154 research outputs found

    Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions

    Get PDF
    Iconic gestures are spontaneous hand movements that illustrate certain contents of speech and, as such, are an important part of face-to-face communication. This experiment targets the brain bases of how iconic gestures and speech are integrated during comprehension. Areas of integration were identified on the basis of two classic properties of multimodal integration, bimodal enhancement and inverse effectiveness (i.e., greater enhancement for unimodally least effective stimuli). Participants underwent fMRI while being presented with videos of gesture-supported sentences as well as their unimodal components, which allowed us to identify areas showing bimodal enhancement. Additionally, we manipulated the signal-to-noise ratio of speech (either moderate or good) to probe for integration areas exhibiting the inverse effectiveness property. Bimodal enhancement was found at the posterior end of the superior temporal sulcus and adjacent superior temporal gyrus (pSTS/STG) in both hemispheres, indicating that the integration of iconic gestures and speech takes place in these areas. Furthermore, we found that the left pSTS/STG specifically showed a pattern of inverse effectiveness, i.e., the neural enhancement for bimodal stimulation was greater under adverse listening conditions. This indicates that activity in this area is boosted when an iconic gesture accompanies an utterance that is otherwise difficult to comprehend. The neural response paralleled the behavioral data observed. The present data extends results from previous gesture-speech integration studies in showing that pSTS/STG plays a key role in the facilitation of speech comprehension through simultaneous gestural input

    Degree of language experience modulates visual attention to visible speech and iconic gestures during clear and degraded speech comprehension

    Get PDF
    Visual information conveyed by iconic hand gestures and visible speech can enhance speech comprehension under adverse listening conditions for both native and non‐native listeners. However, how a listener allocates visual attention to these articulators during speech comprehension is unknown. We used eye‐tracking to investigate whether and how native and highly proficient non‐native listeners of Dutch allocated overt eye gaze to visible speech and gestures during clear and degraded speech comprehension. Participants watched video clips of an actress uttering a clear or degraded (6‐band noise‐vocoded) action verb while performing a gesture or not, and were asked to indicate the word they heard in a cued‐recall task. Gestural enhancement was the largest (i.e., a relative reduction in reaction time cost) when speech was degraded for all listeners, but it was stronger for native listeners. Both native and non‐native listeners mostly gazed at the face during comprehension, but non‐native listeners gazed more often at gestures than native listeners. However, only native but not non‐native listeners' gaze allocation to gestures predicted gestural benefit during degraded speech comprehension. We conclude that non‐native listeners might gaze at gesture more as it might be more challenging for non‐native listeners to resolve the degraded auditory cues and couple those cues to phonological information that is conveyed by visible speech. This diminished phonological knowledge might hinder the use of semantic information that is conveyed by gestures for non‐native compared to native listeners. Our results demonstrate that the degree of language experience impacts overt visual attention to visual articulators, resulting in different visual benefits for native versus non‐native listeners

    Native and non-native listeners show similar yet distinct oscillatory dynamics when using gestures to access speech in noise

    Get PDF
    Listeners are often challenged by adverse listening conditions during language comprehension induced by external factors, such as noise, but also internal factors, such as being a non-native listener. Visible cues, such as semantic information conveyed by iconic gestures, can enhance language comprehension in such situations. Using magnetoencephalography (MEG) we investigated whether spatiotemporal oscillatory dynamics can predict a listener's benefit of iconic gestures during language comprehension in both internally (non-native versus native listeners) and externally (clear/degraded speech) induced adverse listening conditions. Proficient non-native speakers of Dutch were presented with videos in which an actress uttered a degraded or clear verb, accompanied by a gesture or not, and completed a cued-recall task after every video. The behavioral and oscillatory results obtained from non-native listeners were compared to an MEG study where we presented the same stimuli to native listeners (Drijvers et al., 2018a). Non-native listeners demonstrated a similar gestural enhancement effect as native listeners, but overall scored significantly slower on the cued-recall task. In both native and non-native listeners, an alpha/beta power suppression revealed engagement of the extended language network, motor and visual regions during gestural enhancement of degraded speech comprehension, suggesting similar core processes that support unification and lexical access processes. An individual's alpha/beta power modulation predicted the gestural benefit a listener experienced during degraded speech comprehension. Importantly, however, non-native listeners showed less engagement of the mouth area of the primary somatosensory cortex, left insula (beta), LIFG and ATL (alpha) than native listeners, which suggests that non-native listeners might be hindered in processing the degraded phonological cues and coupling them to the semantic information conveyed by the gesture. Native and non-native listeners thus demonstrated similar yet distinct spatiotemporal oscillatory dynamics when recruiting visual cues to disambiguate degraded speech

    Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information

    Get PDF
    During communication in real-life settings, the brain integrates information from auditory and visual modalities to form a unified percept of our environment. In the current magnetoencephalography (MEG) study, we used rapid invisible frequency tagging (RIFT) to generate steady-state evoked fields and investigated the integration of audiovisual information in a semantic context. We presented participants with videos of an actress uttering action verbs (auditory; tagged at 61 Hz) accompanied by a gesture (visual; tagged at 68 Hz, using a projector with a 1440 Hz refresh rate). Integration ease was manipulated by auditory factors (clear/degraded speech) and visual factors (congruent/incongruent gesture). We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies. We furthermore observed a peak at the intermodulation frequency of the auditory and visually tagged signals (fvisual – fauditory = 7 Hz), specifically when integration was easiest (i.e., when speech was clear and accompanied by a congruent gesture). This intermodulation peak is a signature of nonlinear audiovisual integration, and was strongest in left inferior frontal gyrus and left temporal regions; areas known to be involved in speech-gesture integration. The enhanced power at the intermodulation frequency thus reflects the ease of integration and demonstrates that speech-gesture information interacts in higher-order language areas. Furthermore, we provide a proof-of-principle of the use of RIFT to study the integration of audiovisual stimuli, in relation to, for instance, semantic context

    Gesture’s Neural Language

    Get PDF
    When people talk to each other, they often make arm and hand movements that accompany what they say. These manual movements, called “co-speech gestures,” can convey meaning by way of their interaction with the oral message. Another class of manual gestures, called “emblematic gestures” or “emblems,” also conveys meaning, but in contrast to co-speech gestures, they can do so directly and independent of speech. There is currently significant interest in the behavioral and biological relationships between action and language. Since co-speech gestures are actions that rely on spoken language, and emblems convey meaning to the effect that they can sometimes substitute for speech, these actions may be important, and potentially informative, examples of language–motor interactions. Researchers have recently been examining how the brain processes these actions. The current results of this work do not yet give a clear understanding of gesture processing at the neural level. For the most part, however, it seems that two complimentary sets of brain areas respond when people see gestures, reflecting their role in disambiguating meaning. These include areas thought to be important for understanding actions and areas ordinarily related to processing language. The shared and distinct responses across these two sets of areas during communication are just beginning to emerge. In this review, we talk about the ways that the brain responds when people see gestures, how these responses relate to brain activity when people process language, and how these might relate in normal, everyday communication
    corecore