39,045 research outputs found

    Integrating local information for inference and optimization in machine learning

    Get PDF
    In practice, machine learners often care about two key issues: one is how to obtain a more accurate answer with limited data, and the other is how to handle large-scale data (often referred to as “Big Data” in industry) for efficient inference and optimization. One solution to the first issue might be aggregating learned predictions from diverse local models. For the second issue, integrating the information from subsets of the large-scale data is a proven way of achieving computation reduction. In this thesis, we have developed some novel frameworks and schemes to handle several scenarios in each of the two salient issues. For aggregating diverse models – in particular, aggregating probabilistic predictions from different models – we introduce a spectrum of compositional methods, Rényi divergence aggregators, which are maximum entropy distributions subject to biases from individual models, with the Rényi divergence parameter dependent on the bias. Experiments are implemented on various simulated and real-world datasets to verify the findings. We also show the theoretical connections between Rényi divergence aggregators and machine learning markets with isoelastic utilities. The second issue involves inference and optimization with large-scale data. We consider two important scenarios: one is optimizing large-scale Convex-Concave Saddle Point problem with a Separable structure, referred as Sep-CCSP; and the other is large-scale Bayesian posterior sampling. Two different settings of Sep-CCSP problem are considered, Sep-CCSP with strongly convex functions and non-strongly convex functions. We develop efficient stochastic coordinate descent methods for both of the two cases, which allow fast parallel processing for large-scale data. Both theoretically and empirically, it is demonstrated that the developed methods perform comparably, or more often, better than state-of-the-art methods. To handle the scalability issue in Bayesian posterior sampling, the stochastic approximation technique is employed, i.e., only touching a small mini batch of data items to approximate the full likelihood or its gradient. In order to deal with subsampling error introduced by stochastic approximation, we propose a covariance-controlled adaptive Langevin thermostat that can effectively dissipate parameter-dependent noise while maintaining a desired target distribution. This method achieves a substantial speedup over popular alternative schemes for large-scale machine learning applications

    Sequential Gaussian Processes for Online Learning of Nonstationary Functions

    Full text link
    Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: i) Conventional GP inference scales O(N3)O(N^{3}) with respect to the number of observations; ii) updating a GP model sequentially is not trivial; and iii) covariance kernels often enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose an online sequential Monte Carlo algorithm to fit mixtures of GPs that capture non-stationary behavior while allowing for fast, distributed inference. By formulating hyperparameter optimization as a multi-armed bandit problem, we accelerate mixing for real time inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the context of prediction for simulated non-stationary data and hospital time series data

    Bayesian Inference in Estimation of Distribution Algorithms

    Get PDF
    Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimization problems. The model fitting task in this class of algorithms has largely been carried out to date based on maximum likelihood. An alternative approach that is prevalent in statistics and machine learning is to use Bayesian inference. In this paper, we provide a framework for the application of Bayesian inference techniques in probabilistic model-based optimization. Based on this framework, a simple continuous Bayesian Estimation of Distribution Algorithm is described. We evaluate and compare this algorithm experimentally with its maximum likelihood equivalent, UMDAG c

    A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

    Full text link
    An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest in population-scale inference with whole-genome data. Recent work in population genetics has centered on designing inference methods for relatively simple model classes, and few scalable general-purpose inference techniques exist for more realistic, complex models. To achieve this, two inferential challenges need to be addressed: (1) population data are exchangeable, calling for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is intractable as it requires integrating over a set of correlated, extremely high-dimensional latent variables. These challenges are traditionally tackled by likelihood-free methods that use scientific simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural network that performs summary statistic-free, likelihood-free inference. Our framework can be applied in a black-box fashion across a variety of simulation-based tasks, both within and outside biology. We demonstrate the power of our approach on the recombination hotspot testing problem, outperforming the state-of-the-art.Comment: 9 pages, 8 figure

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics

    On Similarities between Inference in Game Theory and Machine Learning

    No full text
    In this paper, we elucidate the equivalence between inference in game theory and machine learning. Our aim in so doing is to establish an equivalent vocabulary between the two domains so as to facilitate developments at the intersection of both fields, and as proof of the usefulness of this approach, we use recent developments in each field to make useful improvements to the other. More specifically, we consider the analogies between smooth best responses in fictitious play and Bayesian inference methods. Initially, we use these insights to develop and demonstrate an improved algorithm for learning in games based on probabilistic moderation. That is, by integrating over the distribution of opponent strategies (a Bayesian approach within machine learning) rather than taking a simple empirical average (the approach used in standard fictitious play) we derive a novel moderated fictitious play algorithm and show that it is more likely than standard fictitious play to converge to a payoff-dominant but risk-dominated Nash equilibrium in a simple coordination game. Furthermore we consider the converse case, and show how insights from game theory can be used to derive two improved mean field variational learning algorithms. We first show that the standard update rule of mean field variational learning is analogous to a Cournot adjustment within game theory. By analogy with fictitious play, we then suggest an improved update rule, and show that this results in fictitious variational play, an improved mean field variational learning algorithm that exhibits better convergence in highly or strongly connected graphical models. Second, we use a recent advance in fictitious play, namely dynamic fictitious play, to derive a derivative action variational learning algorithm, that exhibits superior convergence properties on a canonical machine learning problem (clustering a mixture distribution)
    corecore