2,061 research outputs found

    Gaussian quadrature for C1C^1 cubic Clough-Tocher macro-triangles

    Get PDF
    A numerical integration rule for multivariate cubic polynomials over n-dimensional simplices was designed by Hammer and Stroud [14]. The quadrature rule requires n + 2 quadrature points: the barycentre of the simplex and n + 1 points that lie on the connecting lines between the barycentre and the vertices of the simplex. In the planar case, this particular rule belongs to a two-parameter family of quadrature rules that admit exact integration of bivariate polynomials of total degree three over triangles. We prove that this rule is exact for a larger space, namely the C1 cubic Clough-Tocher spline space over macro-triangles if and only if the split-point is the barycentre. This results into a factor of three reduction in the number of quadrature points needed to integrate the Clough-Tocher spline space exactly

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    How to Integrate a Polynomial over a Simplex

    Full text link
    This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes, discussion of other available methods and experimental results.Comment: Tables added with new experimental results. References adde

    On moments of a polytope

    Full text link
    We show that the multivariate generating function of appropriately normalized moments of a measure with homogeneous polynomial density supported on a compact polytope P in R^d is a rational function. Its denominator is the product of linear forms dual to the vertices of P raised to the power equal to the degree of the density function. Using this, we solve the inverse moment problem for the set of, not necessarily convex, polytopes having a given set S of vertices. Under a weak non-degeneracy assumption we also show that the uniform measure supported on any such polytope is a linear combination of uniform measures supported on simplices with vertices in S.Comment: 28 pages, 3 figure
    • …
    corecore