4,961 research outputs found

    Guidelines for a Dynamic Ontology - Integrating Tools of Evolution and Versioning in Ontology

    Full text link
    Ontologies are built on systems that conceptually evolve over time. In addition, techniques and languages for building ontologies evolve too. This has led to numerous studies in the field of ontology versioning and ontology evolution. This paper presents a new way to manage the lifecycle of an ontology incorporating both versioning tools and evolution process. This solution, called VersionGraph, is integrated in the source ontology since its creation in order to make it possible to evolve and to be versioned. Change management is strongly related to the model in which the ontology is represented. Therefore, we focus on the OWL language in order to take into account the impact of the changes on the logical consistency of the ontology like specified in OWL DL

    Relating geometry descriptions to its derivatives on the web

    Get PDF
    Sharing building information over the Web is becoming more popular, leading to advances in describing building models in a Semantic Web context. However, those descriptions lack unified approaches for linking geometry descriptions to building elements, derived properties and derived other geometry descriptions. To bridge this gap, we analyse the basic characteristics of geometric dependencies and propose the Ontology for Managing Geometry (OMG) based on this analysis. In this paper, we present our results and show how the OMG provides means to link geometric and non-geometric data in meaningful ways. Thus, exchanging building data, including geometry, on the Web becomes more efficient

    Reasoning and Change Management in Modular Ontologies

    Get PDF
    The benefits of modular representations are well known from many areas of computer science. In this paper, we concentrate on the benefits of modular ontologies with respect to local containment of terminological reasoning. We define an architecture for modular ontologies that supports local reasoning by compiling implied subsumption relations. We further address the problem of guaranteeing the integrity of a modular ontology in the presence of local changes. We propose a strategy for analyzing changes and guiding the process of updating compiled information

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    Ontology (Science)

    Get PDF
    Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type – the Gene Ontology (GO) being the most conspicuous example – are a _part of science_. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology develop¬ment work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the author¬ing, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists

    Ontology as Product-Service System: Lessons Learned from GO, BFO and DOLCE

    Get PDF
    This paper defends a view of the Gene Ontology (GO) and of Basic Formal Ontology (BFO) as examples of what the manufacturing industry calls product-service systems. This means that they are products (the ontologies) bundled with a range of ontology services such as updates, training, help desk, and permanent identifiers. The paper argues that GO and BFO are contrasted in this respect with DOLCE, which approximates more closely to a scientific theory or a scientific publication. The paper provides a detailed overview of ontology services and concludes with a discussion of some implications of the product-service system approach for the understanding of the nature of applied ontology. Ontology developer communities are compared in this respect with developers of scientific theories and of standards (such as W3C). For each of these we can ask: what kinds of products do they develop and what kinds of services do they provide for the users of these products

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    Ontological Reengineering for Reuse

    Get PDF
    This paper presents the concept of Ontological Reengineering as the process of retrieving and transforming a conceptual model of an existing and implemented ontology into a new, more correct and more complete conceptual model which is reimplemented. Three activities have been identified in this process: reverse engineering, restructuring and forward engineering. The aim of Reverse Engineering is to output a possible conceptual model on the basis of the code in which the ontology is implemented. The goal of Restructuring is to reorganize this initial conceptual model into a new conceptual model, which is built bearing in mind the use of the restructured ontology by the ontology/application that reuses it. Finally, the objective of Forward Engineering is output a new implementation of the ontology. The paper also discusses how the ontological reengineering process has been applied to the Standard-Units ontology [18], which is included in a Chemical-Elements [12] ontology. These two ontologies will be included in a Monatomic-Ions and Environmental-Pollutants ontologies

    Referent tracking for corporate memories

    Get PDF
    For corporate memory and enterprise ontology systems to be maximally useful, they must be freed from certain barriers placed around them by traditional knowledge management paradigms. This means, above all, that they must mirror more faithfully those portions of reality which are salient to the workings of the enterprise, including the changes that occur with the passage of time. The purpose of this chapter is to demonstrate how theories based on philosophical realism can contribute to this objective. We discuss how realism-based ontologies (capturing what is generic) combined with referent tracking (capturing what is specific) can play a key role in building the robust and useful corporate memories of the future
    • …
    corecore