304 research outputs found

    Physical Unclonable Functions and Their Applications to Vehicle System Security

    Full text link

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    When Big Brother Privatizes: Commercial Surveillance, the Privacy Act of 1974, and the Future of RFID

    Get PDF
    RFID is a powerful new technology that has the potential to allow commercial retailers to undermine individual control over private information. Despite the potential of RFID to undermine personal control over such information, the federal government has not enacted a set of practicable standards to ensure that personal data does not become widely misused by commercial entities. Although some potential privacy abuses could be addressed by modifying RFID technology, this iBrief argues that it would be wise to amend the Privacy Act of 1974 so that corporations would have a statutory obligation to preserve individual anonymity and respect the privacy preferences of consumers

    CriptografĂ­a ligera en dispositivos de identificaciĂłn por radiofrecuencia- RFID

    Get PDF
    Esta tesis se centra en el estudio de la tecnologĂ­a de identificaciĂłn por radiofrecuencia (RFID), la cual puede ser considerada como una de las tecnologĂ­as mĂĄs prometedoras dentro del ĂĄrea de la computaciĂłn ubicua. La tecnologĂ­a RFID podrĂ­a ser el sustituto de los cĂłdigos de barras. Aunque la tecnologĂ­a RFID ofrece numerosas ventajas frente a otros sistemas de identificaciĂłn, su uso lleva asociados riesgos de seguridad, los cuales no son fĂĄciles de resolver. Los sistemas RFID pueden ser clasificados, atendiendo al coste de las etiquetas, distinguiendo principalmente entre etiquetas de alto coste y de bajo coste. Nuestra investigaciĂłn se centra fundamentalmente en estas Ășltimas. El estudio y anĂĄlisis del estado del arte nos ha permitido identificar la necesidad de desarrollar soluciones criptogrĂĄficas ligeras adecuadas para estos dispositivos limitados. El uso de soluciones criptogrĂĄficas estĂĄndar supone una aproximaciĂłn correcta desde un punto de vista puramente teĂłrico. Sin embargo, primitivas criptogrĂĄficas estĂĄndar (funciones resumen, cĂłdigo de autenticaciĂłn de mensajes, cifradores de bloque/flujo, etc.) exceden las capacidades de las etiquetas de bajo coste. Por tanto, es necesario el uso de criptografĂ­a ligera._______________________________________This thesis examines the security issues of Radio Frequency Identification (RFID) technology, one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to address. RFID systems can be classified according to tag price, with distinction between high-cost and low-cost tags. Our research work focuses mainly on low-cost RFID tags. An initial study and analysis of the state of the art identifies the need for lightweight cryptographic solutions suitable for these very constrained devices. From a purely theoretical point of view, standard cryptographic solutions may be a correct approach. However, standard cryptographic primitives (hash functions, message authentication codes, block/stream ciphers, etc.) are quite demanding in terms of circuit size, power consumption and memory size, so they make costly solutions for low-cost RFID tags. Lightweight cryptography is therefore a pressing need. First, we analyze the security of the EPC Class-1 Generation-2 standard, which is considered the universal standard for low-cost RFID tags. Secondly, we cryptanalyze two new proposals, showing their unsuccessful attempt to increase the security level of the specification without much further hardware demands. Thirdly, we propose a new protocol resistant to passive attacks and conforming to low-cost RFID tag requirements. In this protocol, costly computations are only performed by the reader, and security related computations in the tag are restricted to very simple operations. The protocol is inspired in the family of Ultralightweight Mutual Authentication Protocols (UMAP: M2AP, EMAP, LMAP) and the recently proposed SASI protocol. The thesis also includes the first published cryptanalysis of xi SASI under the weakest attacker model, that is, a passive attacker. Fourthly, we propose a new protocol resistant to both passive and active attacks and suitable for moderate-cost RFID tags. We adapt Shieh et.’s protocol for smart cards, taking into account the unique features of RFID systems. Finally, because this protocol is based on the use of cryptographic primitives and standard cryptographic primitives are not supported, we address the design of lightweight cryptographic primitives. Specifically, we propose a lightweight hash function (Tav-128) and a lightweight Pseudo-Random Number Generator (LAMED and LAMED-EPC).We analyze their security level and performance, as well as their hardware requirements and show that both could be realistically implemented, even in low-cost RFID tags

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    A comprehensive review of RFID and bluetooth security: practical analysis

    Get PDF
    The Internet of Things (IoT) provides the ability to digitize physical objects into virtual data, thanks to the integration of hardware (e.g., sensors, actuators) and network communications for collecting and exchanging data. In this digitization process, however, security challenges need to be taken into account in order to prevent information availability, integrity, and confidentiality from being compromised. In this paper, security challenges of two broadly used technologies, RFID (Radio Frequency Identification) and Bluetooth, are analyzed. First, a review of the main vulnerabilities, security risk, and threats affecting both technologies are carried out. Then, open hardware and open source tools like: Proxmark3 and Ubertooth as well as BtleJuice and Bleah are used as part of the practical analysis. Lastly, risk mitigation and counter measures are proposed
    • 

    corecore