3,725 research outputs found

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Integration of LiDAR and stereoscopic imagery for route corridor surveying

    Get PDF
    Transportation networks are, typically, one of the most economic valuable resources for any nation requiring a large percentage of GDP to build and maintain. These route corridors attract their own unique set of spatial information requirements in terms of overall management including planning, engineering and operation. Various disciplines within a road management agency require high quality, spatial data of objects and features occurring along these networks from road infrastructure, sub-surface pavement condition through to modelling noise. This paper examines the integration of relatively novel sensor data against some pressing spatial information requirements for a small European road management agency. LiDAR systems are widely available and now used to record data from both aerial and terrestrial survey platforms. One of the chief LiDAR outputs are X,Y,Z points enabling a reliable 2.5-D geometric surface to be produced. Stereoscopic imagery is also collected from similar airborne and terrestrial mobile platforms. Both provide different datasets in terms of their respective optical and geometric properties. For example, stereoscopic cameras mounted on a survey vehicle record different data compared to LiDAR mounted near vertically on an airborne platform. Airborne LiDAR provides a more comprehensive geometric record whereas stereoscopic imagery can be used to provide a more comprehensive visual descriptor of the immediate route corridor. Acquisition systems for both sensors are relatively well understood and developed. Both systems collect large volumes of data that require a significant amount of data processing in order to produce useful information. A more efficient result can be achieved by integrating these two datasets within a GIS. The preliminary results of integration of airborne LiDAR with ground based stereo imaging systems are presented. How well this integration satisfies the growing spatial information requirements of the road agency are also examined

    LINEAR REGRESSION AND LINES INTERSECTING AS A METHOD OF EXTRACTING PUNCTUAL ENTITIES IN A LIDAR POINT CLOUD

    Get PDF
    The characteristics of data points obtained by laser scanning (LiDAR) and images have been considered complementary in the field of photogrammetric applications, and research to improve their integrated use have recently intensified. This study aim to verify the performance of determining punctual entities in a LiDAR point cloud using linear regression and intersecting lines obtained from buildings with square rooftop containing four planes (hip roof), as well as compare punctual entities three-dimensional coordinates determined by planes intersection. Our results show that the proposed method was more accurate in determining three-dimensional coordinates than plan intersection method. The obtained coordinates were evaluated and framed into the map accuracy standard for digital cartographic products (PEC-PCD), besides being analyzed for trend and precision. Accuracy analysis results frame punctual entities three-dimensional coordinates into the 1/2,000 or lower scale for Class A of PEC-PCD

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Update urban basemap by using the LiDAR mobile mapping system : the case of Abu Dhabi municipal system

    Get PDF
    Basemaps are the main resource used in urban planning and in building and infrastructure asset management. These maps are used by citizens and by private and public stakeholders. Therefore, accurate, up-to-date geoinformation of reference are needed to provide a good service. In general, basemaps have been updated by aerial photogrammetry or field surveying, but these methods are not always possible and alternatives need to be sought. Current limitations and challenges that face traditional field surveys include areas with extreme weather, deserts or artic environments, and flight restrictions due to proximity with other countries if there is not an agreement. In such cases, alternatives for large-scale are required. This thesis proposes the use of a mobile mapping system (MMS) to update urban basemaps. Most urban features can be extracted from point cloud using commercial software or open libraries. However, there are some exceptions: manhole covers, or hidden elements even with captures from defferent perspective, the most common building corners. Therefore, the main objective of this study was to establish a methodology for extracting manholes automatically and for completing hidden corners of buildings, so that urban basemaps can be updated. The algorithm developed to extract manholes is based on time, intensity and shape detection parameters, whereas additional information from satellite images is used to complete buildings. Each municipality knows the materials and dimensions of its manholes. Taking advantage of this knowledge, the point cloud is filtered to classify points according to the set of intensity values associated with the manhole material. From the classified points, the minimum bounding rectangles (MBR) are obtained and finally the shape is adjusted and drawn. We use satellite imagery to automatically digitize the layout of building footprints with automated software tools. Then, the visible corners of buildings from the LiDAR point cloud are imported and a fitting process is performed by comparing them with the corners of the building from the satellite image. Two methods are evaluated to establish which is the most suitable for adjustment in these conditions. In the first method, the differences in X and Y directions are measured in the corners, where LiDAR and satellite data are available, and is often computed as the average of the offsets. In the second method, a Helmert 2D transformation is applied. MMS involves Global Navigation Satellite Systems (GNSS) and Inertial Measurement Units (IMU) to georeference point clouds. Their accuracy depends on the acquisition environment. In this study, the influence of the urban pattern is analysed in three zones with varied urban characteristics: different height buildings, open areas, and areas with a low and high level of urbanization. To evaluate the efficiency of the proposed algorithms, three areas were chosen with varying urban patterns in Abu Dhabi. In these areas, 3D urban elements (light poles, street signs, etc) were automatically extracted using commercial software. The proposed algorithms were applied to the manholes and buildings. The completeness and correctness ratio, and geometric accuracy were calculated for all urban elements in the three areas. The best success rates (>70%) were for light poles, street signs and road curbs, regardless of the height of the buildings. The worst rate was obtained for the same features in peri-urban areas, due to high vegetation. In contrast, the best results for trees were found in theses areas. Our methodology demonstrates the great potential and efficiency of mobile LiDAR technology in updating basemaps; a process that is required to achieve standard accuracy in large scale maps. The cost of the entire process and the time required for the proposed methodology was calculated and compared with the traditional method. It was found that mobile LiDAR could be a standard cost-efficient procedure for updating maps.La cartografía de referencia es la principal herramienta en planificación urbanística, y gestión de infraestructuras y edificios, al servicio de ciudadanos, empresas y administración. Por esta razón, debe estar actualizada y ser lo más precisa posible. Tradicionalmente, la cartografía se actualiza mediante fotogrametría aérea o levantamientos terrestres. No obstante, deben buscarse alternativas válidas para escalas grandes, porque no siempre es posible emplear estas técnicas debido a las limitaciones y retos actuales a los que se enfrenta la medición tradicional en algunas zonas del planeta, con meteorología extrema o restricciones de vuelo por la proximidad a la frontera con otros países. Esta tesis propone el uso del sistema Mobile Mapping System (MMS) para actualizar la cartografía urbana de referencia. La mayoría de los elementos pueden extraerse empleando software comercial o librerías abiertas, excepto los registros de servicios. Los elementos ocultos son otro de los inconvenientes encontrados en el proceso de creación o actualización de la cartografía, incluso si se dispone de capturas desde diferentes puntos de vista. El caso más común es el de las esquinas de edificios. Por ello, el principal objetivo de este estudio es establecer una metodología de extracción automática de los registros y completar las esquinas ocultas de los edificios para actualizar cartografía urbana. El algoritmo desarrollado para la detección y extracción de registros se basa en parámetros como el tiempo, la intensidad de la señal laser y la forma de los registros, mientras que para completar los edificios se emplea información adicional de imágenes satélite. Aprovechando el conocimiento del material y dimensión de los registros, en disposición de los gestores municipales, el algoritmo propuesto filtra y clasifica los puntos de acuerdo a los valores de intensidad. De aquellos clasificados como registros se calcula el mínimo rectángulo que los contiene (Minimum Bounding Rectangle) y finalmente se ajusta la forma y se dibuja. Las imágenes de satélite son empleadas para obtener automáticamente la huella de los edificios. Posteriormente, se importan las esquinas visibles de los edificios obtenidas desde la nube de puntos y se realiza el ajuste comparándolas con las obtenidas desde satélite. Para llevar a cabo este ajuste se han evaluado dos métodos, el primero de ellos considera las diferencias entre las coordenadas XY, desplazándose el promedio. En el segundo, se aplica una transformación Helmert2D. MMS emplea sistemas de navegación global por satélite (Global Navigation Satellite Systems, GNSS) e inerciales (Inertial Measurement Unit, IMU) para georreferenciar la nube de puntos. La precisión de estos sistemas de posicionamiento depende del entorno de adquisición. Por ello, en este estudio se han seleccionado tres áreas con distintas características urbanas (altura de edificios, nivel de urbanización y áreas abiertas) de Abu Dhabi con el fin de analizar su influencia, tanto en la captura, como en la extracción de los elementos. En el caso de farolas, señales viales, árboles y aceras se ha realizado con software comercial, y para registros y edificios con los algoritmos propuestos. Las ratios de corrección y completitud, y la precisión geométrica se han calculado en las diferentes áreas urbanas. Los mejores resultados se han conseguido para las farolas, señales y bordillos, independientemente de la altura de los edificios. La peor ratio se obtuvo para los mismos elementos en áreas peri-urbanas, debido a la vegetación. Resultados opuestos se han conseguido en la detección de árboles. El coste económico y en tiempo de la metodología propuesta resulta inferior al de métodos tradicionales. Lo cual demuestra el gran potencial y eficiencia de la tecnología LiDAR móvil para la actualización cartografía de referenciaPostprint (published version
    • …
    corecore