in this paper represent
some of the first attempts to exploit wire properties at
the architectural level.

Proposal II: Read request for block in exclusive
state
In this case, the value in the L2 is likely to be stale and
the following protocol actions are taken. The L2 cache
sends a speculative data reply to the requesting L1 and
forwards the read request as an intervention message to
the exclusive owner. If the cache copy in the exclusive
owner is clean, an acknowledgment message is sent to
the requesting L1, indicating that the speculative data
reply from the L2 is valid. If the cache copy is dirty,
a response message with the latest data is sent to the

4

requesting L1 and a write-back message is sent to the
L2. Since the requesting L1 cannot proceed until it re
ceives a message from the exclusive owner, the specu
lative data reply from the L2 (a single hop transfer) can
be sent on slower PW-Wires. The forwarded request
to the exclusive owner is on the critical path, but in
cludes the block address. It is therefore not eligible for
transfer on L-Wires. If the owner's copy is in the ex
clusive clean state, a low-bandwidth acknowledgment
to the requestor can be sent on L-Wires. If the owner's
copy is dirty, the cache block can be sent over B-Wires,
while the low priority writeback to the L2 can happen
on PW-Wires. With the above mapping, we acceler
ate the critical path by using faster L-Wires, while also
lowering power consumption by sending non-critical
data on PW-Wires. The above protocol actions apply
even in the case when a read-exclusive request is made
for a block in the exclusive state.

Proposal III: NACK messages
When the directory state is busy, incoming requests are
often NACKed by the home directory, i.e., a negative
acknowledgment is sent to the requester rather than
buffering the request. Typically the requesting cache
controller reissues the request and the request is seri
alized in the order in which it is actually accepted by
the directory. A NACK message can be matched by
comparing the request id (MSHR index) rather than
the full address, so a NACK is eligible for transfer
on low-bandwidth L-Wires. When network contention
is low, the home node should be able to serve the re
quest when it arrives again, in which case sending the
NACK on fast L-Wires can improve performance. In
contrast, when network contention is high, frequent
backoff-and-retry cycles are experienced. In this case,
fast NACKs only increase traffic levels without provid
ing any performance benefit. In order to save power,
NACKs can be sent on PW-Wires.

Write-Invalidate Bus-Based Protocol
We next examine techniques that apply to bus-based
snooping protocols. The role of the L1s and the L2
in a bus-based CMP system are very similar to that of
the L2s and memory in a bus-based SMP (symmetric
multiprocessor) system.

Proposal IV: Signal wires
Three wired-OR signals are typically used to avoid in
volving the lower/slower memory hierarchy [15]. Two
of these signals are responsible for reporting the state
of snoop results and the third indicates that the snoop

result is valid. The first signal is asserted when any L1
cache, besides the requester, has a copy of the block.
The second signal is asserted if any cache has the block
in the exclusive state. The third signal is an inhibit
signal, asserted until all caches have completed their
snoop operations. When the third signal is asserted,
the requesting L1 and the L2 can safely examine the
other two signals. Since all of these signals are on the
critical path, implementing them using low-latency L-
Wires can improve performance.

Proposal V: Voting wires
Another design choice is whether to use cache-to-
cache transfers if the data is in the shared state in a
cache. The Silicon Graphics Challenge [17] and the
Sun Enterprise use cache-to-cache transfers only for
data in the modified state, in which case there is a
single supplier. On the other hand, in the full Illinois
MESI protocol, a block can be preferentially retrieved
from another cache rather than from memory. How
ever, when multiple caches share a copy, a “voting”
mechanism is required to decide which cache will sup
ply the data, and this voting mechanism can benefit
from the use of low latency wires.

3.2. Protocol-independent Techniques

Proposal VI: Narrow Bit-Width Operands for Syn
chronization Variables
Synchronization is one of the most important factors
in the performance of a parallel application. Synchro
nization is not only often on the critical path, but it
also contributes a large percentage (up to 40%) of co
herence misses [27]. Locks and barriers are the two
most widely used synchronization constructs. Both of
them use small integers to implement mutual exclu
sion. Locks often toggle the synchronization variable
between zero and one, while barriers often linearly in
crease a barrier variable from zero to the number of
processors taking part in the barrier operation. Such
data transfers have limited bandwidth needs and can
benefit from using L-Wires.

This optimization can be further extended by exam
ining the general problem of cache line compaction.
For example, if a cache line is comprised mostly of
0 bits, trivial data compaction algorithms may reduce
the bandwidth needs of the cache line, allowing it to be
transferred on L-Wires instead of B-Wires. If the wire
latency difference between the two wire implementa
tions is greater than the delay of the compaction/de

5

compaction algorithm, performance improvements are
possible.

Proposal VII: Assigning Writeback Data to PW-
Wires
Writeback data transfers result from cache replace
ments or external request/intervention messages.
Since writeback messages are rarely on the critical
path, assigning them to PW-Wires can save power
without incurring significant performance penalties.

Proposal VIII: Assigning Narrow Messages to L-
Wires
Coherence messages that include the data block ad
dress or the data block itself are many bytes wide.
However, many other messages, such as acknowl
edgments and NACKs, do not include the address
or data block and only contain control information
(source/destination, message type, MSHR id, etc.).
Such narrow messages can be assigned to low latency
L-Wires.

3.3. Implementation Complexity

In a conventional multiprocessor interconnect, a
subset of wires are employed for addresses, a subset
for data, and a subset for control signals. Every bit
of communication is mapped to a unique wire. When
employing a heterogeneous interconnect, a communi
cation bit can map to multiple wires. For example,
data returned by the L2 in respose to a read-exclusive
request may map to B-Wires or PW-Wires depending
on whether there are other sharers for that block (Pro
posal I). Thus, every wire must be associated with a
multiplexor and de-multiplexor.

The decision process in selecting the right set of
wires is minimal. For example, in Proposal I, an OR
function on the directory state for that block is enough
to select either B- or PW-Wires. In Proposal II, the
decision process involves a check to determine if the
block is in the exclusive state. To support Proposal
III, we need a mechanism that tracks the level of con
gestion in the network (for example, the number of
buffered outstanding messages). There is no decision
process involved for Proposals IV, V, and VII. Pro
posals VI and VIII require logic to compute the width
of an operand, similar to logic used in the PowerPC
603 [18] to determine the latency of integer multiply.

Cache coherence protocols are already designed to
be robust in the face of variable delays for different
messages. In all proposed innovations, a data packet

is not distributed across different sets of wires. There
fore, different components of an entity do not arrive at
different periods of time, thereby eliminating any tim
ing problems. It may be worth considering sending the
critical word of a cache line on L-Wires and the rest of
the cache line on PW-Wires. Such a proposal may en
tail non-trivial complexity to handle corner cases and
is not discussed further in this paper.

In a snooping bus-based coherence protocol, trans
actions are serialized by the order in which addresses
appear on the bus. None of our proposed innovations
for snooping protocols affect the transmission of ad
dress bits (address bits are always transmitted on B-
Wires), so the transaction serialization model is pre
served.

The use of heterogeneous interconnects does not
imply an increase in metal area. Rather, we advocate
that the available metal area be partitioned among dif
ferent wire implementations.

4. Results

4.1. Methodology

The evaluation is performed with a detailed CMP
architecture simulator based on UVSIM [34], a cycle-
accurate execution-driven simulator. The CMP cores
are out-of-order superscalar processors with private L1
caches, shared L2 cache and all lower level memory
hierarchy components. Contention for memory hier
archy resources (ports, banks, buffers, etc.) are mod
eled in detail. In order to model an aggressive future
generation CMP, we assume 16 processor cores, con
nected by a two-level tree interconnect. The simulated
on-chip interconnect is based on SGI’s NUMALink-4.
A set of four processor cores is connected through a
crossbar router, allowing low-latency communication
to neighboring cores. As shown in Figure 3, the cross
bar routers are connected to the root router, where the
centralized L2 lies. We do not model contention within
the routers, but do model port contention on the net
work interfaces. Each cache line in the L2 cache has a
directory which saves sharing information for the pro
cessor cores. Every L1 cache miss is sent to the L2
cache, where further actions are taken based on the
directory state. We model the directory-based cache
coherence protocol that is employed in the SGI Origin
3000 [31]. It is an MESI write-invalidate protocol with

6

Parameter Value
Processor
LI I-cache
LI D-cache
On-chip Network
L2 cache
MSHR per CPU

4-issue, 48-entry active list, 2GHz
2-way, 64KB, 64B lines, 1-cycle lat.
2-way, 64KB, 64B lines, 2-cycle lat.
10 processor cycles per hop
4-way, 8MB, 64B lines, 4-cycle bank-lat.
16

DRAM 16 16-bit-data DDR channels

T ab le 1. S y s te m c o n f ig u ra t io n .

F ig u re 3. In te rc o n n e c t T o p o lo g y

migratory optimization. The migratory optimization
causes a read (shared) request to return exclusive own
ership if the requested cache line is in the UNOWN
state. Important simulation parameters are listed in Ta
ble 1.

To test our ideas, we employ a workload consisting
of all programs from the SPLASH-2 [33] and NAS
parallel benchmark [4] suites that were compatible
with our simulator. The programs were run to com
pletion, but all experimental results reported in this pa
per are for the parallel phase of these applications and
employ the default input sets for SPLASH-2 and the
S-class for NAS.

4.2. Preliminary Results

While Section 3 provides a comprehensive list of
potential optimizations, our preliminary study only ex
amines the effect of one class of optimizations on a
directory-based cache coherence protocol. Our base
model assumes a fat-tree structure with four children
on each non-leaf node. Processor cores are on the leaf
node, and four neighboring cores are grouped into a
sub-tree. We define the hop number as the number of
routers used to transfer a network message between

two processor cores. As illustrated in Figure 3, it takes
one network hop to transfer a message between two
processors in the same domain (sub-tree), and three
network hops to transfer a message between any two
processors which belong to different domains (sub
trees). The latencies on the interconnects would de
pend greatly on the technology, processor layout, and
available metal area. The estimation of some of these
parameters is beyond the scope of this study. For the
base case, we assume the metal layer is comprised en
tirely of B-Wires, and one hop latency is 10 processor
cycles. This assumption is based on projections [2, 3]
that claim on-chip wire delays of the order of tens of
cycles.

In the base case, each processor can issue a sin
gle 64-bit packet every cycle that is transmitted on B-
Wires. In our proposed heterogeneous interconnect,
we again assume that each processor can issue a single
packet every cycle, but that packet can be transmitted
on one of three possible sets of wires. The transmis
sion can either happen on a set of 64 B-Wires, a set of
64 PW-Wires, or a set of 16 L-Wires. While we have
kept the packet throughput per processor constant in
the base and proposed cases, the metal area cost of the
heterogeneous interconnect is higher than that of the
base case. The comparison of designs that consume
equal metal area is part of future work. The experi
ments in this paper are intended to provide preliminary
best-case estimates of the potential of a heterogeneous
interconnect. Relative energy and delay estimates of
wires have been derived in [6]. L-Wires (latency-
optimal) have a latency of five cycles for each network
hop and consume about 45% more dynamic energy
than B-Wires. PW-Wires (low power and high band
width) have a latency of 15 cycles per hop and con
sume about half the dynamic energy of B-Wires. We
assume that every interconnect is perfectly pipelined.
It must be noted that L-Wires can yield lower latency
than B-Wires even when sending messages larger than
16 bits (and lower than 112 bits). However, send
ing large messages through L-Wires will increase wait
time for other messages, resulting in overall lower per
formance.

We will consider only the simplest subset of tech
niques proposed in Section 3, that entail the least com
plexity in mapping critical data transfers to L-Wires
and non-critical data transfers to PW-Wires. Firstly,
not all critical messages are eligible for transfer on L-

7

- -

x</ £ / o& # <s> ■r / /

F ig u re 4. P e rc e n ta g e o f c r i t ic a l a n d n o n -
c r i t ic a l m e s s a g e s

Wires. Since we assume 16 L-Wires and 64-bit ad
dresses, a message that includes the full address is
always sent on B-Wires or PW-Wires. To identify
what messages can be sent through B-Wires and PW-
Wires, we classify all coherence messages into six cat
egories: REQUEST, WRITE, PROBE, REPLY2MD,
RESPONSE, and REPLY2PI.

Every memory transaction that misses in the local
L1 cache will send out a REQUEST message to the
L2 cache. A REQUEST message includes request type
(READ, RDEXC, UPGRADE, etc.), source id, MSHR
id, and data address. Although REQUEST messages
are mostly on the critical path, they are too wide to
benefit from L-Wires. Therefore, REQUEST mes
sages are always transmitted on B-Wires.

WRITE messages result from L1 cache replace
ment. WRITE messages are often not on the critical
path and they can be always sent on PW-Wires with
out degrading performance.

PROBE messages happen in cache-to-cache misses
and can be further classified as INTERVENTION mes
sages and INVALIDATE messages. An INTERVEN
TION request retrieves the most recent data for a line
from an exclusive copy that may exist within a remote
cache. An INVALIDATE request removes copies of a
cache line that may exist in remote caches. Both IN
TERVENTION and INVALIDATE messages include
request type, source id, address, and the MSHR id
of the REQUEST message that generated the PROBE
message. PROBE messages are usually critical, but
can only be sent through B-Wires due to the bandwidth

F ig u re 5. P e rfo rm a n c e im p ro v e m e n ts

limitation of L-Wires.
When a processor receives a PROBE message, it

sends a REPLY2MD message to the home directory (if
it has a dirty copy of the cache line) and a RESPONSE
message to the processor that generated the REQUEST
message. Response messages can have data, in which
case, they must be sent on B-Wires. In most cases, the
message is simply an acknowledgment that only needs
reply type (4 bits), source id (4 bits in 16-core CMP),
and MSHR id (4 bits), and can be sent on L-Wires.
REPLY2MD is often off the critical path and can be
sent on PW-Wires.

REPLY2PI messages are the messages sent from
the home directory to the requester. Some REPLY2PI
messages include data, while others only include con
trol bits (such as NACK or the reply for an UPGRADE
request). REPLY2PI messages not only have variable
bandwidth needs, but also have variable criticality, as
discussed in Section 3. For example, in cache-to-cache
misses, REPLY2PI messages tend to arrive at the re
quester faster than the PROBE/RESPONSE messages
and are therefore off the critical path.

In order to simplify the decision process in map
ping data to wires, we adopt the following policy: (i)
WRITE and REPLY2MD messages are always sent on
PW-Wires, (ii) all other messages that are narrower
than 16 bits are sent on L-Wires, and (iii) all other
messages that are wider than 16 bits are sent on B-
Wires. Thus, we are only incorporating Proposal VII,
Proposal VIII, and parts of Proposal III in our sim
ulation model. Detailed evaluations of other proposals
are left for future work.

Figure 4 shows the percentage of messages sent

8

through different sets of wires, while assuming the al
location policy described above. It must be noted that a
significant fraction of all messages are narrow enough
that they can be sent on L-Wires. Messages sent on
B- and PW-Wires are wider than messages sent on L-
Wires. As a result, the fraction of bits transmitted on
L-Wires is lower than that indicated in Figure 4. If we
assume that dynamic energy consumed by transmis
sions on B, L, and PW-Wires are in the ratio 1: 1.45:
0.52 (as estimated in a prior study [6]), interconnect
dynamic energy in the proposed design is reduced by
40%. Further, this reduction in interconnect energy is
accompanied by improvements in performance. Fig
ure 5 shows the performance speedup achieved by the
transmission of some signals on low-latency L-Wires.
The overall average improvement across the bench
mark set is 13.3%.

5. Related Work

Beckmann et al. [9] address the problem of long
L2 cache access times in a chip multiprocessor by em
ploying low latency, low bandwidth transmission lines.
They utilize transmission lines to send data from the
center of the L2 cache to different banks. Kim et al.
[21] proposed a dynamic non-uniform cache access
(DNUCA) mechanism to accelerate cache access. Our
proposal is orthogonal to the above technique and can
be combined with non-uniform cache access mecha
nisms to improve performance.

A recent study by Citron et al. [13] examines en
tropy within data being transmitted on wires and iden
tifies opportunities for compression. Unlike the pro
posed technique, they employ a single interconnect to
transfer all data. Balasubramonian et al. [6] utilize
heterogeneous interconnects for the transmission of
register and load/store values to improve energy-delay
characteristics in a partitioned microarchitecture.

Recent studies [20, 24, 26, 29] have proposed sev
eral protocol optimizations that can benefit from het
erogeneous interconnects. For example, in the Dy
namic Self Invalidation scheme proposed by Lebeck
et al. [26], the self-invalidate [24, 26] messages can
be effected through power-efficient PW-Wires. In a
processor model implementing token coherence, the
low-bandwidth token messages [29] are often on the
critical path and thus, can be effected on L-Wires. A
recent study by Huh et al. [20] reduces the frequency

of false sharing by employing incoherent data. For
cache lines suffering from false sharing, only the shar
ing states need to be propagated and such messages are
a good match for low-bandwidth L-Wires.

6. Conclusions and Future Work

Coherence traffic in a chip multiprocessor has di
verse needs. Some messages can tolerate long laten
cies, while others are on the program critical path. Fur
ther, messages have varied bandwidth demands. On-
chip global wires can be designed to optimize latency,
bandwidth, or power. We advocate partitioning avail
able metal area across different wire implementations
and intelligently mapping data to the set of wires best
suited for its communication. This paper presents nu
merous novel techniques that can exploit a heteroge
neous interconnect to simultaneously improve perfor
mance and reduce power consumption.

Our preliminary evaluation of a subset of the pro
posed techniques shows that a large fraction of mes
sages have low bandwidth needs and can be trans
mitted on low latency wires, thereby yielding a per
formance improvement of 13%. At the same time,
a 40% reduction in interconnect dynamic energy is
observed by transmitting non-critical data on power-
efficient wires. These improvements are achieved at a
marginal complexity cost as the mapping of messages
to wires is extremely straightforward.

For future work, we plan to strengthen our evalua
tions by comparing processor models with equal metal
area. We will carry out a sensitivity analysis with re
spect to important processor parameters such as laten
cies, interconnect topologies, etc. We will also evalu
ate the potential of other techniques listed in this paper.

References

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Du-
ato. The Use of Prediction for Accelerating Upgrade
Misses in CC-NUMA Multiprocessors. In Proceed
ings o f PACT-11, 2002.

[2] V. Agarwal,M. Hrishikesh, S. Keckler, andD. Burger.
Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures. In Proceedings o f
ISCA-27, pages 248-259, June 2000.

[3] S. I. Association. International Technol
ogy Roadmap for Semiconductors 2003.
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

9

http://public.itrs.net/Files/2003ITRS/Home2003.htm

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS
Parallel Benchmarks. The International Journal o f
Supercomputer Applications, 5(3):63-73,Fall 1994.

[5] H. Bakoglu. Circuits, Interconnections, and Packag
ing fo r VLSI. Addison-Wesley, 1990.

[6] R. Balasubramonian, N. Muralimanohar, K. Ramani,
and V. Venkatachalapathy. Microarchitectural Wire
Management for Performance and Power in Parti
tioned Architectures. In Proceedings o f HPCA-11,
February 2005.

[7] K. Banerjee and A. Mehrotra. A Power-optimal Re
peater Insertion Methodology for Global Intercon
nects in Nanometer Designs. IEEE Transactions
on Electron Devices, 49(11):2001-2007, November
2002.

[8] B. Beckmann and D. Wood. TLC: Transmission Line
Caches. In Proceedings o f MICRO-36, December
2003.

[9] B. Beckmann and D. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Caches. In Proceedings
o f MICRO-37, December 2004.

[10] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J.
Sorin, M. D. Hill, and D. A. Wood. Multicast Snoop
ing: A New Coherence Method using a Multicast
Address Network. SIGARCH Comput. Archil News,
pages 294-304,1999.

[11] F. A. Briggs, M. Cekleov, K. Creta, M. Khare,
S. Kulick, A. Kumar, L. P. Looi, C. Natarajan, S. Rad-
hakrishnan, and L. Rankin. Intel 870: A building
block for cost-effective, scalable servers. IEEE M i
cro, 22(2):36-47,2002.

[12] R. Chang, N. Talwalkar, C. Yue, and S. Wong. Near
Speed-of-Light Signaling Over On-Chip Electrical
Interconnects. IEEE Journal o f Solid-State Circuits,
38(5):834-838, May 2003.

[13] D. Citron. Exploiting Low Entropy to Reduce Wire
Delay. IEEE Computer Architecture Letters, vol.2,
January 2004.

[14] Corporate Institute of Electrical and Electronics Engi
neers, Inc. Staff. IEEE Standard fo r Scalable Coher
ent Interface, Science: IEEE Std. 1596-1992. 1993.

[15] D. E. Culler and J. P. Singh. Parallel Computer Ar
chitecture: a Hardware/software Approach. Morgan
Kaufmann Publishers, Inc, 1999.

[16] W. Dally and J. Poulton. Digital System Engineering.
Cambridge University Press, Cambridge, UK, 1998.

[17] M. Galles and E. Williams. Performance Optimiza
tions, Implementation, and Verification of the SGI
Challenge Multiprocessor. In HICSS (1), pages 134
143, 1994.

[18] G. Gerosa and et al. A 2.2 W, 80 MHz Superscalar
RISC Microprocessor. IEEE Journal o f Solid-State
Circuits, 29(12):1440-1454, December 1994.

[19] R. Ho, K. Mai, and M. Horowitz. The Future of
Wires. Proceedings o f the IEEE, Vol.89, No.4, April
2001.

[20] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Co
herence Decoupling: Making Use of Incoherence. In
Proceedings ofASPLOS-XI, pages 97-106,2004.

[21] J. Kim, M. Taylor, J. Miller, and D. Wentzlaff. En
ergy Characterization of a Tiled Architecture Pro
cessor with On-Chip Networks. In Proceedings o f
ISLPED, pages 424-427,2003.

[22] K. Krewell. UltraSPARC IV Mirrors Predecessor:
Sun Builds Dualcore Chip in 130nm. Microproces
sor Report, pages 1,5-6, Nov. 2003.

[23] A.-C. Lai and B. Falsafi . Memory Sharing Predictor:
The Key to a Speculative Coherent DSM. In Proceed
ings ofISCA-26, 1999.

[24] A.-C. Lai and B. Falsafi . Selective, Accurate, and
Timely Self-Invalidation Using Last-Touch Predic
tion. In Proceedings o f ISCA-27, pages 139-148,
2000.

[25] J. Laudon and D. Lenoski. The SGI Origin: A cc-
NUMA Highly Scalable Server. In Proceedings o f
ISCA-24, pages 241-251, June 1997.

[26] A. R. Lebeck and D. A. Wood. Dynamic Self
Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors. In Proceedings o f
ISCA-22, pages 48-59,1995.

[27] K. M. Lepak and M. H. Lipasti. Temporally Silent
Stores. In Proceedings o f ASPLOS-X, pages 30-41,
2002.

[28] N. Magen, A. Kolodny, U. Weiser, and N. Shamir. In
terconnect Power Dissipation in a Microprocessor. In
Proceedings ofSystem Level Interconnect Prediction,
February 2004.

[29] M. M. K. Martin, M. D. Hill, and D. A. Wood. To
ken Coherence: Decoupling Performance and Cor
rectness. In Proceedings ofISCA-30, 2003.

[30] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson,
and K.-Y. Chang. The Case for a Single-Chip Mul
tiprocessor. In Proceedings ofASPLOS-VII, October
1996.

[31] Silicon Graphics, Inc. SGITMOriginTM3000 Series
Technical Report, Jan 2001.

[32] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sin-
haroy. POWER4 System Microarchitecture. Tech
nical report, IBM Server Group Whitepaper, October
2001.

[33] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings o f
ISCA-22, pages 24-36, June 1995.

[34] L. Zhang. UVSIM Reference Manual. Technical Re
port UUCS-03-011, University of Utah, May 2003.

10

