1,193 research outputs found

    Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems:A Review

    Get PDF
    Renewable energy sources (RESs) are the replacement of fast depleting, environment polluting, costly, and unsustainable fossil fuels. RESs themselves have various issues such as variable supply towards the load during different periods, and mostly they are available at distant locations from load centers. This paper inspects forecasting techniques, employed to predict the RESs availability during different periods and considers the dispatch mechanisms for the supply, extracted from these resources. Firstly, we analyze the application of stochastic distributions especially the Weibull distribution (WD), for forecasting both wind and PV power potential, with and without incorporating neural networks (NN). Secondly, a review of the optimal economic dispatch (OED) of RES using particle swarm optimization (PSO) is presented. The reviewed techniques will be of great significance for system operators that require to gauge and pre-plan flexibility competence for their power systems to ensure practical and economical operation under high penetration of RESs

    Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry

    Get PDF
    Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Spatio-temporal prediction of wind fields

    Get PDF
    Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration.Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration

    Utilization Of Artificial Intelligence (AI) And Machine Learning (ML) in the Field of Energy Research

    Get PDF
    Many governments have committed to becoming carbon neutral by 2050. The main argument is that renewable resources are more eco-friendly than fossil fuels. However, the unpredictable nature of solar and wind power results in either excess or lack of energy generation. This article will evaluate the current machine-learning-based solutions for forecasting renewable energy demand and capacity. Many researchers have used machine learning (ML) to anticipate the amount of generated wind or solar energy. SVM, RNN, NN, and ELM are the most utilized algorithms. Prediction accuracy is improved through optimization (metaheuristics and evolution). These methods can forecast renewable energy for periods ranging from seconds to months. This article compares several ML methodologies and metaheuristic strategies and reviews the current state of research. The hybrid MLS outperforms the standalone optimizers. A more extensive data set for ANN, the introduction of NWP, and a shorter prediction timeframe are suggested as alternatives to Bayesian and random grid tuning. Further research on probabilistic predictions and mathematical relationships between inputs and outputs is needed to close the research gap

    Intelligent energy management system : techniques and methods

    Get PDF
    ABSTRACT Our environment is an asset to be managed carefully and is not an expendable resource to be taken for granted. The main original contribution of this thesis is in formulating intelligent techniques and simulating case studies to demonstrate the significance of the present approach for achieving a low carbon economy. Energy boosts crop production, drives industry and increases employment. Wise energy use is the first step to ensuring sustainable energy for present and future generations. Energy services are essential for meeting internationally agreed development goals. Energy management system lies at the heart of all infrastructures from communications, economy, and society’s transportation to the society. This has made the system more complex and more interdependent. The increasing number of disturbances occurring in the system has raised the priority of energy management system infrastructure which has been improved with the aid of technology and investment; suitable methods have been presented to optimize the system in this thesis. Since the current system is facing various problems from increasing disturbances, the system is operating on the limit, aging equipments, load change etc, therefore an improvement is essential to minimize these problems. To enhance the current system and resolve the issues that it is facing, smart grid has been proposed as a solution to resolve power problems and to prevent future failures. This thesis argues that smart grid consists of computational intelligence and smart meters to improve the reliability, stability and security of power. In comparison with the current system, it is more intelligent, reliable, stable and secure, and will reduce the number of blackouts and other failures that occur on the power grid system. Also, the thesis has reported that smart metering is technically feasible to improve energy efficiency. In the thesis, a new technique using wavelet transforms, floating point genetic algorithm and artificial neural network based hybrid model for gaining accurate prediction of short-term load forecast has been developed. Adopting the new model is more accuracy than radial basis function network. Actual data has been used to test the proposed new method and it has been demonstrated that this integrated intelligent technique is very effective for the load forecast. Choosing the appropriate algorithm is important to implement the optimization during the daily task in the power system. The potential for application of swarm intelligence to Optimal Reactive Power Dispatch (ORPD) has been shown in this thesis. After making the comparison of the results derived from swarm intelligence, improved genetic algorithm and a conventional gradient-based optimization method, it was concluded that swam intelligence is better in terms of performance and precision in solving optimal reactive power dispatch problems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An integrated approach for distributed energy resource short term scheduling in smart grids considering realistic power system simulation

    Get PDF
    The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values
    • …
    corecore