
DOI:10.35490/EC3.2019.146Page 304 of 490

2019 European Conference on Computing in Construction
Chania, Crete, Greece

July 10-12, 2019

RELATING GEOMETRY DESCRIPTIONS TO ITS DERIVATIVES ON THE WEB

Anna Wagner1∗, Mathias Bonduel2, Pieter Pauwels3 and Uwe Rüppel1
1Department of Civil and Environmental Engineering Sciences, TU Darmstadt, Darmstadt, Germany

2Department of Civil Engineering, Technology Cluster Construction, KU Leuven, Ghent, Belgium
3Department of Architecture and Urban Planning, Ghent University, Ghent, Belgium

Abstract
Sharing building information over the Web is becoming
more popular, leading to advances in describing building
models in a Semantic Web context. However, those de-
scriptions lack unified approaches for linking geometry
descriptions to building elements, derived properties and
derived other geometry descriptions. To bridge this gap,
we analyse the basic characteristics of geometric depen-
dencies and propose the Ontology for Managing Geometry
(OMG) based on this analysis. In this paper, we present
our results and show how the OMG provides means to link
geometric and non-geometric data in meaningful ways.
Thus, exchanging building data, including geometry, on
the Web becomes more efficient.

Introduction
The exchange of building data in a Semantic Web con-
text is of growing interest for researches related to the
construction industry. However, current results mainly
focus on non-geometric or topological building data, as
can be seen in Pauwels et al. (2017). The description of
geometry on the Web is lagging behind compared to the
developments in other fields of interest to the construction
industry, hindering the exchange of complete building data
using Semantic Web technologies.
To our knowledge, conducted research on the topic of ge-
ometry representation in a Semantic Web context is lacking
unified and meaningful connections for geometry descrip-
tions. This affects the relation between (building) elements
and their geometry description as well as dependencies be-
tween geometry descriptions and properties derived from
it (e.g. volumes, dimensions, and areas) or other derived
geometric representations (e.g. a bounding box derived
from a chair geometry). Nonetheless, these dependencies
are needed on every-day basis to ensure data integrity dur-
ing modelling, exchange and collaboration processes and
have already been discussed for geometry descriptions out-
side of the Semantic Web domain (Mirtschin, Jon 2018)
as well as inside of it (Zhang et al. 2017). This shows
the need for an approach to enable the creation of such
substantial connections between geometry derivatives and

∗Corresponding author: wagner@iib.tu-darmstadt.de

their origins within a Semantic Web context.
To fulfil this requirement, this paper aims to serve as a
foundation for further research to ensure the integrity of
geometric data on the Web and therefore summarises dif-
ferent use cases that may occur in this background while
also proposing an approach on how to model the observed
relations. Our approach is based on an analysis of nec-
essary relations between geometry descriptions and their
derivatives to create a meaningful vocabulary to express
them. Further, we investigate the publicly available On-
tology for Property Management or OPM1 (Rasmussen,
Lefrançois, Bonduel, Hviid & Karlshøj 2018) regarding
its applicability towards geometry descriptions, as we un-
derstand geometry description to be a specific kind of
property of an object.
Next, we conduct a literature review of existing approaches
for connecting different geometry representations and re-
lated fields such as property management. This is followed
by an analysis of the three different types of geometric de-
pendencies we identified: 1) between an object and its
geometry, 2) between geometries that describe the same
object, and 3) between non-geometric properties and ge-
ometry. With these insights in mind, we introduce the
Ontology for Managing Geometry (OMG) in detail, after
which we review the OMG using example data and com-
petency questions deduced from the previously presented
analysis. Finally, we conclude this paper with a discussion
of our results and give a brief outlook on the next necessary
steps to ensure parametric modelling on the Web.

Related Work
The conducted literature review includes four topics that
align with the identified types of geometric dependencies:
First, the application of multiple geometry descriptions
in the built environment. Second, ensuring data integrity
while handling geometry descriptions of different geome-
try representations. Third, modelling of parametric coher-
ence between geometry descriptions and non-geometric
data, and fourth, the representation of data that changes
over time.
Beginning with the application of multiple geometry de-

1https://w3id.org/opm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/237012273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.35490/EC3.2019.146


Page 305 of 490

scriptions, we found that this is – especially in the con-
text of Level of Detail or Level of Geometry – a highly
anticipated topic. For example, the CityGML and IFC
standards already support multiple geometry descriptions
to describe environments and buildings in different levels
of detail (Ohori et al. (2015), IFC). The definition of the
geometry representations, however, is predefined within
these standards. Thus, users are limited in their choice
of geometry representations. Especially for as-built BIM
this can be a disadvantage, since the as-built geometry is
usually captured in point clouds, that are currently not sup-
ported by the IFC standard. Therefore, Krijnen & Beetz
(2017) propose a point cloud extension of the IFC schema
to allow the collection of all building data within one file.
While the extension of EXPRESS-based standards seems
cumbersome, such an extension could easily be achieved
using Semantic Web technologies.
Still, when multiple geometry descriptions are provided
for the same object, the risk of data discrepancies arises
unless specific routines are set up to ensure data integrity.
One option to do so is presented in Pauwels et al. (2011),
where the authors propose a methodology to convert ge-
ometry descriptions of different geometry formats using a
Semantic Web interface. Yet, the authors suggest to create
this conversion on the fly instead of storing both geome-
try descriptions persistently. This may be suitable if the
second geometry description is rarely needed and serves
for archiving or exchange purposes only. In the latter case,
this would still hold the disadvantage that the link between
the original geometry description and the converted one
might get lost during the exchange. For these reasons, we
suggest to keep all geometry descriptions attached to the
object, though algorithms and methodologies as the one
presented by Pauwels et al. (2011) could be applied for
keeping the data consistent.
When it comes to keeping the data consistent, one must
also consider the relations between non-geometric and ge-
ometric data, as those are commonly dependent from each
other. Correspondingly, data integrity is already an is-
sue for building models that only contain one geometry
description, e.g. when the height of an element is also
described as a non-geometric property. To ensure data in-
tegrity, these dependencies must be described in detail to
update the data accordingly. In a Semantic Web context,
Zhang et al. (2017) introduce BimSPARQL to automati-
cally retrieve a selection of properties that can be derived
from the object’s geometry description. They propose
a new vocabulary with underlying SPARQL functions to
enhance querying building data. However, this approach
only takes specific properties into account and must be
extended for the introduction of new dependencies. An-
other approach was presented by Wagner et al. (2018),
in which the authors present a product ontology including

parametric coherences between geometry descriptions and
non-geometric properties. With this approach, any rela-
tion can be modelled using an ontology dedicated to de-
scribe equations and mathematical operations. Nonethe-
less, the described equations need to be translated and
executed by a math kernel to generate the desired output.
Both approaches allow additional relations between non-
geometric and geometric data, but are lacking methods to
easily identify outdated data and thus must be executed
every time the data is queried. By storing the calculated
results within the data and keeping it synchronised, han-
dling (parametric) dependencies would become simpler
and more effective. Apart from the efforts made in the
construction industry, ontologies from different domains
– such as the PROV ontology2 – introduce concepts to
describe such derivations persistently.
In order to keep dependent data synchronised, it must be
possible to model data that evolves over time. While it has
been an objective in research to create methodologies to
keep track of the evolution of ontologies in general, these
approaches (e.g. Pittet et al. (2014)) focus on the ontology’s
schema level (TBox) and can therefore not directly be ap-
plied to instance level (ABox). Within the W3C Linked
Building Data Community Group (W3C LBD CG)3, ef-
forts have been made to allow version control of properties.
The basic idea of the group was to allow the modelling of
properties on three levels with different options for adding
metadata (Bonduel 2018). On the first level, the property
is directly connected to the building object using individ-
ual datatype properties for effective querying. Additional
information, e.g. the used unit, could be described us-
ing custom datatypes (Lefrançois & Zimmermann 2016).
The second level introduces an intermediate node for the
property which contains the property’s value and can also
hold additional metadata, e.g. the used unit, the author,
or the timestamp of the property’s creation respectively
last update. This already allows the inclusion of most rel-
evant metadata, but can still only hold one value for the
property, thereby losing older value entries when updat-
ing. The third and highest level also enables a persistent
recording of the property’s history. Between the property
node and the property’s value, another node for the prop-
erty state is inserted. Thus, one property can have multiple
states – and with that values – while during queries only
the current state would be retrieved unless the user de-
fined otherwise. This third level for property modelling
can be realised using the Ontology for Property Manage-
ment (OPM, Rasmussen, Lefrançois, Bonduel, Hviid &
Karlshøj (2018)).
The OPM and three levels approach of the W3C LBD
CG provide methods to address some of the core features

2http://www.w3.org/ns/prov
3https://w3c-lbd-cg.github.io/lbd/



Page 306 of 490

desired for relating geometry descriptions to their deriva-
tives, namely a stable, modular and efficient way for adding
metadata to properties and keeping track of their change
history. Since we understand geometry to be closely re-
lated to properties, the work presented in this paper is
oriented towards these approaches and will also use mul-
tiple levels for modelling geometry. At the same time,
the OPM itself cannot be reused as RDF-based geometry
descriptions are not just based on properties but also on
concepts (e.g. box, sphere, and so forth). Even non-RDF-
based geometry descriptions may depend on multiple files,
i.e. OBJ geometries that can be enriched by material de-
scriptions which must be stored in a separate file. Hence,
we need to identify all relevant relations that should be
depicted to create a new ontology to address all of these
collected requirements.

Geometric dependencies
In our analysis, we identified three types of geometric
dependencies: (1) the connection between an object and
its geometric representation(s), (2) semantically meaning-
ful dependencies between geometry representations of the
same object, and (3) relations between geometries and
their derived properties. Following, our findings on these
dependencies will be explained in more detail.

Geometry descriptions and objects

Discussed dependencies of this paragraph occur between
geometry descriptions and the objects they are portray-
ing. For connecting geometry descriptions and objects,
no restriction towards the relation’s cardinality should be
imposed on the user to allow multiple geometry descrip-
tions. Howbeit, if multiple geometry representations are
connected to one object, these representations should be
enriched with metadata to enable meaningful differenti-
ation of them. Ergo, a flexible and modular approach
to connect geometry descriptions and objects is needed
that enables the addition of different amounts of meta-
data in respectively of the current use case. This could
be realised by introducing different levels of this relation,
similar as suggested by the W3C LBD CG for property
modelling (Bonduel 2018).
At the same time, the connection should be generalised for
RDF-based and non-RDF-based geometry descriptions to
ease unified querying for geometry. In this regard, the
introduction of a geometry context as metadata would fur-
ther simplify the extraction of a specific kind of geometry
model from the entire graph (e.g. planner models).
Moreover, it should be possible – while still optional –
to add geometry states to the geometry description for
version control purposes. Similar to how version control
can be realised by the OPM’s property states, geometry
states could be introduced. But with RDF-based geometry

descriptions in mind, it does not seem feasible to create a
new geometry state for every change on properties within
the geometry description. Instead, the OPM could be
used to describe such property changes, while changes on
(object) node level (e.g. class types, deletion of nodes)
must be recorded by the geometry state.

Geometry descriptions of the same object

This category covers dependencies between geometry de-
scriptions only. Relations between geometry descriptions
of the same object mainly focus on the definition of which
description can be derived from another. In some cases,
this relation may be bidirectional, allowing to convert the
geometry descriptions back and forth. Additionally, when
version control is wanted, this relation should also be man-
ifested on geometry state level, defining the conducted
derivation of the specific geometry states. Without rela-
tions on state level, unnecessary derivations or even end-
less loops of deriving geometry descriptions from each
other may occur, as they are derived based only on times-
tamps. Also, geometry descriptions that cannot be used
to (indirectly) derive any other geometry representation
of the same object, should be classified as read-only to
prevent changes that cannot be deduced back into the data
pool.
Apart from relations to describe derivabilities, geometry
descriptions can also be dependent on each other in dif-
ferent ways. For example, a geometry description could
serve as a supplement for another one, as is often the case
in heritage models. The underlying geometry description
is stored in a simplified mesh or solid geometry, while
details are represented in point clouds. It is not always
feasible, wanted or even possible, to convert fine details
to other geometry representations, so it should be possi-
ble to model some kind of relation where one geometry
description supplements another.
Another type of relation would be the reusage of previously
defined geometry descriptions. This may happen in one of
two ways: Either the first geometry description is reused
without changes, e.g. when multiple instances of one
object type such as a particular kind of chair are placed
within a model, or when the first geometry is used as a
basis for further development, while the original geometry
is still needed as it was modelled before. An example for
this would be a bounding box created in the early planning
stages to induce the idea of a chair within a room which is
subsequently modelled in more detail based on the original
bounding box. Since the bounding box representation may
still be of relevance for simulation use cases, it should
not be overwritten. In both cases, the relation is purely
informative and does not contain any further details on
possible derivations. If such dependencies are required,
they have to be modelled separately.



Page 307 of 490

Geometry descriptions and derived properties

The last category of geometric dependencies is between
geometry descriptions and their derived properties. Such
derivations may be implicit or explicit. As an example,
the height of a wall may be explicitly defined in the wall’s
geometry description (e.g. if it is an extrusion), while it is
commonly also described as a non-geometric property. To
avoid redundant and conflicting data, the non-geometric
property should be linked to the geometric property.
Implicitly derived properties, on the other hand, can not be
derived from one singular geometry property, but require
mathematical evaluation of the geometry (e.g. the volume
of the wall, which is dependent on the base area, extrusion
and possibly even voids within the wall). To emphasise
this relation, the property should be connected to the ge-
ometry description itself. However, the calculation of the
new property value after changing the geometry, must be
calculated externally.

Ontology for Managing Geometry (OMG)
Based on the previous analysis and the concepts and meth-
ods presented in the OPM ontology, the Ontology for Ge-
ometry Management (OMG)4 was developed. The ontol-
ogy is also publicly available on GitLab 5.
The OMG ontology aims to provide means to connect ge-
ometry descriptions to building data and relate geometries
with derived or dependent geometries and properties. To
create a more consise ontology, we defined that the ex-
act description of parametric dependencies, algorithms to
derive geometry representations from each other, and the
geometry description itself are out of scope of this ontol-
ogy.
Within the OMG, several concepts from other ontologies
were reused. Furthermore, the example data contains ad-
ditional schemata, e.g. for geometry descriptions. To ease
the understanding of the upcoming figures and examples,
Listing 1 introduces all used ontologies and prefixes in this
paper.

@prefix omg: <https://w3id.org/omg#> .
@prefix fog: <https://w3id.org/fog#> .
@prefix opm: <https://w3id.org/opm#> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix seas: <https://w3id.org/seas/> .
@prefix schema: <http://schema.org/> .
@prefix bot: <https://w3id.org/bot#> .
@prefix geom: <http://rdf.bg/geometry.ttl#> .

Listing 1: Used ontologies and prefixes.

The OMG enables – similar to the proposed property mod-
elling by the W3C LBD CG (Bonduel 2018) – the mod-
elling of relations between objects and geometry on three

4https://w3id.org/omg
5https://gitlab.iib.tu-darmstadt.de/Wagner/omg.git

levels. While the first level provides means to directly
connect geometry descriptions to objects, the levels 2 and
3 introduce additional intermediate geometry and geom-
etry state nodes to allow metadata to be attached to the
geometry. Within the following figures of the OMG ar-
chitecture, objects, properties and classes that are not part
of the presented OMG ontology are greyed out for better
understanding of the new concepts.
Figure 1 depicts how geometry can be connected to
an object using the OMG level 1. The two proposed
properties omg:hasComplexGeometryDescription and
omg:hasSimpleGeometryDescription can be used to
link to the first node of an RDF-based geometry descrip-
tion or to add non-RDF geometry descriptions as literals
or paths to external files. Since these relations are generic
and hold no information about the used geometry format,
individual relations should be introduced as subproperties
for used geometry formats and their versions. For this
purpose, the File Ontology for Geometry formats (FOG)6
ontology was created (Bonduel et al. 2019) and can be fur-
ther extended in its openly available GitHub repository7.

Figure 1: OMG level 1.

If more metadata needs to be added to the graph,
the OMG level 2 includes the omg:Geometry and
omg:GeometryContext classes. A geometry node can be
connected to a geometry context and other geometry nodes
(dependencies), and can be used to enrich the geometry
description with metadata as the author or timestamp of
creation using other ontologies as the PROV ontology or
schema.org. The geometry description itself can then be
attached to the geometry node with the same properties
as those introduced for OMG level 1. A potential layout
of a graph with a OMG level 2 description can be seen in
Fig. 2.
Any object can be connected to one or multiple ge-
ometry nodes using the omg:hasGeometry relation. If
multiple geometry nodes are applied, it is possible to
relate them to each other to describe their dependen-
cies. For instance, geometry nodes can be linked using
omg:isDerivedFromGeometry to indicate that the first
geometry has been derived from the second.
For cases where one geometry complements another, as
is often the case with point clouds and tessellated ge-
6https://w3id.org/fog
7https://github.com/mathib/fog-ontology



Page 308 of 490

Figure 2: OMG level 2.

ometries, the opm:complementsGeometry relation can
be used. However, note that this relation does not imply
any dependencies on the geometries’ derivations. Addi-
tionally, the omg:transformsGeometry relation can con-
nect geometries that share the same base geometry but
are placed in different locations. This might be the case
for geometries of the same object, where one geometry
representation is placed in its local coordinate system and
other geometries reuse the original geometry and place it
in different global or other local coordinate systems. An-
other example would be multiple instances of the same
geometry like doors or windows. If this relation is used,
the connecting geometry node should only contain infor-
mation about the transformation, e.g. a transformation
matrix, while the geometry description itself should be
defined in the connected, original geometry node. Finally,
a geometry context can be related to a geometry node
with the omg:hasGeometryContext property. By using
a geometry context, the extraction of multiple geometry
descriptions from an entire graph that are relevant for a
specific use case can be simplified.
The last level also includes concepts to manage evolv-
ing geometry descriptions. An overview of OMG
level 3 is shown in Fig. 3. It introduces the new
class omg:GeometryState, which is closely related to
the opm:PropertyState and can also be connected
to a geometry context. Inspired by the idea of the
opm:CurrentPropertyState, the OMG also introduces
a subclass for the geometry state to define those states that
are currently valid: omg:CurrentGeometryState.
A geometry state describes an object’s geometry at a
specific point in time, which poses the requirement of
adding a timestamp to each geometry state. Using the
omg:hasGeometryState relation, one or more geome-

Figure 3: OMG level 3 – overview.

try states can be related to a geometry node. When
OMG level 3 is applied, the geometry descriptions are
connected to the geometry states. As soon as the ge-
ometry description is changed, a new geometry state
with the changed description should be added. How-
ever, since it is not feasible to create a new geometry
node with a copy of widely unchanged RDF-based ge-
ometry descriptions when only one property of the de-
scription changes, the OMG ontology should be combined
with the OPM ontology for RDF-based geometry descrip-
tions. Thus, geometry states can be connected to any ge-
ometry object within the geometry description using the
omg:containsGeometryObject relation. Subsequently,
the chain propertyomg:containsPropertyStatewill in-
fer a link between any property states of the geometry de-
scription and the geometry state itself based on the former
relation and the OPM architecture (see Fig. 4).

Figure 4: OMG level 3 – geometry states.

Apart of keeping track of current changes, geometry
states can also be used to enhance the definition of ge-
ometry derivations as was introduced in OMG level 2.



Page 309 of 490

As shown in Fig. 5, this definition takes place on two
layers: between geometry nodes and between geome-
try state nodes. In contrast to the application of the
omg:isDerivedFromGeometry property for level 2, this
property is now used to indicate the possibility to derive
a geometry. Thus, one geometry node may have multi-
ple other geometry nodes connected this way and in case
of bidirectional dependencies, the property can be added
twice between two nodes, pointing in different directions.
To define the specific derivation of one geometry state,
the omg:isDerivedFromGeometryState property is in-
troduced.

Figure 5: OMG level 3 – derived geometry states.

To correctly model these dependencies, any modified
(changes on property level of an RDF-based geometry de-
scription) or new geometry state (changes on object level
of an RDF-based geometry description or changes in non-
RDF-based geometry descriptions) should be modelled
without the omg:isDerivedFromGeometryState prop-
erty first. This means for the case of modified geometry
states, that this property must be removed. Afterwards, ge-
ometry states must be connected to a description’s geom-
etry state using the omg:isDerivedFromGeometryState
property if they were modified or created by derivation
of that geometry description. With this approach, infi-
nite loops while updating geometry descriptions can be
prevented: Since newly generated geometry descriptions
will be stored in a new state, this state’s timestamp will be
more current than the one of the initially changed geom-
etry state. If the dependency is modelled bidirectionally,
this may cause a loop. Thus, the new relation was defined
to pinpoint the origin of a new geometry state and will
ensure that the new state will not cause its origin’s update.
If the state was created because of manual changes, this
relation will not be used and thereby the data discrepancy
can be detected.
Independent of the OMG levels, relations dedicated to
describe dependencies between geometries and proper-
ties are defined. As mentioned before, we differentiate
between explicit and implicit dependencies. Figure 6

depicts the introduced relations for the first case. The
omg:isExplicitlyDerivedFrom property connects two
seas:Property nodes – one of the semantic description
of the object and one of the geometric description. Based
on this relation and the architecture of the OPM, the
chain property omg:hasInferredPropertyState will
infer the relation between the derived property and any
opm:PropertyState of its origin property.

Figure 6: Explicit property derivation.

The relation for implicit dependencies is simpler, as no
values or states can directly be inferred. Instead, the
omg:isImplicitlyDerivedFrom property connects any
property to a geometry node (see Fig. 7).

Figure 7: Implicit property derivation.

Recommendations for using OMG

When applying the OMG, we recommend to first evaluate
the requirements of the considered (part of the) project be-
fore defining which level will be used to avoid unnecessary
overhead or too rigid data structures. The functionalities
of the different levels are also shown in Table 1.
Note that it is in principle possible to attach multiple ge-
ometries to a building element using OMG level 1. How-
ever, since it is not possible to define derivations between
or geometry contexts of geometry descriptions in general,



Page 310 of 490

Table 1: Functionalities of the OMG levels.
Functionality level 1 level 2 level 3

Connecting geometry yes yes yes
Multiple geometries no* yes yes
Defining derivations no yes yes
Defining context(s) no yes yes
Version control no no yes
Explicit properties yes yes yes
Implicit properties no yes yes

and – even worse – to describe differences between mul-
tiple geometry descriptions of the same format, we highly
recommend not to do so. Additionally, when non-RDF-
based geometry descriptions that require multiple literals
are attached directly to the object, it might be problem-
atic to identify which literals belong together, especially
when multiple geometry representations are attached using
OMG level 1.
For version control on complex, RDF-based geometry de-
scriptions (OMG level 3), we also highly encourage the
combination of the OMG with the OPM to prevent unnec-
essary duplicates of geometry descriptions when only one
value changed.

Alignment of OMG

Since the OMG was designed as a generic ontology to
attach geometry to any object, it can be used in any field
of application in principle. However, as we originally
designed it to support the application of linked building
data, we propose alignments to mostly building specific
ontologies in this section.
The biggest overlap of the OMG is with the OPM. The
concepts of both ontologies are strongly related, however,
since geometry cannot be classified as a subtype of prop-
erties, it did not seem feasible to extend the OPM ontol-
ogy. Thus, we suggest to create an upper level manage-
ment ontology to pool both OPM and OMG with their
concepts – especially the property and geometry states –
together. This would enable concepts of the OPM that
are also applicable to the OMG, e.g. opm:Deleted or
opm:Assumed, to be transferred to the upper level ontol-
ogy and thus be used by both, OPM and OMG. Also,
the introduced omg:hasInferredPropertyState prop-
erty should be transferred to the OPM, since it is mainly
using concepts, classes and relations of the OPM.
Another close relative of the OMG is the File Ontol-
ogy for Geometry formats (FOG), that extends the OMG
to create file format and ontology specific subproper-
ties of the omg:hasComplexGeometryDescription and
omg:hasSimpleGeometryDescription properties.
In the background of the built environment, another

important alignment is towards the Building Topology
Ontology (BOT). The BOT already introduces proper-
ties to describe RDF- and non-RDF-based geometries
to building elements or zones: bot:hasSimple3DModel
and bot:has3DModel (Rasmussen, Frausing, Hviid
& Karlshøj 2018). However, since these relations
confine to 3D geometry, while the OMG can also
be used to connect 2D geometries, we refrained in
reusing those properties. Instead, we suggest to re-
name the properties to bot:hasComplexModel and
bot:hasSimpleModel and align them with the OMG
properties omg:hasComplexGeometryDescription and
omg:hasSimpleGeometryDescription. While aligning
these properties, one should consider the consequences
of owl:equivalentProperty regarding the property’s
range and domain restrictions. Another option would be
to remove these properties entirely from the BOT ontology
and instead use the concepts introduced in OMG.
Furthermore, all properties that indicate (paramet-
ric) dependencies of geometries and other geome-
tries or properties are defined as subproperties of the
prov:wasDerivedFrom property of the PROV ontology.

Proof of concept
To prove the functionalities of the OMG ontology, an
openly available SPARQL-visualizer demo was created to
address the underlying competency questions of the ontol-
ogy8. The demo provides example data that can be used
for all of its steps. However, for the more complex steps,
i.e. manipulating the database or querying with reasoning,
a Stardog triplestore must be connected to the visualiser.
The competency questions (CQ) that are answered by the
demo are explained next.

CQ1: How can a single geometry description be connected
to an object directly?

This question is used to demonstrate the simplest function-
alities of OMG as might be of use for data exchange. It
can be fulfilled by using OMG level 1 as shown in Fig. 1
and serves as the basis for all other competency questions
and functionalities.

CQ2: How can multiple geometry descriptions with their
dependencies be related to an object?

In case multiple geometry descriptions are required, they
must be attached to an object in meaningful ways, allowing
the expression of the descriptions’ dependencies. Based
on this question, OMG level 2 was developed and therefore
this level can address it (see Fig. 2).

8https://madsholten.github.io/sparql-visualizer/?file=https:
%2F%2Fwww.dropbox.com%2Fs%2Fg1c9oclaxv1l8ud%2Fomg-
demo.json



Page 311 of 490

CQ3: How can version control of linked geometry de-
scriptions be realised?

Especially during the collaboration process, the version
control of geometry – and any content in general – is of
utmost importance. Thus, OMG level 3 addresses this
topic and can be used to store information about different
versions in two different ways, depending on the type of
the geometry description: simple or complex (see Fig.3
and 4).
Since the question when a new geometry state should be
created and when old ones should be changed is not ad-
dressed fully in this paper, this step aims to give bet-
ter insights into the proposed methodology. It thus also
demonstrates how OMG can be combined with OPM.

CQ4: Which are geometries of the same geometry context?

By introducing the omg:GeometryContext class, geome-
tries and geometry descriptions can be put in context to
ease the extraction of an entire geometric building model
for specific use cases (see Fig. 2 and 3). This step demon-
strates how such contexts can be added, manipulated and
deleted.

CQ5: How can geometries be complemented or trans-
formed?

The properties omg:transformsGeometry and
omg:complementsGeometry allow the definition of
complemented and transformed geometries (see Fig. 2).
With this definition, it is easy to identify such geometries
for further processing during data extraction, exchange or
processing.

CQ6: What are the dependencies between properties and
geometry?

With the introduced omg:isExplicitlyDerivedFrom
and omg:isImplicitlyDerivedFrom properties and
their concepts, meaningful connections between geometry
and non-geometric properties can be created. For explicit
derivations, the relation between the derived property and
the origin’s property states can also be inferred by the
omg:hasInferredPropertyState property, facilitating
parametric descriptions (see Fig.6 and 7). The work-flow
for doing this is demonstrated in this step of the demo.

CQ7: What is the current timestamp of a geometry state?

This question can be answered in two different ways for
simple, non-RDF-based and complex, RDF-based geome-
try descriptions. Simple geometry descriptions will re-
quire a new geometry state for each submitted change
which leads to a simple SPARQL query to extract the
timestamp. For complex geometry descriptions, however,
this becomes more complicated: A new geometry state is

only introduced, when the description changed in its used
objects, while changes in geometric properties should be
handled using the OPM. Thus, all property states of a
geometry state must be evaluated – as well as the ge-
ometry state itself – regarding their timestamps and the
most current timestamp needs to be returned. This pro-
cess is simplified by the omg:containsPropertyState
property.

CQ8: Where are discrepancies within a graph?

Finally, it must be possible to identify data discrepancies
such as outdated geometry states that are still labelled
as omg:CurrentGeometryState. Since this is the most
complex and needed functionality of the OMG, tab 8 of
the SPARQL-visualizer demo shows step-by-step how this
topic can be handled with the introduced concepts.
In this demo, it is shown how one column element can be
connected to multiple, derived (simple) geometries under
version control. Beginning with one STEP geometry, a
derived OBJ geometry, followed by a derived COLLADA
geometry are added. On geometry node level, possibilities
for further derivations are modelled. Since the OBJ geom-
etry is for visualising purposes only in this scenario, it can
only be derived. Its possible origins are both, the STEP
and COLLADA geometry. The STEP and COLLADA
geometries can be derived from each other, as both may
be used in modelling software applications. The resulting
graph on geometry node level can be seen in Fig. 8.

Figure 8: Example for geometry dependencies.

At this time, each geometry also has one geometry state
– classified as omg:CurrentGeometryState as well as
omg:GeometryState. Each state contains information
about their time of generation, their simple geometry de-
scription and their origin of derivation. An overview of
the geometry states without discrepancies can be found in
Fig. 9. For better visualisation, the connection towards
their geometry nodes are not shown in this picture.
This far, no data discrepancies exist. However, in the next
step, a new geometry state for the COLLADA geometry is
inserted – this may happen when manual changes are made
to the description, e.g. during the planning and modelling
phases of a building. Since this state contains changes that



Page 312 of 490

Figure 9: Geometry states without discrepancies.

are not part of the STEP and OBJ geometry states, data
discrepancies occur. In order to locate such problems, the
data must be queried for them, as is shown in Lst. 2.

@prefix omg: <https://w3id.org/omg#> .
@prefix prov: <http://www.w3.org/ns/prov#> .

SELECT DISTINCT ?outdatedGeometry ?originGeometry
WHERE{
#Find all omg:CurrentGeometryState that are either derived from

or deriving geometry states that are not a
omg:CurrentGeometryState (and thus outdated)
?outdatedGeometryState a omg:CurrentGeometryState ;
^omg:isDerivedFromGeometryState|omg:

isDerivedFromGeometryState ?anyState .
FILTER NOT EXISTS {
?anyState a omg:CurrentGeometryState .

}
#Any geometry that either contains the previously identified

outdated omg:CurrentGeometryState or has a geometry state
that has been derived from it are also outdated.
?outdatedGeometry omg:hasGeometryState|omg:hasGeometryState/

omg:isDerivedFromGeometryState ?outdatedGeometryState ;
omg:isDerivedFromGeometry ?originGeometry .

#To ensure that only those origins of change and outdated
geometries are listed that are suitable as an origin of
change (that are not outdated) respectively are truly
outdated, the timestamps are compared
?outdatedGeometry omg:hasGeometryState ?someOutdatedState .
?someOutdatedState a omg:CurrentGeometryState ;
prov:generatedAtTime ?outTime .

?originGeometry omg:hasGeometryState ?originState .
?originState a omg:CurrentGeometryState ;
prov:generatedAtTime ?originTime .

FILTER (?originTime > ?outTime)
}

Listing 2: SPARQL query to find data discrepancies.

In the given example of the demo, this query will re-

turn the STEP and the OBJ geometry as outdated and the
COLLADA geometry as possible origin for each. After
the STEP geometry is updated and the same query is run
again, the OBJ geometry will return two possible origins
for new derivations: The COLLADA and the STEP geom-
etry. Once all geometries are updated, this query will not
yield any results. In order to have these queries working, it
is essential that the omg:isDerivedFromGeometryState
property is used properly.

Conclusions
Within the introduced OMG ontology, a unified approach
for linking geometry to building objects, including the
definition of dependencies between geometry and non-
geometric properties, is proposed. Furthermore, the OMG
allows users to decide individually in which detail this con-
nection should be made. For more details, it is possible
to define dependencies between multiple geometry rep-
resentations as well as describing the changes that were
made to the description. The OMG is an abstract, upper
level ontology that can be extended for specific needs and
requirements, while the core of the ontology should not
be changed after a mutual agreement within the commu-
nity on its architecture was made. This will help to ease
the integration of geometric descriptions into a Seman-
tic Web context and therefore contribute to establishing
Linked Data for the built environment.
However, the schema and its concepts are rather com-
plex, making some sort of middleware necessary. Such
a middle-ware should help users to apply the concepts of
OMG without having to fully understand how the method-
ology works. This affects the creation and comparison of
geometry and geometry state nodes to identify and prevent
data discrepancies, as well as the interpretation of the con-
cepts for geometry transformation and complementation.
The latter is defined in the schema, but for interpretation
or extraction of the geometry, this definition must be pro-
cessed to create one singular geometry description that can
be used directly in software applications. In this context,
it should also be mentioned that, even though it is part of
the results of our requirement analysis, the OMG currently
does not provide means to mark or identify geometry de-
scriptions as read-only for cases, where potential changes
cannot be transferred back to the data pool.
Furthermore, the alignment of the OMG, especially to
BOT and OPM, is currently a proposal and must be dis-
cussed, e.g. within the W3C LBD CG, and finalised. An-
other challenge are the rather generic properties to attach
the actual geometry description. Since these properties
contain no information about the used geometry format
and other metadata as the up-axis, the integration of the de-
scription into software applications is hindered. Because
of this issue, the FOG is introduced to create subproperties



Page 313 of 490

for specific geometry formats, including their versions.
In future research, the aforementioned open issues should
be addressed and, most importantly, the OMG should be
used in practical use cases to evaluate its applicability and
validate its concepts. To further enhance the integration of
geometry into the Semantic Web, parametric descriptions
must be investigated in more detail. At this time, the OMG
only defines whether dependencies exist, but do not give
any means to describe how these dependencies can be
resolved. Thus, an approach to define the exact parametric
coherences should be created.
In the aspect of the OMG’s character as upper level on-
tology, a study to evaluate its applicability in other fields,
as robotics, mechanical engineering, etc., needs to be con-
ducted. Based on the results of such a study, further align-
ments of the OMG towards other, upper level ontologies
should be examined.

Acknowledgements
This work is part of the research project EnOB: SCOPE,
founded by the German Federal Ministry for Economic
Affairs and Energy (BMWi).

References
Bonduel, M. (2018), ‘Towards a PROPS ontology’. Date

accessed: 2019-03-20.
URL: https://github.com/w3c-lbd-cg/lbd/blob/gh-
pages/presentations/props/presentation_LBDcall
_20180312_final.pdf

Bonduel, M., Wagner, A., Pauwels, P., Vergauwen, M.
& Klein, R. (2019), Including widespread geometry
formats in semantic graphs using rdf literals, in ‘Pro-
ceedings of the European Conference on Computing in
Construction (EC3 2019)’, Chania, Crete, Greece.

Krijnen, T. & Beetz, J. (2017), ‘An IFC schema
extension and binary serialization format to effi-
ciently integrate point cloud data into building mod-
els’, Advanced Engineering Informatics 33, 473–490.
DOI: 10.1016/j.aei.2017.03.008.

Lefrançois, M. & Zimmermann, A. (2016), Supporting
Arbitrary Custom Datatypes in RDF and SPARQL,
in H. Sack, E. Blomqvist, M. D’Aquin, C. Ghidini,
S. Ponzetto & C. Lange, eds, ‘The Semantic Web. Lat-
est Advances and New Domains. ESWC 2016. Lecture
Notes in Computer Science’, Vol. 9678, Springer, Cham,
pp. 371–386. DOI: 10.1016/j.autcon.2016.10.003.

Mirtschin, Jon (2018), ‘GeometryGym: OpenBIM tools
for Architects, Engineers and the Construction Indus-
try’. Date accessed: 2019-03-20.
URL: https://geometrygym.wordpress.com/

Ohori, K., Ledoux, H., Biljecki, F. & Stoter, J. (2015),
‘Modeling a 3D City Model and Its Levels of De-
tail as a True 4D Model’, ISPRS International Journal
of Geo-Information 4(3), 1055–1075. DOI: 10.3390/i-
jgi4031055.

Pauwels, P., Van Deursen, D., de Roo, J., Van Ackere,
T., de Meyer, R., Van de Walle, R. & Van Camp-
enhout, J. (2011), ‘Three-dimensional information
exchange over the semantic web for the domain
of architecture, engineering, and construction’, Ar-
tificial Intelligence for Engineering Design, Analy-
sis and Manufacturing: AIEDAM 25(4), 317–332.
DOI: 10.1017/S0890060411000199.

Pauwels, P., Zhang, S. & Lee, Y.-C. (2017), ‘Seman-
tic web technologies in AEC industry: A literature
overview’, Automation in Construction 73, 145–165.
DOI: 10.1016/j.autcon.2016.10.003.

Pittet, P., Cruz, C. & Nicolle, C. (2014), ‘An ontol-
ogy change management approach for facility man-
agement’, Computers in Industry 65(9), 1301–1315.
DOI: 10.1016/j.compind.2014.07.006.

Rasmussen, M. H., Frausing, C. A., Hviid, C. A. & Karl-
shøj, J. (2018), Demo : Integrating Building Informa-
tion Modeling and Sensor Observations using Semantic
Web, in M. Lefrançois, R. Garcia Castro, A. Gyrard &
K. Taylor, eds, ‘Proceedings of the 9th International Se-
mantic Sensor Networks Workshop co-located with 17th
International Semantic Web Conference (ISWC 2018)’,
number 1, Monterey, CA, United States, pp. 48–55.
CEUR: Vol-2213/paper4.pdf.

Rasmussen, M. H., Lefrançois, M., Bonduel, M., Hviid,
C. A. & Karlshøj, J. (2018), OPM: An ontology for
describing properties that evolve over time, in ‘6th
Linked Data in Architecture and Construction Work-
shop (LDAC), CEUR Workshop Proceedings’, Vol.
2159, London, UK, pp. 23–33. ISSN: 16130073.

Wagner, A., Möller, L. K., Leifgen, C. & Rüppel,
U. (2018), SolConPro: Describing multi-functional
building products using semantic web technologies, in
J. Karlshøj & R. J. Scherer, eds, ‘EWork and eBusiness
in architecture, engineering and construction: proceed-
ings of the 12th European Conference on Product and
Process Modelling (ECPPM 2018)’, 12, CRC Press,
pp. 447–455. ISBN: 978-0-429-01364-5.

Zhang, C., Beetz, J. & de Vries, B. (2017), ‘BimSPARQL:
Domain-specific functional SPARQL extensions for
querying RDF building data’, Semantic Web Journal
1(0), 1–17. DOI: 10.3233/SW-180297.


