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Abstract

A numerical integration rule for multivariate cubic polynomials over n-dimensional simplices was designed
by Hammer and Stroud [14]. The quadrature rule requires n + 2 quadrature points: the barycentre of the
simplex and n + 1 points that lie on the connecting lines between the barycentre and the vertices of the
simplex. In the planar case, this particular rule belongs to a two-parameter family of quadrature rules that
admit exact integration of bivariate polynomials of total degree three over triangles. We prove that this rule
is exact for a larger space, namely the C1 cubic Clough-Tocher spline space over macro-triangles if and only
if the split-point is the barycentre. This results into a factor of three reduction in the number of quadrature
points needed to integrate the Clough-Tocher spline space exactly.
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1. Introduction

Numerical quadrature provides an efficient way of numerically evaluating integrals of functions from a
certain linear space over a suitable parametric domain [16]. Among various classes of functions, polynomials
play an important role. Gauss-Legendre quadrature is exact for univariate polynomials up to a given degree
and is indispensable in the context of finite element methods [18]. Multi-variate integration has attracted a
lot of attention in the past decades, see e.g. [21, 24, 27], and the encyclopedia of cubature rules [10] and the
references cited therein.

With the introduction of isogeometric analysis [11], univariate quadrature rules for polynomial spline
spaces have become a topic of recent interest [3, 5–8, 15, 17, 19]. One can use Gauss-Legendre quadrature
on each individual element (knot interval) to integrate a spline function. However, this is inefficient as the
increased continuity between elements reduces the number of quadrature points needed for exact integration.
Although theoretical results about the existence of Gaussian quadrature rules for univariate polynomial
splines have been known since 1977 [25], it was shown only recently how to numerically find such rules
[6, 7] over arbitrary knot vectors. This then naturally extends to tensor-product scenarios such as bivariate
B-splines, where also the methods of [8] show great promise.

In contrast, quadrature rules for polynomial splines over triangulations have received, to the best of our
knowledge, no treatment so far. The current state of the art in the case of spaces such as C1 cubic Clough-
Tocher macro-triangles [9] and various box-spline constructions [12] is to apply simplex quadrature [30] over
each simplex separately. Again, this is, as we show below, inefficient. In the bivariate case, the situation is
difficult even for polynomials because only bounds on the number of quadrature points are known [31], and
algorithms that iteratively remove redundant quadrature points are used [26, 33].

We initiate the study of Gaussian quadrature rules for polynomial spline spaces over triangulations. By
Gaussian we mean that the rule is optimal in terms of the number of quadrature points, that is, the rule uses
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the minimal number of quadrature points while guaranteeing exactness of integration for any function from
the space under consideration. In this paper, we focus on the spline space of C1 cubic Clough-Tocher macro-
triangles. This space is frequently used, for example, to solve the C1 Hermite interpolation problem over
a general triangulation by splitting each triangle into three micro-triangles based on a split-point, typically
the barycentre. Each original triangle thus becomes a macro-triangle.

It is known that total-degree cubic polynomials over triangles can be integrated using four quadrature
points [14, 30] and this number of points is optimal. However, it turns out, as we show below in our main
result, that this four-node quadrature is exact not only on the cubic space over a triangle, but also on the
C1 cubic Clough-Tocher spline space over the corresponding macro-triangle provided that the split-point in
the construction is chosen to be the barycentre of the triangle. This result effectively reduces the number
of quadrature points needed by a factor of three when compared to standard element-wise quadrature.

We first recall some basic concepts such as Bézier triangles, the Clouch-Tocher macro-triangle, and the
Hammer-Stroud quadrature in Section 2. This is followed by Section 3, where we state and prove our main
result regarding Gaussian quadrature for C1 cubic Clough-Tocher macro-triangles. In Section 4 we outline
possible generalisations of our result. Finally, we conclude the paper in Section 5.

2. Preliminaries

We start by introducing some basic concepts such as Bézier triangles, the C1 cubic Clough-Tocher
macro-element, and Hammer-Stroud quadrature.

2.1. Bézier triangles

Consider a non-degenerate triangle T given by three vertices V0, V1, and V2 in R2. Without loss of
generality, we assume that the area of T is equal to one. Any point P in T can be uniquely expressed in
terms of its barycentric coordinates τ = (τ0, τ1, τ2) as

P =

2∑
i=0

τiVi; τ0 + τ1 + τ2 = 1, 0 ≤ τi ≤ 1, (1)

where τi, i = 0, 1, 2, is equal to the area of triangle (Vi+1, Vi+2, P ) with i being treated cyclically modulo 3.
With i = (i, j, k), |i| = i+ j + k, and i, j, k ≥ 0, let

Bdi (τ ) :=
d!

i!j!k!
τ i0τ

j
1 τ

k
2 (2)

be the Berstein polynomials of degree d on T . Then any polynomial p of total degree at most d on T can
be expressed in the Berstein-Bézier form

p(τ ) =
∑
|i|=d

piB
d
i (τ ). (3)

These polynomials span the linear space Πd := span{Bdi }|i|=d. The Bézier ordinates pi, associated with
their abscissae i/d expressed in barycentric coordinates with respect to T , form a triangular control net of
the Bézier triangle (3), for more details see [13].

2.2. Clough-Tocher macro-triangle and continuity conditions

The Clough-Tocher-Hsieh split [9] partitions T using a given inner split-point S ∈ T into three micro-
triangles Ti given by (Vi+1, Vi+2, S), i = 0, 1, 2; see Figure 1, top left. This gives rise to three micro-edges
from S to Vi. The triangulation T ? of T consisting of Ti is called the Clough-Tocher macro-triangle (also
known as macro-element) corresponding to T . The Clough-Tocher spline space on T ? is the C1 cubic spline
space on T ?, i.e.,

S13 (T ?) := {s ∈ C1(T ?) : s|Ti ∈ Π3, i = 0, 1, 2}. (4)
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Figure 1: Top left: The Clough-Tocher-Hsieh split of T (thick edges) using the split point S into T ? (thin edges are micro-
edges). Right: Labelling of Bézier ordinates (see Section 2.1) over the macro-triangle. The control net triangles involved in the
C1 continuity conditions (6) between p1 and p2 are shown in grey.

In other words, any s in S13 (T ?) consists of three cubic Bézier triangles (one on each of the micro-triangles Ti)
joined with C1 continuity across their pair-wise shared micro-edges. It is known that dim(S13 (T ?)) = 12.

A discussion on choosing the split point S can be found in [20, 28]. Although various options exist, the
split point is typically placed at the barycentre of T .

For later use, we now recall C0, C1, and C2 continuity conditions between Bézier cubic triangles [20, 23,
29]. Let pi be a cubic Bézier triangle defined on Ti, i = 0, 1, 2. Using the notation from Figure 1, the C0

continuity conditions between pi and pi+1 at their shared micro-edge SVi+2 are simply

pi0,j,3−j = pi+1
j,0,3−j for j = 0, 1, 2, 3. (5)

Let (τ0, τ1, τ2) be the barycentric coordinates of S with respect to T (of unit area), i.e., S = τ0V0+τ1V1+τ2V2.
Note that this means that τi is the area of Ti. Then the C1 continuity conditions between pi and pi+1 read

pi0,j,3−j = τip
i+1
j,1,2−j + τi+1p

i
1,j,2−j + τi+2p

i
0,j+1,2−j for j = 0, 1, 2. (6)

Finally, the C2 continuity conditions are

ωip
i
1,1−j,j+1 + ωi+1p

i
2,1−j,j + ωi+2p

i
1,2−j,j = ω̄ip

i+1
1−j,2,j + ω̄i+1p

i+1
1−j,1,j+1 + ω̄i+2p

i+1
2−j,1,j for j = 0, 1, (7)

where (ωi, ωi+1, ωi+2) are the barycentric coordinates of Vi with respect to triangle (S, Vi+1, Vi+2), and
(ω̄i, ω̄i+1, ω̄i+2) are the barycentric coordinates of Vi+1 with respect to triangle (Vi, S, Vi+2). Namely, with
τi > 0 for i = 0, 1, 2, i.e., the split point S is interior to T , we have

ωi = 1/τi, ωi+1 = −τi+1/τi, ωi+2 = −τi+2/τi, (8)

and
ω̄i = −τi/τi+1, ω̄i+1 = 1/τi+1, ω̄i+2 = −τi+2/τi+1. (9)

More information can be found e.g. in [2, 13, 23, 29].
3



V0 V0

V1 V1

V2 V2 V2

V0

V1
S S S

B0
1,2,0|T0 B1

2,1,0|T1 D1

Figure 2: Bernstein-Bézier basis functions restricted to micro-triangles T0 (left) and T1 (middle), respectively, are only C0

across micro-edge SV2. Their proper blend D1, defined in (15), however, forms a C1-continuous function over T (outlined by
grey edges) that vanishes over T3 and also along the micro-edge SV2 (right).

2.3. Hammer-Stroud quadrature for cubic polynomials over simplices

We now recall the result of Hammer and Stroud [14] that derives quadrature rules for polynomials of
total degree three over a simplex in Rn.

Theorem 2.1. [14, Theorem 1] Let Sn be a simplex in Rn, n ≥ 1, with vertices V0, V1, . . . , Vn, with
C =

∑n
i=0 Vi/(n+ 1) its barycentre (centroid), and ∆n its hyper-volume. Then the quadrature formula

QHS[f ] = cnf(C) + wn

n∑
i=0

f(Ui) (10)

with weights

cn =
−(n+ 1)2

4(n+ 2)
∆n, wn =

(n+ 3)2

4(n+ 1)(n+ 2)
∆n (11)

and quadrature points

Ui =
2

n+ 3
Vi +

n+ 1

n+ 3
C, i = 0, . . . , n (12)

is exact for any cubic polynomial f over Sn.

In the planar case (n = 2), the dimension of the polynomial space of total degree d is
(
d+2
2

)
, and

specifically dim(Π3) = 10.
The quadrature rule of Hammer and Stroud (10) uses the minimal number of quadrature points in the

sense that there is no exact quadrature with fewer nodes. However, the total number of degrees of freedom
of the quadrature is 12 (4 nodes in R2 and 4 weights). Thus, a natural question arises: can the space Π3

of cubic polynomials over a triangle be extended by two linearly independent functions D1, D2 /∈ Π3 such
that the quadrature (10) is exact also for D1 and D2?

In the following section, we give an affirmative answer to this question and show that the quadrature (10)
is also exact for the C1 cubic Clough-Tocher spline space over a macro-triangle if and only if the split-point
is the barycentre of the macro-triangle.

3. Gaussian quadrature for C1 cubic Clough-Tocher macro-triangles

We aim to prove that under the condition that the split-point is the barycentre, the Hammer-Stroud
quadrature (10) is also exact for the C1 cubic Clough-Tocher macro-triangle. To this end, we show that
there exist specific C1 cubic Clough-Tocher splines that vanish along the three micro-edges of T , and whose
integrals over T vanish as well.

We first define two one-parameter families of piece-wise cubic functions Dµ1

1 and Dµ2

2 , µ1, µ2 ∈ R, that
arise from blending Bernstein-Bézier basis functions acting on two different micro-triangles:

Dµ1

1 := B0
1,2,0|T0 − µ1B

1
2,1,0|T1 ,

Dµ2

2 := B2
2,1,0|T2 − µ2B

1
1,2,0|T1 ,

(13)
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Figure 3: A geometric proof of Lemma 3.1. Left (3D view): Bernstein-Bézier coefficients (yellow) over their Greville abscissae
(black) of two basis functions B0

1,2,0 and B1
2,1,0 are shown. All the Greville abscissae lie in the V0SV2 plane, and the only

non-zero cofficents are p01,2,0 and p12,1,0. The C1-continuity of the blend D1 in (15) is achieved by a proper choice of µ1,

which geometrically corresponds to the intersection (red dot) of the plane of the green triangle with the ordinate line of p12,1,0.

Note that for illustration purposes, the split-point S is shown outside of T . Right (2D view): An orthogonal projection of the
situation onto a plane perpendicular to SV2, which shows that µ1, and thus D1 ∈ C1, always exists.

where the superscript of the Bernstein-Bézier basis functions corresponds to their original micro-triangle.
These functions are restricted to their respective micro-triangle and are constant zero elsewhere; see Fig. 2.

By construction, Dµ1

1 and Dµ2

2 are C0 (c.f. (5)) for any value of µi, i = 1, 2 and vanish along the
micro-edges of T ?. Moreover, for a specific choice of these parameters they become C1 over T .

Lemma 3.1. Let S be an interior point of T . Then there exist µ1, µ2 ∈ R, dependent on S, such that
Dµi

i ∈ S1
3(T ?), i = 1, 2.

Proof. In the case of Dµ1

1 , the C1 conditions (6) across micro-edge SV2 simplify to just one equation, namely

0 = τ0(−µ1) + τ1, (14)

from which we obtain µ1 = τ1/τ0. Similarly, for Dµ2

2 we get µ2 = τ1/τ2.

This result leads to two C1 cubic splines (cf. (13))

D1 := B0
1,2,0|T0 − τ1

τ0
B1

2,1,0|T1 and

D2 := B2
2,1,0|T2 − τ1

τ2
B1

1,2,0|T1
(15)

on T ?.
Remark 1. Although the proof of Lemma 3.1 is rigorous and short, it provides little geometric insight. We
now present an alternative proof based on geometric arguments.

The condition of C1-continuity between two Bernstein-Bézier basis functions (6) is geometrically ex-
pressed by the fact that the corresponding triangles consisting of the control points along the common edge
(shaded in grey in Fig. 1) have to be coplanar; see Fig. 3. Consider Dµ1

1 in (13). The coefficients of the
two Bernstein-Bézier basis functions to be blended all vanish except for p01,2,0 = 1 and p12,1,0 = 1. The
coplanarity constraint can be geometrically interpreted as a plane-line intersection. The plane, α, is defined
by the triangle corresponding to p01,2,0, p00,3,0, and p00,2,1, and the line is the ordinate line of p12,1,0 with
parameter µ1. Since the split point lies strictly inside T , α has a finite slope with respect to the z = 0 plane
and therefore it intersects the ordinate line. An analogous argument applies to Dµ2

2 as well.
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Recall that Π3 is a 10-dimensional linear space, S1
3(T ?) is 12-dimensional, and Π3 ⊂ S1

3(T ?). The
following lemma shows that D1 and D2 extend Π3 to S1

3(T ?).
Lemma 3.2. It holds that

S1
3(T ?) = Π3 ⊕ span{D1, D2}. (16)

Proof. As Π3 is spanned by (global) polynomials and D1 vanishes on T2, it follows that D1 is linearly
independent from Π3 on T . The same argument holds for D2 as well. And since by construction D1, D2 ∈
S1
3(T ?), it remains to show that no non-trivial linear combination of D1 and D2 is in Π3.

We show this by contradiction. Let us assume that there exist two non-zero coefficients α1, α2 ∈ R such
that α1D1 + α2D2 =: G ∈ Π3. We now employ the C2 conditions (7) and note that all involved ordinates
are equal to zero except

p01,2,0 = α1, p12,1,0 = −α1
τ1
τ0
, p11,2,0 = −α2

τ1
τ2
, p22,1,0 = α2. (17)

At micro-edge SV2, using (8), (9), and (17), the C2 condition simplifies to

α1

α2
= −1

2

τ20
τ22
. (18)

Similarly, at micro-edge SV0 we get
α1

α2
= −2

τ20
τ22
. (19)

Because these two C2 conditions cannot be satisfied simultaneously, G is not C2 over T ? for any non-zero
parameters α1 and α2, and thus G /∈ Π3. This completes the proof.

The next lemma establishes a connection between the integrals of D1 and D2 and the split-point S.

Lemma 3.3. The integrals of D1 and D2 over T vanish, i.e.,

ˆ
T
Di dτ = 0, i = 1, 2, (20)

if and only if S is the barycentre of T .

Proof. The integrals of Bernstein-Bézier basis functions depend linearly on the triangle area [13]. In our
setting with d = 3 and T being of unit area, we have

ˆ
Tj
Bji dτ =

1

10
τj , j = 1, 2, 3. (21)

Consequently, we obtain

ˆ
T
D1 dτ =

ˆ
T0
B0

1,2,0 dτ − τ1
τ0

ˆ
T1
B1

2,1,0 dτ =
1

10

τ20 − τ21
τ0

(22)

and similarly ˆ
T
D2 dτ =

1

10

τ22 − τ21
τ2

. (23)

It follows that both integrals can vanish if and only if τ0 = τ1 = τ2, i.e., exactly when the split-point coincides
with the barycentre of T .

Before we prove our main result, we need the following definition regarding quadrature rules for polyno-
mials and spline-spaces over (macro-)triangles.
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Definition 3.1. We call a quadrature over a triangle a micro-edge quadrature if, for a selected internal split-
point S, all its quadrature nodes lie on the union of the three line segments connecting S to the vertices
of T .

Note that the quadrature of Hammer and Stroud (10) in two dimensions is a micro-edge quadrature
since the barycentre is one of the nodes and all other nodes lie on micro-edges, one on each.

We are now ready to formalise our main theorem.

Theorem 3.1. A micro-edge quadrature exact on S1
3(T ) exists if and only if the split-point is the barycentre

of T .

Proof. By construction, both D1 and D2 vanish along all three micro-edges of T .
(⇐) For any micro-edge quadrature it holds

Q[Di] = 0, i = 1, 2. (24)

If S is not the barycentre, then by Lemma 3.3 at least one of the functions D1 or D2 has a non-vanishing
integral over T . Therefore, Q[Di] 6=

´
T Didτ for at least one i = 1, 2 and thus no micro-edge quadrature

can be exact on S1
3(T ).

(⇒) If the split-point S is the barycentre of T , it follows from Lemma 3.3 that the integrals of D1 and
D2 over T vanish. Additionally, the (micro-edge) quadrature (10) also vanishes when applied to D1 and
D2. In other words,

QHS [Di] = 0 =

ˆ
T
Didτ , i = 1, 2. (25)

Therefore, by Lemma 3.2, the micro-edge quadrature of Hammer and Stroud is exact not only on Π3, but
also on S1

3(T ?).

Our theoretical result implies that it is now possible to save a considerable amount of quadrature points
when integrating over macro-triangles. Instead of using the traditional four quadrature points per micro-
triangle and thus twelve altogether per macro-triangle, we can now use only four quadrature points in a
macro-triangle to integrate over it exactly. This reduces the number of quadrature points needed by a factor
of three when compared to the traditional approach. Additionally, our result applies to all Clough-Tocher
variants of the C1 cubic macro-triangle, including its original version, the reduced space, and other variants
(see [20] for a summary) as long as the split-point is the barycentre.

Remark 2. When S is the barycentre, the rule (10) is exact for any function from S1
3(T ?). For functions

f /∈ S1
3(T ?), one can mimic the analysis conducted in [31, Section 5.3] to compute a-priori estimates of the

error of the rule. The calculation of the actual error constants by integrating the kernel function ([31, Eq.
(5.8-4)]) is rather technical and, as it relies on embedding the current domain (the macro-triangle) into a
rectangle, the actual bounds are expected to be less practical.

One must not misinterpret our findings: we considered only micro-edge quadratures as defined in Defi-
nition 3.1. Our result says nothing about the existence of Gaussian quadrature with nodes not constrained
to lie on the micro-edges for the C1 cubic Clough-Tocher macro-triangle. We have also tried to attack the
problem of finding a Gaussian quadrature rule when the split-point is not in the barycentre, fixing only
the split point to be a quadrature point, and allowing the other three nodes to move freely on the three
micro-triangles. Unfortunately, we did not discover any simplifications like those presented above and the
arising system of polynomial equations with the barycentric coordinates of the split-point as parameters is
beyond the current symbolic capabilities of the technical computing software Maple.

Nevertheless, one can still assemble the corresponding quadrature system and solve it numerically. Based
on the count of degrees of freedom in Section 2.3, we can expect that even when the split-point is not at
the barycentre of T , four quadrature points (also called nodes) should suffice to integrate S1

3(T ?) exactly.
However, to obtain a polynomial system of equations (and not a piece-wise polynomial one), we need to
place the four quadrature points into the three micro-triangles of T . Due to the fact that D1 and D2 vanish
over one of the micro-triangles each, not all four quadrature points can lie in one of the micro-triangles. Up
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Figure 4: Left: The basis function D1 over T with the split-point S away from the barycentre. Right: The positions of the
quadrature points Ui, i = 0, . . . , 3, corresponding the the nodal layout (1,2,1). Their barycentric coordinates can be found in
Table 1.

to permutations, this leaves us with three so-called nodal layouts: (3, 1, 0), (2, 2, 0), and (2, 1, 1), where each
triple denotes how many quadrature points live in each of the three micro-triangles.

For our numerical example, we chose the split point S to be given by (τ0, τ1, τ2) = (11
20 ,

1
4 ,

1
5 ); see Figure 4.

And we fixed the nodal layout to be (1, 2, 1). This leads to a well-constrained system of 12 equations (one
for each basis function; see (16)) in 12 unknowns. These unknowns are one weight ωi and two barycentric
coordinates ui and vi of each of the four nodes Ui, i = 0, . . . , 3. While the corresponding system admits
many solutions (the maximal total degree of the Gröbner basis polynomials with one specific ordering of
unknowns is 66), only one ensures that all the Ui lie in their prescribed micro-triangles, i.e., 0 < ui, vi < 1
and ui + vi < 1 for all i. This numerical solution is reported in Table 1.

4. 3D and beyond

Our main result shows that the Hammer-Stroud quadrature rule over triangles is exact not only on the
space of cubic polynomials, but also on the larger C1 cubic Clough-Tocher macro-triangle (when the split-
point is its barycentre). As the Hammer-Stroud quadrature rule applies to cubics over simplices of arbitrary
dimension, one can naturally ask whether our result also generalises to higher dimensions.

Consider a non-degenerate tetrahedron in R3 and the 20-dimensional space of cubic polynomials defined
on it. The associated Hammer-Stroud quadrature rule requires five quadrature points, which corresponds
to 20 degrees of freedom (5 nodes in R3 and 5 weights). Expressing the exactness of the rule by an algebraic
system of equations, this scenario leads to a well-constrained (20× 20) system which already indicates that
one cannot expect the quadrature to be exact on a larger space than cubic polynomials.

Table 1: A numerical example with (τ0, τ1, τ2) = ( 11
20
, 1
4
, 1
5

); see Figure 4. The computed quadrature points Ui,
given in terms of barycentric coordinates (ui, vi, 1 − ui − vi) in their respective micro-triangles VjVj+1S (nodal
layout is (1, 2, 1)) and the corresponding weights ωi (last column), are listed here. As the area of T is assumed to
be one, the weights ωi sum to one.

ui vi ωi

U0 0.09039700369290119251 0.71710167289537160945 0.16101639368924650306

U1 0.36472134323958328063 0.40592878510910588031 0.34503323833126581026

U2 0.16455363488938706592 0.76341032510061727023 0.14086634590842244384

U3 0.26378417182428927673 0.03430857491526249826 0.35308402207106524282
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To obtain a larger space over a tetrahedron, one could consider a generalisation of the Clough-Tocher-
Hsieh split from the triangular case. One such split uses a single split-point (e.g. the barycentre) to split
the original tetrahedron into four micro-tetrahedra. This is called the Alfeld split [22]. However, in order
to obtain a non-trivial C1 spline space over such macro-tetrahedra, degree 5 is needed [1]. Additionally, the
obtained space has 65 degrees of freedom.

Another option is to employ the Worsey-Farin split [22]. This split, on top of an internal split-point,
also uses four face split-points, one in each face of the tetrahedron. This results into a macro-tetrahedron
composed from twelve micro-tetrahedra. This split supports C1 cubic splines and has 28 degrees of freedom
[32]. This could indicate that 7 quadrature nodes might suffice. However, the choice of the face split-points
means that the whole construction is not, in general, affine invariant and thus a general quadrature rule has
to depend on certain parameters corresponding to the choice of the face split-points.

These facts show that there is no direct generalisation of our result into three (and higher) dimensions.
Finding quadrature rules for the spline spaces of Alfeld [1] and Worsey-Farin [32] thus remains an interesting
avenue for future research.

For other spline spaces over planar triangulations, one may ask a similar question as we posed here,
namely if a certain polynomial bivariate quadrature rule integrates a larger space, and if so, under what
conditions. In the case of C1 quadratic Powell-Sabin 6-split macro-triangles, the underlying spline space
admits more degrees of freedom and consequently the 3-node Gaussian quadrature(s) for quadratics can be
generalised to the C1 quadratic Powell-Sabin 6-split spline space over a macro-triangle for a two-parameter
family of inner split-points [4], not just the barycentre as it is in the case of the Clough-Tocher spline space
considered here.

5. Conclusion

We have investigated the existence of Gaussian rules for C1 cubic Clough-Tocher macro-triangles and
have shown that the Hammer-Stroud quadrature rule for cubic polynomials generalises to such a rule if and
only if the split point is the barycentre of the macro-triangle. This result brings the reduction of the number
of quadrature points by a factor of three when compared to the traditional element-wise integration. In
terms of future research, additionally to the already mentioned challenges of Alfeld and Worsey-Farin splits,
one may also focus on semi-Gaussian rules for Clough-Tocher splines over unions of macro-triangles.
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