

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Integrating Local Information for Inference

and Optimization in Machine Learning

Zhanxing Zhu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2016

Abstract

In practice, machine learners often care about two key issues: one is how to obtain a

more accurate answer with limited data, and the other is how to handle large-scale data

(often referred to as “Big Data” in industry) for efficient inference and optimization.

One solution to the first issue might be aggregating learned predictions from diverse

local models. For the second issue, integrating the information from subsets of the

large-scale data is a proven way of achieving computation reduction. In this thesis,

we have developed some novel frameworks and schemes to handle several scenarios

in each of the two salient issues.

For aggregating diverse models – in particular, aggregating probabilistic predic-

tions from different models – we introduce a spectrum of compositional methods,

Rényi divergence aggregators, which are maximum entropy distributions subject to

biases from individual models, with the Rényi divergence parameter dependent on the

bias. Experiments are implemented on various simulated and real-world datasets to

verify the findings. We also show the theoretical connections between Rényi diver-

gence aggregators and machine learning markets with isoelastic utilities.

The second issue involves inference and optimization with large-scale data. We

consider two important scenarios: one is optimizing large-scale Convex-Concave Saddle

Point problem with a Separable structure, referred as Sep-CCSP; and the other is large-

scale Bayesian posterior sampling.

Two different settings of Sep-CCSP problem are considered, Sep-CCSP with strongly

convex functions and non-strongly convex functions. We develop efficient stochastic

coordinate descent methods for both of the two cases, which allow fast parallel pro-

cessing for large-scale data. Both theoretically and empirically, it is demonstrated that

the developed methods perform comparably, or more often, better than state-of-the-art

methods.

To handle the scalability issue in Bayesian posterior sampling, the stochastic ap-

proximation technique is employed, i.e., only touching a small mini batch of data items

to approximate the full likelihood or its gradient. In order to deal with subsampling er-

ror introduced by stochastic approximation, we propose a covariance-controlled adap-

tive Langevin thermostat that can effectively dissipate parameter-dependent noise while

maintaining a desired target distribution. This method achieves a substantial speedup

over popular alternative schemes for large-scale machine learning applications.

i

Lay Summary

One of the fundamental tasks in science is to learn from and make predictions on the

observed data. For example, given many images, one might try to predict what objects

are in each image. This important task often cares about two issues: one is to how to

obtain more accurate predictions given limited data; and the other is to how to handle

large-scale data (referred as “Big Data” problem in industry) for efficient learning.

One solution to the first issue might be that we develop various models for the same

task and then integrate the predictions from these local models. For the second issue,

recent works show that one can use much smaller subsets of the large-scale data to

approximate the full computation. In this thesis, we have developed several novel

frameworks and schemes to handle some aspects of the two important issues.

For aggregating learned predictions from various models, we propose a method to

consider the situation when the individual models are learned from a biased version of

the original data. And we implement extensive experiments on various simulated and

real-world data to demonstrate the effectiveness of our method.

For handling learning problem with large-scale data, two scenarios are considered:

inference and optimization. In both of the cases, we develop several methods which

only use random (much smaller) subsets of the original large-scale data to approxi-

mate full computation. And thus, efficient learning can be done in a reasonable time,

but not sacrificing much accuracy. This strategy solves the computational bottle neck

involved in learning with large-scale data. Additionally, the developed methods also

allow parallel processing, and thus enables the possibilities for usage of modern com-

puting clusters.

ii

Acknowledgements

First I would express my great thanks to my supervisor Amos J. Storkey, who has been

providing consistent guidance and insights to my three years of Ph.D research. I feel

lucky to be supervised by him. He always gave me the freedom to pursue my own

ideas, but at the same time challenged me and steer me in the right direction when

necessary. His friendly, approachable nature made a pleasant work environment for

me, while his incredible knowledge and insight never cease to amaze me.

I wish to thank the following people for their assistance during the three years:

Mingjun Zhong for valuable discussions on various interesting research problems; Jinli

Hu and Xiaocheng Shang for close collaboration in some of my work; Peter Orchard,

my office mate, for some helpful suggestions during the first two years; XingXing

Zhang, for intensive discussions on neural networks, and Iain Murray, for the insightful

discussion on the scalable methods for sampling.

Edinburgh machine learning group is an extraordinary place to work. I have been

surrounded by many smart and motivated researchers, and have enjoyed lots of fresh

and exciting ideas during brainstorming and paper discussion sessions. I also grate-

fully acknowledge the financial support from China Scholarships Council/University

of Edinburgh Scholarships.

I have made a bunch of amazing friends in Edinburgh, allowing me to enjoy a

colourful life in this beautiful city. I always remember the happy moments with them:

Xin He, Cheng Feng, Guoli Yang, Jinli Hu, Benigno Urı́a, Konstantinos Georgatzis,

Pol Moreno, Krzysztof Geras, He Wang and Yichuan Zhang, etc. Particularly, I would

thank those joyful badminton matches with Xuan Huang, Sohan Seth, Boli Zhang and

Xuri Tang.

Most endeavours in life begin with the support of family. I would never have been

in a position to finish this Ph.D without the incredible people that brought me up,

provided for me, educated, and inspired me throughout my life. My deepest gratitude

goes to my parents, my older brother and my fiancée, Ming. Thanks so much for their

love and endless supports during these years.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Zhanxing Zhu)

iv

Table of Contents

Notation xv

1 Introduction 1

2 Aggregation of Probabilistic Predictions Under Bias 8
2.1 Motivation . 9

2.2 Background . 10

2.2.1 Simple Aggregation Methods 12

2.2.2 Learnt Aggregation Methods 13

2.3 Problem Statement . 14

2.4 Weighted Divergence Aggregation 15

2.4.1 Weighted Rényi Divergence Aggregation 15

2.5 Maximum Entropy Arguments . 18

2.6 Optimization of Weighted Rényi Divergence Aggregators 21

2.7 Experiments . 23

2.7.1 Task 1: Aggregation on simulated data 23

2.7.2 Task 2: Aggregation on chords from Bach chorales 24

2.7.3 Task 3: Aggregation on Kaggle competition 26

2.8 Machine Learning Markets and Rényi Divergence Aggregation 31

2.8.1 Model Details of Machine Learning Markets 32

2.8.2 Connection between MLMs and Rényi Divergence Aggregation 37

2.9 Discussion . 38

3 Stochastic Methods for Separable Saddle Point Problems 39
3.1 CCSP and Sep-CCSP Problems . 46

3.2 Primal-Dual Framework for CCSP and Sep-CCSP 48

3.2.1 Scalable Methods for Large-Scale Sep-CCSP 49

3.3 Adaptive Stochastic Primal-Dual Coordinate Descent 51

v

3.3.1 Convergence Analysis for AdaSPDC 53

3.3.2 Further Comparison with SDPC 54

3.3.3 Empirical Results . 55

3.4 SP-BCD for General Sep-CCSP Problems 63

3.4.1 Convergence Analysis for SP-BCD 66

3.4.2 Applications . 67

3.5 Discussion and Future Directions . 78

4 Dynamics-based Methods for Large-scale Bayesian Sampling 80
4.1 Problem Settings . 81

4.2 MCMC Methods . 81

4.3 Dynamical MCMC . 83

4.3.1 Metropolis Adjusted Langevin Algorithm (MALA) 84

4.3.2 Hamiltonian Monte Carlo (HMC) 84

4.4 Stochastic Gradient Dynamical Sampling Methods 87

4.4.1 Stochastic Gradient Langevin Dynamics (SGLD) 88

4.4.2 Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) . . . 89

4.4.3 Stochastic Gradient Nosé-Hoover Thermostat (SGNHT) . . . 90

4.5 Covariance-Controlled Adaptive Langevin Thermostat 93

4.5.1 Covariance Estimation of Noisy Gradient 95

4.6 Numerical Experiments . 97

4.6.1 Bayesian Inference for a Gaussian Distribution 97

4.6.2 Large-scale Bayesian Logistic Regression 99

4.6.3 Discriminative Restricted Boltzmann Machine (DRBM) . . . 102

4.7 Conclusions and Future Work . 104

5 Conclusions 106
5.1 Contributions . 106

5.2 Future Directions . 108

5.3 Concluding Remarks . 111

A Background on Fokker-Planck Equation for SDEs 112

B Convergence Proofs for AdaSPDC 114

C Convergence Proofs for SP-BCD 123

vi

Bibliography 130

vii

List of Figures

1.1 Sketch of aggregating probabilistic predictions form multiple agents. Indi-

vidual agent obtains dataset Di, which might be the exact copy of original

data D or its biased version. Then, each agent builds its local model Ci to

make (probabilistic) predictions Pi. The process inside the dashed rectangle

represents the aggregation procedure to produce an aggregated prediction P∗.

Note that we have no control over the individual agent’s behaviour, which is

favoured in distributed crowdsourcing systems. 2

2.1 (a) Task 1: Plot of the KL divergence against logγ for one dataset with β = 0

(lower lines, blue) through to β = 4 (upper lines, red) in steps of 0.5. Note

that, unsurprisingly, more bias reduces performance. However the optimal

value of γ (lowest KL), changes as β changes. for low values of β the per-

formance of γ = 0 (log opinion pools) is barely distinguishable from other

low γ values. Note that using a log opinion pool (low γ) when there is bias

produces a significant hit on performance. (b) Task 1: Plot of the optimal γ

(defining the form of Rényi mixture) for different values of β (determining

the bias in the generated datasets for each agent). The red (upper) line is the

mean, the blue line the median and the upper and lower bars indicate the 75th

and 25th percentiles, all over 100 different datasets. For β = 0 (no bias) we

have optimal aggregation with lower γ values, approximately corresponding

to a log opinion pool. As β increases, the optimal γ gets larger, covering the

full range of Rényi Mixtures. 25

2.2 Task 2: test log probability results (relative to the log probability for a mix-

ture) for the Bach chorales data for different values of γ, indicating the benefit

of Rényi mixtures over linear (γ= 1) and log (γ= 0) opinion pools. Error bars

are standard errors over 10 different allocations of chorales to agents prior to

training. 26

viii

2.3 Competition form: competitors had to infer the probabilities for a pixel taking

each of 64 values, given values for pixels above and to the left of that pixel.

Note that i labels the original image source: iml00004.imk. The image patch

is 35 pixels (horizontal) × 30 pixels (vertical). 28

2.4 Heuristic ‘Bayesian’ Model Averaging with different α. 29

2.5 (a) Task 3: perplexity on the test set of all the compared aggregation methods

against η = 1/γ. For each method, the best performance is plotted. Log

opinion pools perform best as suggested by the maximum entropy arguments,

and is statistically significantly better than the linear opinion pool(p = 8.0×

10−7). All methods perform better than the best individual competition entry

(2.963). (b) Task 3: boxplot of relative log perplexity (using linear opinion

pool as the baseline). The red ’x’ represents the mean, and black dots are the

standard deviation. 30

2.6 Weight distribution over 269 ranked submissions (agents) for the log opinion

pool and Rényi mixture with η = 1/γ = 30. 31

2.7 (a) Three different components (i.e. agent beliefs), each given weights Wi of

0.4, 0.4 and 0.2 from left to right. (b) The logarithmic (i.e. mixture) combi-

nation of these components (dashed) and the isoelastic (η = 10) combination

(solid). Note the isoelastic combination puts more weight where the overlap

of the different components are and down-weights the regions of disagree-

ment or isolated components. Source from Storkey et al. (2012) 35

3.1 The conjugate function f ∗(y) is the maximum gap between the linear function

yx and f (x), as shown by the dashed line in the figure. If f is differentiable,

this occurs at a point x where ∇ f (x) = y. 43

ix

3.2 Evaluating a proximal operator at various points. The thin black lines are level

curves of a convex function f ; the thicker black line indicates the boundary

of its domain. Evaluating prox f at the blue points moves them to the corre-

sponding red points. The three points in the domain of the function stay in

the domain and move towards the minimum of the function, while the other

two move to the boundary of the domain and towards the minimum of the

function. The penalty parameter λ controls the extent to which the proximal

operator maps points towards the minimum of f , with larger values of λ as-

sociated with mapped points near the minimum, and smaller values giving

a smaller movement towards the minimum. Source from Parikh and Boyd

(2013). 44

3.3 Illustration of Convex-Concave Saddle Point problem in a two-dimensional

case. The red point is the saddle point (x?,y?). 46

3.4 Ridge regression with synthetic data: comparison of convergence perfor-

mance w.r.t. the number of passes. Problem size: D = 1000,N = 1000. We

evaluate the convergence performance using objective suboptimality, J(xt)−

J(x?). 57

3.5 Comparison of algorithm performance with smooth Hinge loss. 60

3.6 Comparison of algorithm performance with Logistic loss. 61

3.7 RPCA problem: comparison of our method and ADMM, GSADMM, PDCP

and PDMM with m= {1,2,3}. The first column shows the evolution of objec-

tive function w.r.t. number of passes. The left and right panel of the second

column depict the residual evolution (measured by ‖X1 +X2 +X3−B‖F)

as function of number of passes and consumed time, respectively. All the

compared methods can quickly achieve the consensus objective value in 20

passes. The main difference is how fast they satisfy the constraint. SP-BCD

with m = 2 is the fastest, achieving almost the same performance with GAS-

DMM and fully parallelizable, while GSADMM can only be run sequentially.

. 71

x

3.8 Lasso: comparison of convergence performance w.r.t. the number of passes

and time. Problem size: m = 5000,n = 20000 and number of nonzero entries

of xtrue, d = 500. SP-BCD uses least number of passes and time to achieve

same objective value with other methods. ADMM needs to solve a large-

scale linear system in each iteration. PDCP needs estimation of the norm of

the large matrix A. Both of them are hindered by the issue of scalability. Our

method SP-BCD avoids this issue. 75

3.9 Group Lasso on MEMset dataset with different regularization parameter λ:

comparison of our method SP-BCD (m = 3 blocks are chosen in each itera-

tion) with OSGA, FOBOS, FISTA and PDCP. In all these test cases, SP-BCD

demonstrates its superiority on both the number of passes and the consumed

time. When the regularization is strong with large λ = 10−4, all the methods

tend to converge fast, but SP-BCD is the fastest one. PDCP performs poorly

in the first hundreds or thousands of passes, since it only uses a constant step

size 1/‖A‖. Compared with PDCP, our method considers the structure of

matrix A and scales each dimension of primal and dual updates, which can

achieve better empirical performance. 76

3.10 SP-BCD for Group Lasso on MEMset dataset with different regularization

parameter λ and different number chosen blocks m. The effect of m: a smaller

number of blocks yields faster convergence, which shows the advantage of the

flexible stochastic update of our method compared with Pock and Chambolle

(2011). 77

4.1 Comparisons of marginal distribution (density) of µ (top row) and γ (bottom

row) with various values of h and A indicated in each column. The peak

region is highlighted in the inset. 98

xi

4.2 Comparisons of Bayesian Logistic Regression of various methods on the

MNIST dataset of digits 7 and 9 with various values of h and A: (first col-

umn) test log likelihood using posterior mean against number of passes over

the entire dataset; (second column) two-dimensional marginal posterior dis-

tribution in (randomly selected) dimensions 2 and 5 with A = 10 fixed, based

on 106 samples from each method after the burn-in period (i.e. we start to

collect samples when the test log likelihood stabilizes). Magenta circle is

the true (reference) posterior mean obtained from standard HMC, and crosses

represent the sample mean computed from various methods. Ellipses repre-

sent iso-probability contours covering 95% probability mass. Note that the

contour of SGHMC is well beyond the scale of figure and thus we do not

include it here. 101

4.3 Model illustration of Discriminative Restricted Boltzmann Machine (DRBM).

{x,y} is the pair of input data and its class label, −→y is the one-hot coding for

the class label y, and z represents the hidden variables. W is the weight ma-

trix connecting the input and hidden layer, while U connects the hidden and

output layer. In this illustration, we ignore the bias vector for each layer, see

text for complete models details. 102

4.4 Comparisons of DRBM on datasets connect-4 (top row), letter (middle row),

and acoustic (bottom row) with various values of h and A indicated: test error

rate of various methods using posterior mean against number of passes over

the entire dataset. 104

xii

List of Tables

2.1 The involved distributions in maximum entropy arguments. 18

2.2 The perplexity on private set for simple averaging over different num-

ber of top agents. Simple averaging is easy to achieve, and requires

nothing more that the public validation set to choose the numbers. . . 29

2.3 Top: The perplexity on the test set for all the aggregation methods. The

log opinion pool and the Rényi mixture for γ = (1/30) are fairly equivalent.

Bottom: Relative log perplexity using linear pool as the baseline, and cor-

responding p-value. Log opinion pools and Rényi mixture with sufficiently

small γ perform significantly better than linear pooling. All perform better

than the best individual competition entry (2.963). 30

2.4 The investment function and market equilibrium for different types of agents 33

3.1 Some examples of conjugate functions. 42

3.2 Benchmark datasets used in our experiments for binary classification. . . . 57

3.3 RPCA problem: performance of all compared methods. All the methods

achieve the same objective value. Our method SP-BCD with K = 2 achieves

nearly the same performance with GSADMM and can be fully parallelized,

while GSADMM can only be run sequentially., Although PDMM2 obtains

the lowest residual (measured by Frobenus Norm of deviation of satisfied

constraints), it spends much longer time 750s, compared with 492s for SP-

BCD2. When we run the SP-BCD2 with the same amount of time as that of

PDMM2, SP-BCD2 could achieve Frobenus Norm of residual as 2.36×10−4,

which shows better performance than PDMM2. 72

xiii

3.4 Lasso problem: performance of all compared methods. Problem size is de-

scribed as: number of data samples N, number of features D, and d is number

of non-zero entries in xtrue. For smaller sized problems, ADMM and SP-BCD

are the fastest, achieving nearly the same performance in term of consumed

time. For larger sized problems, SP-BCD is the fastest, since ADMM needs

to solve a large-scale linear system in each iteration, involving a high compu-

tational burden. 73

4.1 Comparisons of (RMSE, Autocorrelation time) of (µ,γ) of various methods

for Bayesian inference of Gaussian mean and variance. 99

4.2 Datasets used in DRBM with corresponding parameter configurations. . . . 103

xiv

Notation

Vectors and Matrices

a Scalars are written in plain typeface.

a Vectors are lowercase letters written in bold.

A Matrices are uppercase letters written in bold.

ai Element i of vector a.

Ai j Element (i, j) of matrix A.

Ai: Row i of matrix A.

A: j Column j of matrix A.

ai The i-th in a sequence of vectors.

µmax(A) The maximum singular value of matrix A.

‖a‖2 Euclidean norm (L2-norm) of vector a.

‖A‖2 Spectral norm of matrix A.

diag(a) A diagonal matrix with vector a as its diagonal elements.

Mathematical Symbols

R The real numbers.

R+ The non-negative real numbers.

A� 0 A is positive-definite.

A� 0 A is positive-semidefinite.

E [a] Expectation of random variable a.

Cov [a] Covariance matrix of random variable a.

xv

Conventions

X Data.

N Number of data points.

I Identity matrix with its size clear from context.

Ã Approximation of the quantity A.

〈a,b〉 The inner product, aT b.

Abbreviation Reference

The following table contains each abbreviation used in this thesis, along with a page

number of either the first use, or on which more information can be found.

Abbreviation Page Meaning

AdaSPDC 50 Adaptive Stochastic Primal-Dual Coordinate Descent

ADMM 66 Alternating Direction Method of Multipliers

CCAdL 6, 93 Covariance-Controlled Adaptive Langevin Thermostat

CCSP 46 Convex-Concave Saddle Point problem

CD 49 Coordinate Descent methods

DRBM 102 Discriminative Restricted Boltzmann Machine

ERM 4 Empirical Risk Minimization

ESS 82 Effective Sample Size

FISTA 74 Fast Iterative Shrinkage Thresholdinng Algorithm

FOBOS 78 FOrward-Backward Splitting

GSADMM 70 Gauss-Seidel ADMM

HMC 84 Hamiltonian Monte Carlo

ISTA 74 Iterative Shrinkage Thresholding Algorithm

MALA 84 Metropolis Adjusted Langevin Algorithm

MCMC 5, 80 Markov Chain Monte Carlo

MH 82 Metropolis-Hasting algorithm

MLM 31 Machine Learning Markets

OSGA 77 Optimal SubGradient Algorithm

PDCP 48 Primal-Dual method of Chambolle and Pock (2011)

PDMM 70 Parallel Direction Method of Multipliers

RPCA 69 Robust Principal Component Analysis

SAG 55 Stochastic Averaging Gradient

xvi

Abbreviation Page Meaning

SDCA 55 Stochastic Dual Coordinate Descent

SDE 84 Stochastic Differential Equation

Sep-CCSP 4, 47 Separable Convex-Concave Saddle Point problem

SGD 4, 87 Stochastic Gradient Descent

SGHMC 6, 89 Stochastic Gradient Hamiltonian Monte Carlo

SGLD 6, 88 Stochastic Gradient Langevin Dynamics

SGNHT 6, 90 Stochastic Gradient Nosé-Hoover Thermostat

SP-BCD 50, 63 Stochastic Parallel Block Coordinate Descent

SPDC 49 Stochastic Primal-Dual Coordinate Descent

xvii

Chapter 1

Introduction

The fundamental task of machine learning is to learn from and make predictions on

observed data. Two challenges are of significant concern of machine learners’: one

is how to achieve more accurate predictions given limited data; and the other is how

to handle rich and/or large-scale data to facilitate efficient optimization and inference.

For the first issue, a proven strategy for obtaining a more accurate prediction is ag-

gregating the learned predictions from diverse local models. For the second issue, the

computational bottleneck of dealing with large-scale data can be solved by integrat-

ing the information from its smaller subsets, which has been proven to be capable of

reducing computational burden dramatically. The philosophy behind the solutions to

the two challenges is to integrate local information in a systematic way, which forms

the basic methodology utilized in this thesis. The core of the thesis is to develop novel

frameworks and schemes to handle several machine learning problems in each of the

two salient issues. In the following, we will introduce the two issues in more details to

motivate the work that is described in the thesis.

Aggregating Probabilistic Predictions

Decisions and predictions resulting from aggregating information in large groups of

agents or models are generally better than those made by isolated individuals. The in-

tuition behind this is that different local models can distill different aspects of knowl-

edge from the data. Aggregating the knowledge is a way of achieving more accurate

predictions. This has been demonstrated in various environments of machine learn-

ing competitions, including the Netflix Challenge (Green, 2006), the PASCAL Visual

Object Classes challenge (Everingham et al., 2006)), and many challenges in the Kag-

1

Chapter 1. Introduction 2

gle challenge environment (Goldbloom, 2010). Many workshops (e.g. KDD) also

run a variety of machine learning challenges. One of the most consistent take-home

messages from all the challenges is that aggregation of individual entries provides a

performance benefit. The final winning Netflix submission was itself a large-scale

aggregation of 107 different methods (Robert M. Bell and Volinsky, 2010).

In addition, as the complexity of various machine learning tasks increases, aggre-

gation of predictions from different agents or algorithms is becoming increasingly nec-

essary in distributed, large-scale or crowdsourcing systems. Much previous focus is on

aggregation of classifiers or point predictions. However, aggregation of probabilistic

predictions (beliefs) is also of particular importance, especially where quantification

of risk matters, generative models are required or where probabilistic information is

critical for downstream analyses. This motivates our work in Chapter 2 that focuses on

aggregation of probability distributions (including conditional distributions).

Figure 1.1: Sketch of aggregating probabilistic predictions form multiple agents. Individual

agent obtains dataset Di, which might be the exact copy of original data D or its biased version.

Then, each agent builds its local model Ci to make (probabilistic) predictions Pi. The process

inside the dashed rectangle represents the aggregation procedure to produce an aggregated

prediction P∗. Note that we have no control over the individual agent’s behaviour, which is

favoured in distributed crowdsourcing systems.

Figure 1.1 provides a sketch of aggregating probabilistic predictions from multi-

ple agents or algorithms. The data the agents observe is generated from a scenario

that is the same as or similar (up to some bias) to the target scenario we care about.

Chapter 1. Introduction 3

A common case favoured in distributed crowdsourcing systems and many machine

learning challenges is that there is no control over agents’ behaviours, i.e., we do not

control how they build their models and make their decisions or predictions. We wish

to choose an aggregate distribution that has high log probability under data drawn from

that target scenario.

Aggregating beliefs or probabilistic predictions has attracted significant attention

both in the economics and the machine learning communities. In economics, aggregat-

ing beliefs from multiple agents is also referred as probabilistic opinion pooling (Di-

etrich and List, 2014), including two popular schemes: linear opinion pooling and

logarithmic opinion pooling. Garg et al. (2004) generalized these pooling schemes

into a divergence-based aggregation framework. However, the non-fully solved issue

is that how to choose a particular type of divergence to accommodate different aggre-

gation settings. To this end, in Chapter 2 we introduce a spectrum of compositional

methods, Rényi divergence aggregators, that interpolate between log opinion pools

and linear opinion pools. It is shown that these compositional methods are maximum

entropy distributions for aggregating information from agents subject to individual bi-

ases, with the Rényi divergence parameter dependent on the bias. In the limit of no

bias this reduces to the optimal limit of log opinion pools.

Another recent approach for aggregating probabilistic predictions uses information

markets (Pennock and Wellman, 1997; Lay and Barbu, 2010; Storkey, 2011; Storkey

et al., 2012) as an aggregation mechanism via the market price. In a machine learning

market (one type of information markets), agents make utility maximizing decisions

regarding trades in securities. These securities are tied to the random variables of the

machine learning problem. For example they could be Arrow-Debreu securities de-

fined on each possible predicted outcome. Given the trading desires of each agent,

the equilibrium price in the market then defines a distribution that is an aggregation of

the beliefs of different agents. Machine learning markets combine an incentivization

mechanism (to ensure agents’ actions reflect their beliefs) and a aggregation mecha-

nism (via the trading process).

Despite the mechanism difference between traditional opinion pooling and infor-

mation markets, it is interesting to investigate their theoretical connections. In Chap-

ter 2, both theoretically and empirically, we show that Rényi divergence aggregators

are directly implemented by machine learning markets with isoelastic utilities. The risk

averseness of the isoelastic utility directly relates to the Rényi divergence parameter.

This theoretical connection unifies the two streams of research efforts on aggregat-

Chapter 1. Introduction 4

ing probabilistic predictions, and provides a way of implementing Rényi divergence

aggregators in incentivization market environments.

Large-scale Optimization and Inference

Data is booming exponentially nowadays, in both the quantity and dimension. The

emergence of the “Big Data” era brings the computational challenge in many machine

learning tasks, such as large-scale image classification, online recommendation offers

in Amazon and Netflix with millions or even billions customers and products, and

massive genomic data analysis, just to name a few. These motivate the developments

of efficient methodologies for optimization and inference. This thesis is also dedicated

to developing novel frameworks and schemes for handling large-scale optimization

and inference.

The computational bottleneck with large-scale data often boils down to optimizing

or evaluating the sum of a large number of separable functions (possibly with some

constraints up to different models), where the separability occurs in terms of data points

or variables we care about:

N

∑
i=1

fi(θθθ;xi), when data points {xi} are separable.

N

∑
i=1

fi(θθθi;X), when variables {θθθi} are separable.

When N is large, say of millions or billions or even larger, iteratively optimizing or

evaluating the sum is extremely costly. Historically, stochastic approximation has been

a proven strategy used for computation reduction. The spirit of stochastic approxima-

tion is to only use much smaller subsets of the N terms to obtain an unbiased estimate

of the original one and to integrate local approximation in a systematic way. Two rep-

resentatives are stochastic gradient descent (SGD, Robbins and Monro (1951); Bottou

(2010)) and stochastic coordinate descent methods (see Wright (2015) for a review).

In this thesis, we shall use the idea of stochastic approximation and develop novel

approaches for several scenarios in machine learning, where the scalability issues are

tamed successfully. We consider two important situations: one is optimizing large-

scale Convex-Concave Saddle Point problem with a Separable structure, referred as

Sep-CCSP; and the other is large-scale Bayesian posterior sampling.

Sep-CCSP solves a specific minmax problem, covering a wide range of important

machine learning models, such as empirical risk minimization (ERM, Hastie et al.

Chapter 1. Introduction 5

(2009)) and linear constrained optimization (for instance, robust principal component

analysis (Wright et al., 2009)). ERM can be formulated into Sep-CCSP by conjugate

dual transformation of individual loss function per data item, while linear constrained

optimization becomes Sep-CCSP by introducing Lagrangian multipliers for the linear

constraints. Previous works (Chambolle and Pock, 2011; Zhang and Xiao, 2015) are

either batch methods or not adaptive in choosing stepsizes. Chapter 3 aims to develop

scalable methods for large-scale Sep-CCSP to facilitate efficient learning for these

important machine learning models.

We consider Sep-CCSP with both strongly convex and general convex functions,

respectively. In both cases, we design specific stochastic block coordinate descent

methods with adaptively controlled stepsizes for large-scale Sep-CCSP, which achieve

state-of-the-art convergence performance theoretically and empirically. In addition,

these approaches are suitable for parallel processing, which allow the possibility of

employing the power of modern computing clusters.

Another scenario we consider is large-scale Bayesian posterior sampling. Bayesian

analysis gives us a simple recipe for learning from data: given a set of unknown pa-

rameters or latent variables θθθ that are of interest, we specify a prior distribution p(θθθ)

quantifying what we know about θθθ before observing any data. Then we quantify

how the observed data X = {xi}N
n=1 relates to θθθ by specifying a likelihood function

p(X|θθθ) = ∏
N
i=1 p(xi|θθθ). Finally, we apply Bayes’ rule to obtain the posterior distribu-

tion

p(θθθ|X) = p(X|θθθ)p(θθθ)/Z,

where Z is the normalization constant, Z =
∫

p(X|θθθ)p(θθθ)dθθθ. Bayesian inference often

involves computing the expectation of certain function with respect to the posterior

distribution p(θθθ|X). This integral over the parameter space distinguishes the Bayesian

scheme of inference from other schemes based on optimization. This also endows

Bayesian inference with the capability of avoiding overfitting. However, the integral

over the (high-dimensional) parameter space rarely has analytical forms except for

several simple prior and likelihood functions, e.g., conjugate families of distributions.

Thus, we have to resort to some approximation, such as sampling from the posterior

distribution and using the obtained samples to do Monte Carlo approximation of the

integral.

Popular sampling procedures, such as Markov Chain Monte Carlo (MCMC, Neal

(1993); Robert and Casella (2013)) techniques, have to evaluate the full likelihood

or its gradient in each iteration. However, sampling easily becomes infeasible with

Chapter 1. Introduction 6

large-scale data, hence hindering its applicability.

In order to improve computational efficiency, a number of stochastic gradient meth-

ods (Welling and Teh, 2011; Chen et al., 2014; Ding et al., 2014) have been proposed

in the setting of Bayesian sampling based on random (and much smaller) subsets to

approximate the likelihood of the whole dataset, thus substantially reducing the com-

putational cost in practice. Welling and Teh (2011) proposed the so-called Stochastic

Gradient Langevin Dynamics (SGLD), combining the ideas of stochastic optimiza-

tion (Robbins and Monro, 1951) and traditional Brownian dynamics, with a sequence

of stepsizes decreasing to zero. SGLD generates samples from first order Brownian

dynamics, and thus, with a fixed stepsize, one can show that it is unable to dissipate

excess noise in gradient approximations while maintaining the desired invariant distri-

bution (Chen et al., 2014). A Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

method was proposed by Chen et al. (2014), which relies on second order Langevin

dynamics and incorporates a parameter-dependent diffusion matrix that is intended to

effectively offset the stochastic perturbation of the gradient. However, it is difficult

to accommodate the additional diffusion term in practice. Moreover, as pointed out

in Ding et al. (2014) poor estimation of it may have a significant adverse influence on

the sampling of the target distribution. Chapter 4 provides a comprehensive review

over all these methods.

The “thermostat” idea, which is widely used in molecular dynamics (Frenkel and

Smit, 2001; Leimkuhler and Matthews, 2015), was recently adopted in the Stochastic

Gradient Nosé-Hoover Thermostat (SGNHT) by Ding et al. (2014) in order to ad-

just the kinetic energy during simulation in such a way that the canonical ensemble is

preserved (i.e. so that a prescribed constant temperature distribution is maintained).

However, SGNHT methods are designed based on the assumption of constant noise

variance, which cannot handle general cases with non-constant noise. Chapter 4 aims

to solve this critical issue, and we propose a Covariance-Controlled Adaptive Langevin

thermostat (CCAdL), that can handle parameter-dependent noise, improving both ro-

bustness and reliability in practice, and which can effectively speed up the convergence

to the desired invariant distribution in large-scale machine learning applications.

The work done in this thesis leverages with the approach of integrating local infor-

mation in a systematic way, where two issues in machine learning are solved: aggre-

gating probabilistic prediction, and large-scale optimization and inference. Employing

this philosophy, we have developed approaches to tackle these challenging tasks. The

thesis is structured as follows. Each chapter begins with an introduction and a review

Chapter 1. Introduction 7

of the background literature. In Chapter 2, we propose a spectrum of compositional

methods, Rényi divergence aggregators, that interpolate between log opinion pools and

linear opinion pools. And we show that this aggregator is directly implemented by ma-

chine learning markets with isoelastic utilities. We run various experiments to verify

these findings. In Chapter 3, we introduce the Sep-CCSP problem, and show that it

covers a wide range of important machine learning models, where both strongly con-

vex and general convex functions are considered. We then develop efficient stochastic

block coordinate descent methods for solving large-scale Sep-CCSP problem. Ex-

tensive applications and experiments are taken into consideration to demonstrate its

effectiveness. In Chapter 4, we first review dynamics-based MCMC methods and their

variants with stochastic gradients, and pointed out their advantage and shortcomings.

Then we propose our Covariance-Controlled Adaptive Langevin thermostat (CCAdL)

to handle the issue of non-constant noise variance introduced by noisy gradients. We

conduct various experiments to show its superior performance compared with other

state-of-the-art approaches. Finally, Chapter 5 summarizes the contributions of the

thesis, where some potential research directions are also discussed.

Chapter 2

Aggregation of Probabilistic

Predictions Under Bias

In this chapter, we focus on how to aggregate beliefs from multiple agents, i.e, learned

probabilistic predictions from different models in machine learning context. In partic-

ular, the emphasis is aggregating probabilistic predictions on classification problems.

Recently, trading in information markets, such as machine learning markets, has been

shown to be an effective approach for aggregating the beliefs of different agents. In a

machine learning context, aggregation commonly uses forms of linear opinion pools,

or logarithmic (log) opinion pools. It is interesting to relate information market aggre-

gation to the machine learning setting.

We introduce a spectrum of compositional methods, Rényi divergence aggregators,

that interpolate between log opinion pools and linear opinion pools. It is shown that

these compositional methods are maximum entropy distributions for aggregating infor-

mation from agents subject to individual biases, with the Rényi divergence parameter

dependent on the bias. In the limit of no bias this reduces to the optimal limit of log

opinion pools. This relationship is demonstrated practically on both simulated and real

datasets.

We then return to information markets and show that Rényi divergence aggregators

are directly implemented by machine learning markets with isoelastic utilities, and so

can result from autonomous self interested decision making by individuals contributing

different predictors. The risk averseness of the isoelastic utility directly relates to the

Rényi divergence parameter, and hence encodes how much an agent believes (s)he

may be subject to an individual bias that could affect the trading outcome: if an agent

believes (s)he might be acting on significantly biased information, a more risk averse

8

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 9

isoelastic utility is warranted.

This chapter is an extended work based on the following published paper, where

AJS built the most of the theoretical framework; JH and ZZ contributed to the remain-

ing theoretical aspects; and ZZ and AJS implemented all the experiments and analysis.

Storkey, A.J., Zhu, Z. and Hu, J.(2015). Aggregation Under Bias: Renyi Diver-

gence Aggregation and its Implementation via Machine Learning Markets. In Machine

Learning and Knowledge Discovery in Databases (ECML/PKDD), pages 560-574.

2.1 Motivation

Aggregation of predictions from different agents or algorithms is becoming increas-

ingly necessary in distributed, large scale or crowdsourced systems. Much previous

focus is on aggregation of classifiers or point predictions. However, aggregation of

probabilistic predictions is also of particular importance, especially where quantifica-

tion of risk matters, generative models are required or where probabilistic information

is critical for downstream analyses. In this chapter we focus on aggregation of proba-

bility distributions (including conditional distributions).

The problem of probabilistic aggregation in machine learning can be cast as choos-

ing a single aggregate distribution given no (or little) direct data, but given instead the

beliefs of a number of independent agents. We have no control over what these agents

do, other than that we know they do have direct access to data and we expect them to

have obtained their beliefs using that data. The data the agents observe is generated

from a scenario that is the same as or similar to the target scenario we care about. We

wish to choose an aggregate distribution that has high log probability under data drawn

from that target scenario.

One recent approach for aggregating probabilistic machine learning predictions

uses information markets (Pennock and Wellman, 1997; Lay and Barbu, 2010; Storkey,

2011; Storkey et al., 2012) as an aggregation mechanism via the market price. In a ma-

chine learning market, agents make utility maximizing decisions regarding trades in

securities. These securities are tied to the random variables of the machine learning

problem. For example they could be Arrow-Debreu securities1 defined on each possi-

ble predicted outcome. Given the trading desires of each agent, the equilibrium price

in the market then defines a distribution that is an aggregation of the beliefs of different

1A canonical ArrowDebreu security is a security that pays one unit of numeraire if a predicted
outcome is reached and zero otherwise.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 10

agents. Machine learning markets combine an incentivization mechanism (to ensure

agents’ actions reflect their beliefs Pi) and a aggregation mechanism (via the trading

process).

Understanding the relationship between individual actions and the aggregate mar-

ket price is an interesting open question for information markets. In addition, finding

efficient methods of arriving at market equilibria is key to their practical success. The

main novel contributions of this chapter are

• Introducing the class of Rényi divergence based aggregators which interpolate

between linear opinion pools and log opinion pools, and showing that they are

the maximum entropy estimators for aggregation of beliefs potentially subject

to bias. We also demonstrate this relationship practically via simulated and real

problems.

• Directly relating Rényi divergence aggregators to machine learning markets with

different isoelastic utilities, and showing that the risk averseness of the isoelas-

tic utility relates to the Rényi divergence parameter that is used to control the

assumed bias.

2.2 Background

Aggregation methods have been studied for some time, and have been discussed in a

number of contexts. Aggregation methods differ from ensemble approaches (see e.g.

(Dietterich, 2000)), as the latter also involves some control over the form of the indi-

viduals within the ensemble: with aggregation, the focus is entirely on the method of

combination - there is no control over the individual agent beliefs. In addition, most

aggregation methods focus on aggregating hard predictions (classifications, mean pre-

dictive values etc.) (Breiman, 1996; Domingos, 1997). Some, but not all of those

are suitable for aggregation of probabilistic predictions (Dani et al., 2006; Ottaviani

and Sørensen, 2007), where full predictive distributions are given. This issue has re-

ceived significant attention in the context of aggregating Bayesian or probabilistic be-

liefs (West, 1984; Dietrich, 2010; Maynard-Reid and Chajewska, 2001; Pennock and

Wellman, 1997; Storkey, 2011). Full predictive distributions are generally useful for

a Bayesian analysis (where the expected loss function is computed from the posterior

predictive distribution), in situations where full risk computations must be done, or

simply to get the most information from the individual algorithms. Wolpert (1992)

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 11

describes a general framework for aggregation, where an aggregator is trained using

the individual predictions on a held out validation set as inputs, and the true validation

targets as outputs. This requires specification of the aggregation function. The work in

this paper fits within this framework, with Rényi mixtures as the aggregator. In crowd-

sourcing settings, issues of reliability in different contexts come into play. Log opinion

pools have been generalized to weighted log opinion pools using Bayesian approaches

with an event-specific prior (Kahn, 2004). This emphasises that expert models can

work with aggregators at many different levels, from individual data points to whole

datasets within a corpus.

Recently, prediction markets, and methods derived from securities market settings

(Storkey, 2011; Storkey et al., 2012; Lay and Barbu, 2010; Barbu and Lay, 2011; Pen-

nock and Wellman, 1997; Dani et al., 2006; Chen and Wortman Vaughan, 2010), have

provided a particular foundation for belief aggregation. That securities markets can

perform belief aggregation was first discussed by Rubinstein (1974, 1975, 1976). Be-

lief aggregation of this form is of importance in crowdsourcing settings, or settings

combining information from different autonomous agents. In such settings, the beliefs

of different agents can be subject to various biases.

One other area that aggregation has shown importance is in machine learning com-

petitions, including the Netflix Challenge (Green, 2006), the PASCAL Visual Object

Classes challenge (Everingham et al., 2006)), and many challenges set in the Kag-

gle challenge environment (Goldbloom, 2010). Many workshops (e.g. KDD) also

run a variety of machine learning challenges. One of the most consistent take-home

messages from all the challenges is that aggregation of individual entries provides a

performance benefit. The final winning Netflix submission was itself a large scale

aggregation of 107 different methods (Robert M. Bell and Volinsky, 2010).

In this study, we consider the most prominent aggregation methods that are rel-

evant to a probabilistic aggregation setting. These vary from the most basic (simple

averaging) to more complicated and computationally demanding. We organize these

aggregation methods into two categories:

Simple Methods that require little or no optimization;

Learnt Methods where aggregation parameters such as weights are learnt on a vali-

dation dataset.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 12

2.2.1 Simple Aggregation Methods

There are several types of simple belief aggregation methods.

2.2.1.1 Simple averaging

Simple averaging uses the mean of the beliefs from each model as the aggregate dis-

tribution. Thus, the aggregate distribution has the form

P(y|x) = 1
NA

NA

∑
j=1

Pj(y|x), (2.1)

where NA is the number of models to be aggregated, and Pj(y|x) is predictive proba-

bility from jth model or agent on yth class (y is a discrete value to denote the class

membership for classification problems), given the relevant covariate information x.

2.2.1.2 Bayesian model averaging

Bayesian model averaging has been discussed in the context of aggregation methods

(Dietterich, 2000; Domingos, 1997), but it is well known that it is inappropriate to use

it as one (Minka, 2002). Bayesian model averaging is best thought of as a method

for ‘soft model selection’. It answers the question: “Given that all of the data so far

was generated by exactly one of the hypotheses, what is the probability of observing

the new pair (y,x)?” The soft weights in BMA only reflect a statistical inability to

distinguish the hypothesis based on limited data. As more data arrives, the hypothe-

ses become more distinguishable and Bayesian model averaging will always focus its

weight on the most probable hypothesis, just as the posterior for the mean of a Gaus-

sian focuses ever more narrowly on the sample mean. Invariably in large data settings,

this results in a single agent having all the weight, and so it barely differs from the

highest ranked individual model/agent. Bayesian model averaging uses

P(y|x) ∝

NA

∑
j=1

Pj(y|x,Dtr)P(j), (2.2)

where Dtr denotes the training data for training each classification model, and P(j) is

the model evidence.

2.2.1.3 Bayesian model averaging with power heuristics

Though Bayesian model averaging is inappropriate if we believe that all approaches

are potential contributors to the final result, it is undoubtedly true that the likelihood

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 13

of the model does provide some useful evidence for the relative benefits of different

predictors. One simple way of incorporating that information is a heuristic that uses an

annealed likelihood as a weighting, and chooses an appropriate annealing power. Ef-

fectively this is a modified version of Bayesian model averaging in which the posterior

weighting term is raised to some power α > 0

P(y|x) ∝

NA

∑
j=1

Pj(y|x,Dtr)(P(j))α , (2.3)

where we ignore the normalization constant in the R.H.S of the above expression.

2.2.2 Learnt Aggregation Methods

2.2.2.1 Linear Opinion Pool

Linear opinion pool combines the beliefs by a weighted arithmetic average,

P(y|x) =
NA

∑
j=1

w jPj(y|x) (2.4)

s.t. w j ≥ 0,∀ j;
NA

∑
j=1

w j = 1.

The weight vector w can be solved by maximizing the log likelihood with simplex

constraints, or alternatively via an expectation maximization procedure. By convexity,

the solution of both approaches is equivalent.

2.2.2.2 Logarithmic Opinion Pool

Logarithmic opinion pool aggregates the beliefs by a weighted geometric average,

P(y|x) = 1
Z(w)

NA

∏
j=1

P(y|x)w j (2.5)

s.t. w j ≥ 0,∀ j;
NA

∑
j=1

w j = 1.

where Z(w) = ∑y ∏
NA
j=1 P(y|x)w j is the normalization constant. The logarithmic opin-

ion pool is more problematic to work with due to the required computation of the

normalization constant. However for a discrete space of y (i.e., y ∈ Z+, often denoting

the class membership) this normalization constant can be computed, and hence an ex-

act gradient of log likelihood with respect to the weights w can be found. Hence w can

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 14

be obtained using a standard gradient-based optimizer. Others (e.g. (Heskes, 1998))

have used various approximate schemes for log opinion pools. We focus on the exact

setting here.

2.3 Problem Statement

The problem setting is as follows. We have a prediction problem to solve, in common

with a number of agents. These agents have learnt probabilistic predictors on each of

their own training datasets, using their own machine learning algorithms, and provide

the predictions for the test scenario. We wish to combine the agents’ predictions to

make the best prediction we can for our setting. We don’t have access to the training

data the agents see, but are potentially given the held out performance of each agent on

their training data, and we may have access to their predictions for a small validation

set of our own data which we know relates to our domain of interest (the distribution

of which we denote by PG). We consider the case where it may be possible that the

data individual agents see are different in distribution (i.e. biased) with respect to our

domain of interest.

Our objective is to minimize the negative log likelihood for a model P for future

data generated from an unknown data generating distribution PG. This can be written

as desiring argminP KL(PG||P), where KL denotes the Kullback-Leibler divergence2.

However in an aggregation scenario, we do not have direct access to data that can be

used to choose a model P by a machine learning method. Instead we have access to

beliefs Pi from i = 1,2, . . . ,NA other agents, which do have direct access to some data,

and we must use those agent beliefs Pi to form our own belief P.

We have no control over the agents’ beliefs Pi, but we can expect that the agents

have learnt Pi using some learning algorithm with respect to data drawn from indi-

vidual data distributions PG
i . Hence agents will choose Pi with low KL(Pi||PG

i) with

respect to their individual data (we choose KL(Pi||PG
i), not KL(PG

i ||Pi), for derivation

convenience later), drawn from PG
i . For example agents can choose their own posterior

distributions Pi with respect to the data they observe.

We also assume that each PG
i is “close” to the distribution PG we care about. Where

we need to be specific, we use the measure KL(PG
i ||PG) as the measure of closeness,

2In probability theory and information theory, the KullbackLeibler divergence is a measure of the
difference between two probability distributions P and Q, e.g., for discrete distributions, KL(P||Q) =

∑i P(i) log P(i)
Q(i)

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 15

which is appropriate if PG
i is obtained by sample selection bias (Storkey, 2009) from

PG. When KL(PG
i ||PG) = 0 ∀i, it implies all the agents obtain the unbiased data sam-

ples from generating distribution PG.

2.4 Weighted Divergence Aggregation

Weighted divergence-based aggregation was proposed in Garg et al. (2004). The idea

was, given individual distributions Pi, to choose an aggregate distribution P given by

P = argmin
Q

∑
i

wiD(Pi,Q), (2.6)

where wi is a positive weight, ∑i wi = 1, and D(Pi,Q) represents a choice of divergence

between Pi and Q, where D(A,B) ≥ 0, with equality iff A = B. This framework gen-

eralizes several popular opinion pooling methods, e.g., linear opinion pooling when

D(Pi,Q) = KL(Pi||Q), and log opinion pooling when D(Pi,Q) = KL(Q||Pi), see Garg

et al. (2004).

Weighted divergence aggregation is very general but we need to choose a particular

form of divergence. In this study we analyse the family of Rényi divergences for

weighted divergence aggregation. This choice is motivated by two facts:

• Rényi divergence aggregator is the maximum entropy aggregating distribution

when the individual agent distributions are biased due to a sample selection

mechanism.

• Rényi divergence aggregators are implemented by machine learning markets,

and hence can result from autonomous self interested decision making by the in-

dividuals contributing different predictors without centralized imposition. Hence

this approach can incentivize agents to provide their best information for aggre-

gation.

In much of the analysis that follows we will drop the conditioning (i.e. write P(y)

rather than P(y|x)) for the sake of clarity, but without loss of generality as all results

follow through in the conditional setting.

2.4.1 Weighted Rényi Divergence Aggregation

Here we introduce the family of weighted Rényi divergence methods.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 16

Definition 1 (Rényi Divergence with 0 < γ < 1). Let y be a random variable taking

values y = 1,2, . . . ,K. The Rényi divergence of order γ (0 < γ < 1) from a distribution

P to a distribution Q is defined as

DR
γ [P||Q] =

1
γ−1

log

(
K

∑
y=1

P(y)γQ(y)1−γ

)
. (2.7)

The Rényi divergence has two relevant special cases: limγ→1(1/γ)DR
γ (P||Q) =

KL(P||Q), and limγ→0(1/γ)DR
γ (P||Q) = KL(Q||P) (which can be seen via L’hôpital’s

rule). We assume the value for the Rényi divergence for γ = 1 is defined by KL(P||Q)

via analytical continuation.

Definition 2 (Weighted Rényi Divergence Aggregation). The weighted Rényi diver-

gence aggregation is a weighted divergence aggregation given by (2.6), where each

divergence D(Pi,Q) = γ
−1
i DR

γi
[Pi||Q].

Note that each component i in (2.6) can have a Rényi divergence with an individu-

alized parameter γi. Sometimes we will assume that all divergences are the same, and

refer to a single γ = γi ∀i used by all the components.

2.4.1.1 Properties

The following propositions outline some properties of weighted Rényi divergence ag-

gregation.

Proposition 1. Weighted Rényi divergence aggregation satisfies the implicit equation

for P(y) of

P(y) =
1
Z ∑

i
wiγ
−1
i

Pi(y)γiP(y)1−γi

∑y′ Pi(y′)γiP(y′)1−γi
, s.t. P(y)≥ 0,∀y. (2.8)

where 0 < γi < 1, wi are given non-negative weights, and Z = Z({γi}) = ∑i wiγ
−1
i is a

normalisation constant, and {γi} is the set of Rényi divergence parameters.

Proof. Using D(Pi,Q) = γ
−1
i DR

γi
[Pi||Q] from (2.7) in Eq. (2.6), we need to solve the

following constrained optimization problem,

min
Q

h(Q) = ∑
i

wi

γi(γi−1)
log

(
K

∑
y=1

Pi(y)γiQ(y)1−γi

)

s.t.
K

∑
y=1

Q(y) = 1, and Q(y)≥ 0,∀y.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 17

Firstly, we show that the function h(Q) is a convex function so that Lagrangian mul-

tipliers can be applied. It is obvious that the function g(Q) = ∑
K
y=1 P(y)γiQ(y)1−γi is

concave since each component function is concave. And the following function

fi(x) =
wi

γi(γi−1)
log(x), 0 < γi < 1

is convex. The composition of the two functions is convex,

hi(Q) = fi (g(Q)) . (2.9)

Then the objective function h(Q) = ∑i hi(Q) is a convex function.

Now introducing Lagrangian multiplier Z to handle the first constraint, we have

L(Q,Z) = ∑
i

wi

γi(γi−1)
log

(
K

∑
y=1

P(y)γiQ(y)1−γi

)
+Z

(
K

∑
y=1

Q(y)−1

)
(2.10)

Employing calculus of variations w.r.t. Q(y) and setting the derivatives as zeroes for

the optimal values P(y), we can obtain K equations

∑
i

wiγ
−1
i

Pi(y)γiP(y)−γi

∑
K
y′=1 Pi(y′)γiP(y′)1−γi

−Z = 0, ∀y = 1, . . . ,K. (2.11)

Multiplying each equation with P(y), we can easily find Z = ∑i wiγ
−1
i by summing

over all K equations. Then we insert Z back into Eq.(2.11) and obtain the final result

Eq.(2.8).

Proposition 2. Weighted Rényi divergence aggregation interpolates between linear

opinion pooling (γ→ 1) and log opinion pooling (γ→ 0).

Proof. Set γi = 1 in Eq.(2.8) to obtain a standard linear opinion pool.

For log opinion pool, we firstly set all γi = γ, and we take γ→ 0. Using L’Hôspital’s

rule, we can easily obtain

lim
γ→0

D(Pi,Q) = lim
γ→0

γ
−1
i DR

γi
[Pi||Q] = ∑

y
Q(y) log

Q(y)
Pi(y)

= KL(Q‖Pi). (2.12)

Then the Lagrangian of Eq.(2.10) becomes the following form,

L(Q,Z) = ∑
i

wi ∑
y

Q(y) log
Q(y)
Pi(y)

+Z(∑
y

Q(y)−1). (2.13)

Applying calculus of variations w.r.t. Q(y) and setting the derivatives as zeroes for the

optimal values P(y), we can obtain

∑
i

wi

(
log

P(y)
Pi(y)

+1
)
+Z = 0. (2.14)

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 18

After rearrangement, we obtain the form of the log opinion pool,

P(y) =
1

Z′(w)∏
i

Pi(y)wi, (2.15)

where Z′(w) = ∑y ∏i Pi(y)wi is the normalization constant.

In the next section we show that Rényi divergence aggregation provides the maxi-

mum entropy distribution for combining together agent distributions where the belief

of each agent is subject to a particular form of bias. Two consequences that are worth

alerting the reader to ahead of that analysis are:

1. If all agents form beliefs on data drawn from the same (unbiased) distribution

then the maximum entropy distribution is of the form of a log opinion pool.

2. If all agents form beliefs on unrelated data then the maximum entropy distribu-

tion is of the form of a linear opinion pool.

2.5 Maximum Entropy Arguments

Consider the problem of choosing an aggregator distribution P to model an unknown

target distribution PG given a number of individual distributions Pi. These individual

distributions are assumed to be learnt from data by a number of individual agents. We

will assume the individual agents did not (necessarily) have access to data drawn from

PG, but instead the data seen by the individual agents was biased, and instead sampled

from distribution PG
i . In aggregating the agent beliefs, we neither know the target

distribution PG, nor any of the individual bias distributions PG
i , but model them with P

and Qi respectively. To clarify all the involved distributions, we list them in Table 2.1.

Table 2.1: The involved distributions in maximum entropy arguments.

Role Truth Sample Learned

Agents PG PG
i Pi

Aggregator’s model P Qi -

As far as the individual agents are concerned they train and evaluate their methods

on their individual data, unconcerned that their domains were biased with respect to

the domain we care about. We can think of this scenario as convergent dataset shift

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 19

(Storkey, 2009), where there is a shift from the individual training to a common test

scenario. The result is that we are given information regarding the test log likelihood

performance for each Pi in their own domains: ∑y PG
i (y) logPi(y) = ai.

The individual agent data is biased, not unrelated, and so we make the assumption

that the individual distributions PG
i are related to PG in some way. We assume that

KL(PG
i ||PG) is subject to some bound (and call this the nearness constraint). Given this

scenario, we aim to find maximum entropy distributions Qi to model PG
i that capture

the performance of the individual distributions Pi. At the same time, we could enforce

additional constraints to this maximum entropy optimization by relating Qi with P.

As we know the test performance of individual agent’s model, we write this as the

constraints (These are linear constraints since Pi is known.):

∑
y

Qi(y) logPi(y) = ai, (2.16)

Note that each agent i tries its best to optimize the quantity ∑y Qi(y) logPi(y), which

might restrict the space of Qi(y) considerably.

The nearness constraints3 for Qi are written as

KL(Qi||P)≤ Ai (2.17)

⇒∑
y

Qi(y) log
Qi(y)
P(y)

≤ Ai for some P . (2.18)

encoding that our model Qi for PG
i must be near to the model P for PG. That is the

KL divergence between the two distributions must be bounded by some value Ai. This

nearness also characterizes the settings we considered, i.e., individual agent only has

access to a biased version of the original data distribution PG.

Given these constraints, the final maximum entropy optimization problem becomes,

3We could work with a nearness penalty of the same form rather than a nearness constraint. The
resulting maximum entropy solution would be of the same form.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 20

min
{Qi},P

∑
i

∑
y

Qi(y) logQi(y)

s.t. ∑
y

Qi(y) logPi(y) = ai

∑
y

Qi(y) log
Qi(y)
P(y)

≤ Ai

∑
y

Qi(y) = 1∀i

∑
y

P(y) = 1

Qi(y)≥ 0,∀y, i

P(y)≥ 0,∀y. (2.19)

Introducing Lagrangian multipliers for the first four constraints, we have

L({Qi},P) = ∑
i

∑
y

Qi(y) logQi(y)+∑
i

bi(1−∑
y

Qi(y))

−∑
i

λi

([
∑
y

Qi(y) logPi(y)

]
−ai

)
+ c(1−∑

y
P(y))

+∑
i

ρi

([
∑
y

Qi(y) log
Qi(y)
P(y)

]
−Ai + si

)
(2.20)

where si are slack variables si ≥ 0, and ρi,λi,bi and c are Lagrange multipliers. This

minimization chooses maximum entropy Qi, while ensuring there is a distribution P

for which the nearness constraints are met.

Taking derivatives with respect to Qi(y) and setting to zero gives

Qi(y) =
1
Zi

P(y)
ρi

1+ρi Pi(y)
λi

1+ρi , s.t.Qi(y)≥ 0,∀y, i (2.21)

where Zi is a normalization constant.

Given these Qi, we can find also find an optimal, best fitting P. Taking derivatives

of the Lagrangian with respect to P(y) and setting to zero gives

P(y) = ∑
i

ρi

∑i′ ρi′
Qi(y) = ∑

i
wi

(Pi(y)λi)γiP(y)1−γi

Zi
, s.t. P(y)≥ 0. (2.22)

where wi = ρi/∑
′
i ρi′ , and γi = 1/(1+ρi), and Zi = ∑y′(Pi(y′)λi)γiP(y′)1−γi . Compar-

ing this with (2.8) we see that this form of maximum entropy distribution is equivalent

to the Rényi divergence aggregator of annealed forms of Pi. The maximum entropy

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 21

parameters of the aggregator could not be obtained explicitly by solving for the con-

straints in our case. We could estimate them using additional validation data from P(y)

by maximum likelihood. Empirically we find that, if all the Pi are trained on the same

data, or on data subject to sample-selection bias (rather than say an annealed form of

the required distribution), then λi ≈ 1.

Note that the parameter ρi controls the level of penalty there is for a mismatch

between the biased distributions Qi and the distribution P. If all the ρi are zero for all i

then this penalty is removed and the Qi can bear little resemblance to the P and hence

to one another. In this setting (2.22) becomes a standard mixture and the aggregator is a

linear opinion pool. If however ρi tends to a large value for all i, then the distributions

Qi are required to be much more similar. In this setting (2.22) becomes like a log

opinion pool.

We have shown that the Rényi divergence aggregator is not an arbitary choice of

aggregating distribution. Rather it is the maximum entropy aggregating distribution

when the individual agent distributions are expected to be biased using a sample selec-

tion mechanism.

2.6 Optimization of Weighted Rényi Divergence Aggre-

gators

Rényi divergence aggregators can be implemented with direct gradient based opti-

mization, stochastic gradient methods, or using a variational optimization for the sum

of weighted divergences. This latter approach is described here.

To obtain the optimal distribution from the weighted Rényi divergence criterion in

Eq. (2.6) we introduce a group of variational distributions Qi(y), and apply Jensen’s

inequality to the sum of weighted Rényi divergence given by Definition 2. Then we

can obtain its upper bound, derived as follows.

∑
i

wiD(Pi,Q) = ∑
i

wi

γi(γi−1)
log

(
K

∑
y=1

Pi(y)γiQ(y)1−γi

)
(2.23)

= ∑
i

wi

γi(γi−1)
log

(
K

∑
y=1

Pi(y)γiQ(y)1−γi

Qi(y)
Qi(y)

)
(2.24)

≤∑
i

wi

γi(γi−1)

K

∑
y=1

Qi(y) log
Pi(y)γiQ(y)1−γi

Qi(y)
(2.25)

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 22

Algorithm 2.1 Variational Optimization for Weighted Rényi Divergence Aggregators

1: Initialize w′i such that ∑i w′i = 1, and Q(y).

2: while not convergent do
3: Set Qi(y) ∝ Pi(y)γiQ(y)1−γi;

4: Compute qin = w′iQi(yn)/∑i w′iQi(yn);

5: Compute the mixture coefficients as w′i = ∑n qin/∑in qin;

6: Set Q(y) ∝ ∑i w′iγiQi(y).

7: end while
8: Return P(y) = Q(y).

Note equality is obtained in (2.25) for Qi(y)∝ Pi(y)γiQ(y)1−γi according to the property

of Jensen’s inequality. Optimizing for Q gives P(y) = Qopt(y) = ∑i w′iQi(y) with w′i =

wiγ
−1
i /∑i wiγ

−1
i .

This directly leads to an iterative variational optimization algorithm that is guar-

anteed (using the same arguments as Expectation and Maximization (EM) procedure,

and using the convexity to optimize (2.25)): iteratively set Qi(y) ∝ Pi(y)γiQ(y)1−γi ,

and then set Q(y) ∝ ∑i w′iQi(y). The optimization of the parameters w′i also naturally

fits within this framework. Q(y) is a simple mixture of Qi(y). Hence given Qi(y),

the optimal w′i are given by the optimal mixture model parameters. These can be de-

termined using a standard inner Expectation Maximization loop. In practice, we get

faster convergence if we use a single loop. First set Qi(y) ∝ Pi(y)γiQ(y)1−γi . Sec-

ond compute qin = w′iQi(yn)/∑i w′iQi(yn). Third set w′i = ∑n qin/∑in qin. Finally set

Q(y) ∝ ∑i w′iγiQi(y). This is repeated until convergence. All constants of proportion-

ality are given by normalisation constraints. Note that where computing the optimal

Q may be computationally prohibitive, this process also gives rise to an approximate

divergence minimization approach, where Qi is constrained to a tractable family while

the optimizations for Qi are performed. We describe the variational optimization pro-

cedure in Algorithm 2.1.

In practice, we found that this variational optimization converges slower than gradient-

based methods. Particularly for large-scale datasets, stochastic gradient methods per-

forms better. Thus, in the following experiments, gradient-based methods will be used

for optimization.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 23

2.7 Experiments

To test the practical validity of the maximum entropy arguments, the following three

tasks were implemented.

Algorithm 2.2 Generate test data for agents with different biases, and test aggregation

methods.
Select a target discrete distribution P∗(.) over K values. Choose NA, the number of

agents.

Sample i.i.d a small number NVa of values from the target distribution to get a vali-

dation set DVa

Sample i.i.d a large number N of values {yn;n = 1,2,3, . . . ,N} from the target dis-

tribution to get the base set D from which agent data is generated.

Sample bias probabilities fi(y) for each agent to be used as a rejection sampler.

for annealing parameter β = 0 TO 4 do
for each agent i do

Anneal fi to get f ∗k (y) = fk(y)β./maxy fi(y)β.

For each data point yi, reject it with probability (1− f ∗k (yi)).

Collect the first 10,000 unrejected points, and set Pi to be the resulting empiri-

cal distribution.

This defines the distribution Pi for agent i given the value of β.

end for
Find aggregate P(.) for different aggregators given agent distributions Pi using the

validation dataset DVa for any parameter estimation.

Evaluate the performance of each aggregator using the KL Divergence between

the target distribution P∗(.) and the aggregate distribution P(.): KL(P∗||P).
end for

2.7.1 Task 1: Aggregation on simulated data

We aim to test the variation of the aggregator performance as the bias of the agent

datasets is gradually changed. This requires that the data does not dramatically change

across tests of different biases. We tested this process using a number of bias genera-

tion procedures, all with the same implication in terms of results. We give details for

data generation and testing for the simplest approach in Algorithm 2.2, and summarize

that approach here. We use NA = 10 agents, K = 64 possible classes, NVa = 100 vali-

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 24

dation data points, and a discretized N(32,64/7) normal distribution as the target. For

each agent i and each class y an fi(y) was sampled from a uniform distribution. Agent

data was generated by sampling from the target distribution and then rejecting using an

annealed rejection probability proportional to fi(y)β for each class. Hence each agent

had different sampling biases and the annealing amount β was varied between β = 0

– a uniform rejection where all agent had samples form the target distribution – to the

case β = 4 where the agent distributions were very different.

The details of the data generation and testing is given in Algorithm 2.2. We used

NA = 10, K = 64, NVa = 100, P∗ was a discretized N(32,64/7), fi(y) U([0,1]) to

generate the artificial data that gave the results displayed here. Equivalent results were

found for all (non-trivial) parameter choices we tried, as well as using completely

different data generation procedures generating biased agent data.

Figure 2.1(a) shows the test performance on different biases for different values of

log(γi) in (2.22), where all γi are taken to be identical and equal to γ. Figure 2.1(b)

shows how the optimal value of γ changes, as the bias parameter β changes. Parameter

optimization was done using a conjugate gradient method. The cost of optimization

for Rényi mixtures is comparable to that of log opinion pools.

2.7.2 Task 2: Aggregation on chords from Bach chorales

This task aims to accurately predict distributions of chords from Bach chorales (Bache

and Lichman, 2013). The Bach chorales data was split equally and randomly into

training and test distributions. Then training data from half of the chorales was chosen

to be shared across all the agents. After that each agent received additional training data

from a random half of the remaining chorales. The probabilistic model used by each

agent is a mixture of Bernoulli’s with a randomized number of mixture components

between 5 and 100, and a random regularisation parameter between 0 and 1. 10 agents

were used and after all 10 agents were fully trained. The Rényi mixture weights were

optimized using the whole training dataset. Performance results were computed on the

held-out test data.

Figure 2.2 shows the performance on the Bach chorales with 10 agents. Again in

this real data setting, the Rényi mixtures show improved performance.

The two demonstrations show that when agents received a biased subsample of

the overall data then Rényi-mixtures perform best as an aggregation method, in that

they give the lowest KL divergence. As the bias increases, so the optimal value of γ

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 25

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(γ)

K
L

 D
iv

e
rg

e
n

c
e

0 1 2 3 4
0

0.5

1

1.5

2

β

O
p
ti
m

a
l
γ

(a) (b)

Figure 2.1: (a) Task 1: Plot of the KL divergence against logγ for one dataset with β = 0 (lower

lines, blue) through to β = 4 (upper lines, red) in steps of 0.5. Note that, unsurprisingly, more

bias reduces performance. However the optimal value of γ (lowest KL), changes as β changes.

for low values of β the performance of γ = 0 (log opinion pools) is barely distinguishable from

other low γ values. Note that using a log opinion pool (low γ) when there is bias produces

a significant hit on performance. (b) Task 1: Plot of the optimal γ (defining the form of Rényi

mixture) for different values of β (determining the bias in the generated datasets for each agent).

The red (upper) line is the mean, the blue line the median and the upper and lower bars indicate

the 75th and 25th percentiles, all over 100 different datasets. For β = 0 (no bias) we have

optimal aggregation with lower γ values, approximately corresponding to a log opinion pool. As

β increases, the optimal γ gets larger, covering the full range of Rényi Mixtures.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 26

0 0.2 0.4 0.6 0.8 1
−1500

−1000

−500

0

500

1000

1500

gamma

re
la

ti
v
e
 t
e
s
t
lo

g
 p

ro
b

Figure 2.2: Task 2: test log probability results (relative to the log probability for a mixture) for

the Bach chorales data for different values of γ, indicating the benefit of Rényi mixtures over

linear (γ = 1) and log (γ = 0) opinion pools. Error bars are standard errors over 10 different

allocations of chorales to agents prior to training.

increases. In the limit that the agents see almost the same data from the target distribu-

tion, Rényi-mixtures with small γ perform the best, and are indistinguishable from the

γ = 0 limit. Rényi mixtures are equivalent to log opinion pools for γ→ 0.

2.7.3 Task 3: Aggregation on Kaggle competition

When all agents see the same data, the maximum-entropy aggregate is the log opinion

pool. One setting of particular interest is in machine learning competitions, where the

same training data is made publicly available to everyone. In this section we compare

a number of aggregation methods on a real competition, and confirm that log opinion

pools are the aggregation method of choice.

To analyze the use of combination methods in a realistic competition setting, we

need data from an appropriate competitive setup. For this purpose we designed and ran

a Kaggle-in-Class competition4 described in this section. The competition consisted

of a critical problem in low-level image analysis: the image coding problem, which

is fundamental in image compression, infilling, super-resolution and denoising. We

used data consisting of images from van Hateren’s Natural Image Dataset5 (Hateren

and Schaaf, 1998). The data was preprocessed using Algorithm 2.3 to put it in a form

suitable for a Kaggle competition, and ensure the data sizes were sufficient for use

on student machines, and that submission files were suitable for uploading (this is the

4https://inclass.kaggle.com/c/mlpr-challenge
5http://bethgelab.org/datasets/vanhateren/

https://inclass.kaggle.com/c/mlpr-challenge
http://bethgelab.org/datasets/vanhateren/

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 27

Algorithm 2.3 Competition Data Preparation
Load image data. Discretize to 64 gray scales. Put in INT8 format.

for j=1 to 140000 do
Pick random image and random pixel at least 40 pixels away from edge of image

and find 35×30 patch including that pixel at the bottom-middle of the patch.

Record x(j) =vectorisation of all pixels in patch ‘before’ that pixel in patch in

raster-scan terms, y(j) =grayscale value at chosen pixel,i(j) =image number

end for
Produce three Matlab datasets. Set 1: x and y and i values in one .mat for 100000

training records. Set 2: x and i values in one .mat file for 40000 test records. Set 3:

y values for the corresponding test cases, not publicly available.

reason for the 6 bit grayscale representation).

The competition problem was to infer P(y|x, i), the predictive distribution for the

grayscale value of the pixel at a given location, where y takes one of 64 possible values.

The information given was the image number i and a raster scan x of an image patch

above and up to a given pixel location (see Figure 2.3, which clarifies the form of the

data). Patches were taken randomly from a large image corpus. Competitors were

provided with three files specified in Algorithm 2.3. The competition submissions

were unnormalized log probabilities at the test set points: logP(y = k|x, i), with one

column for each k. The normalization was computed by the competition evaluation

mechanism to prevent any room for cheating by false normalization. The test cases

were split into a public set and a private set. The competitor was given the perplexity

on the public set at submission time, but the final ranked ordering was on the private

set. The perplexity is given by

perplexity = exp

(
− 1

Nt

Nt

∑
j=1

log(P(y j = c j|x j, i j))

)
, (2.26)

where Nt is the number of test pixels and c j is the true class the jth pixel belongs to,

and x j and i j are the provided covariates. Note that perplexity is equivalent to test

probability up to a monotonic transformation, and thus the lower the perplexity is, the

better the model performs.

There were 46 competitors, with a total of 440 submissions. Some submissions

were highly erroneous (submitting probabilities instead of log probabilities etc.), but

competitors quickly fixed these issues for future submissions. A uniform prediction

was used as a dummy baseline which has perplexity 64. We chose as agent distributions

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 28

Figure 2.3: Competition form: competitors had to infer the probabilities for a pixel taking each

of 64 values, given values for pixels above and to the left of that pixel. Note that i labels the

original image source: iml00004.imk. The image patch is 35 pixels (horizontal) × 30 pixels

(vertical).

the 269 submissions that had perplexity greater than 64.

2.7.3.1 Analysis of the Competition

The following aggregation methods were tested: weighted Rényi divergence aggrega-

tors, including linear opinion pools and log opinion pools, simple averaging of the top

submissions (with an optimized choice of number), and a form of heuristic Bayesian

model averaging, via an annealed likelihoood: P(y|·) ∝ ∑ j Pj(y|·)(P(j|Dtr))
α, where

α is an aggregation parameter choice6. The weighted Rényi divergence aggregators

were optimized using stochastic gradient methods, until the change between epochs

became negligible. The validation set (20,000 pixels) is used for learning the aggrega-

tion parameters. The test set (also 20,000 pixels) is only used for the test results.

In order to show the generalization performance of all the aggregation methods, we

split the private set into 10 subsets and apply each method to each subset to obtain the

mean perplexity and the statistics for the difference in perplexity for all methods.

We present the test results of simple averaging in Table 2.2. Averaging inevitably

depends on the number of on agents included in the average and so results are presented

for various numbers of the best agents (in terms of ranked perplexity in the public set)

on the private set. Despite the simplicity of a simple average, past experience has

shown it to be remarkably effective: in most cases this can be understood in terms

of bias variance tradeoff. Simple averaging, for example, is used in random forest

ensemble methods.
6The heuristic model averaging, includes Bayesian Model Averaging as a special case. However we

emphasize that Bayesian Model Averaging, though discussed in the context of aggregation Dietterich
(2000); Domingos (1997), is not formulated as an aggregation method: it assumes only one of the
submissions is actually correct Minka (2002).

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 29

Table 2.2: The perplexity on private set for simple averaging over different number of

top agents. Simple averaging is easy to achieve, and requires nothing more that the

public validation set to choose the numbers.

Top 5 Top 10 Top 15 Top 20 Top 25 Top 30 All

2.972 ± 0.074 2.931 ± 0.065 2.946 ± 0.064 2.958 ± 0.064 2.965 ± 0.063 2.974 ± 0.062 3.665 ± 0.071

The results for Bayesian model averaging (unsurprisingly, in the context of the dis-

cussion in Section 2.2.1.2) is identical to the top single classifier. For Bayesian aver-

aging with power heuristics (using all the agents), the lowest perplexity achieved with

this approach is 2.929 at α = 0.0049. This approach involves no optimization passes,

so is particularly simple to implement. However, it is dependent on hyperparameter

selection.

10
−3

10
−2

10
−1

10
0

10
1

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

α

P
er

pl
ex

ity

Figure 2.4: Heuristic ‘Bayesian’ Model Averaging with different α.

For Task 3, all agents see unbiased data and so we would expect log opinion pools

to be optimal. The perplexity values as a function of η = 1/γ for all the methods tested

on the test set can be seen in Figure 2.5. The parameter-based pooling methods per-

form better than simple averages and all forms of heuristic model averaging as these

are inflexible methods. There is a significant performance benefit of using logarithmic

opinion pooling over linear pooling, and weighted Rényi divergence aggregators inter-

polate between the two opinion pooling methods. This figure empirically supports the

maximum entropy arguments.

The mean perplexity values and standard deviation for all the methods tested can

be seen in Figure 2.5 and Table 2.3. Table 2.3 also shows the difference in log per-

plexity between each approach and shows the estimated standard deviation of those

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 30

Methods: SimpleAvgBest Heuristic LogOP Reyni Mixture

Perplexity: (LinearOP: 2.894 ± 0.060)

mean±std 2.931 ± 0.065 2.929 ± 0.067 2.837 ± 0.067 2.836 ± 0.061

Log Perplexity Difference from LinearOP:

mean±std 0.013 ± 0.021 0.012 ± 0.021 -0.020 ± 0.024 -0.020 ± 0.021

p value 1 1 8.0×10−7 5.3×10−7

Table 2.3: Top: The perplexity on the test set for all the aggregation methods. The log opinion

pool and the Rényi mixture for γ = (1/30) are fairly equivalent. Bottom: Relative log perplexity

using linear pool as the baseline, and corresponding p-value. Log opinion pools and Rényi

mixture with sufficiently small γ perform significantly better than linear pooling. All perform better

than the best individual competition entry (2.963).

10 20 30 40 50
2.8

2.85

2.9

2.95

3

η

Pe
rp

le
xi

ty

SimAvgBest Top10
BayesAvgBest, α=0.0049
LinearOP
LogOP
Reyni Mixture

−0.06

−0.04

−0.02

0

0.02

0.04

SimAvg BayesAvgP LogOP LogMk IsoMk

R
el

at
iv

e
Lo

gP
er

pl
ex

ity

(a) (b)

Figure 2.5: (a) Task 3: perplexity on the test set of all the compared aggregation methods

against η = 1/γ. For each method, the best performance is plotted. Log opinion pools perform

best as suggested by the maximum entropy arguments, and is statistically significantly better

than the linear opinion pool(p = 8.0×10−7). All methods perform better than the best individual

competition entry (2.963). (b) Task 3: boxplot of relative log perplexity (using linear opinion pool

as the baseline). The red ’x’ represents the mean, and black dots are the standard deviation.

differences (log perplexity values appear approximately Gaussian), and correspond-

ing single-tailed t-test sample probability (p-value) under the null assumption that the

method is equivalent to the linear opinion pool. There is a statistically significant

performance benefit of using logarithmic opinion pooling over linear pooling. The

parameter-based pooling methods perform better than simple averages and all forms

of heuristic model averaging as these are inflexible methods. All results have been

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 31

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Ranked submission
w

ei
gh

t

Figure 2.6: Weight distribution over 269 ranked submissions (agents) for the log opinion pool

and Rényi mixture with η = 1/γ = 30.

tested for reproducibility using multiple initializations.

In this context, the ‘value’ of a submission is not the same as its performance: rather

the importance of the contribution to the overall aggregate probability depends on how

it is combined. A single good contribution, that is different from the others, is usually

more valuable than a slightly higher scoring contribution that is very similar to all the

others. Figure 2.6 shows the weights of the contributions for the log opinion pools and

Rényi mixture with η = 1/γ = 30 (for η≥ 30 the results are sufficiently similar to the

log opinion pool). Further analysis shows that the obvious spikes in weight are due

to particular contributions that are noticeably different for the bulk of the high scoring

contributions.

2.8 Machine Learning Markets and Rényi Divergence

Aggregation

Machine learning markets (MLMs) with isoelastic utilities (Storkey et al., 2012) are

an information market based aggregation method. Independent agents with different

beliefs trade in a securities market. The equilibrium prices of the goods in that securi-

ties market can then be taken as an aggregate probability distribution, aggregating the

individual agent beliefs.

Since machine learning markets are also designed for aggregating probabilistic pre-

dictions, it is interesting to explore the connection with weighted Rényi divergence

aggregators introduced before. To this end, we first review the model details of MLMs

and the reveal the connections between the two approaches.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 32

2.8.1 Model Details of Machine Learning Markets

We now introduce the machine learning markets proposed by Storkey et al. (2012).

This market mechanism is designed for aggregating probabilistic predictions from mul-

tiple agents through the equilibrium of the markets. Concretely, the market goods are

enumerated by k = 1,2, . . . ,NG, corresponding to different outcomes of an event or a

discrete random variable k. The good k will pay out one unit of currency if the out-

come of the event is k. For each good k, the market has a commonly agreed price ck

(0 < ck < 1), thus, the price vector c = (c1,c2, . . . ,cNG)
T . In MLMs, c is interpreted

as the aggregated belief from the market agents trading in the market, i = 1,2, . . . ,NA.

Each agent with wealth Wi invests an amount of money rik in good k, thus, the invest-

ment vector ri =(ri1,ri2, . . . ,riNG)
T . To facility belief aggregation for machine learning

models, there are several assumptions in MLMs:

• No arbitrage assumption, which means that there is no possibilities for a risk free

gain. This implies

∑
k

ck = 1. (2.27)

Suppose ∑k ck 6= 1, an agent can buy (or sell) one of each stock to achieve a

sure return of 1 unit. The “sum-to-one” property also makes it possible to be

interpreted as a probability distribution.

• All agents spend all their wealth:

∑
k

rik =Wi. (2.28)

If any agent wants to keep a risk-free investment, that agent can simply purchase

one of each good to achieve free risk.

• ∑iWi = 1, hence, ∑ik rik = 1.

• We assume that the market is a close trading system, which implies that the

wealth in the market must be conserved: the total payout were that item to occur

matches the total original wealth.

NA

∑
i=1

rik

ck
=

NA

∑
i=1

Wi = 1⇒
NA

∑
i=1

rik = ck. (2.29)

Note that rik/ck is the amount of good k bought by agent i and so is the amount

received if the outcome is k.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 33

Table 2.4: The investment function and market equilibrium for different types of agents

Type of agent Utility function Investment function Market equilibrium

Exponential U(W) =−exp(−W) r∗ik =
Wi
NG

+ ck log Pi(k)
ck
− 1

NG
∑k′ ck′ log Pi(k′)

ck′
ck =

∏
NA
i=1 Pi(k)1/NA

∑k′ ∏
NA
i=1 Pi(k′)1/NA

Logarithmic U(W) = log(W) r∗ik =WiPi(k) ck =
∑i WiPi(k)

∑i Wi

Isoelastic U(W) = W 1−η−1
1−η

r∗ik =Wi

(
(ck)

η−1
η (Pi(k))

1
ηi

∑k′ (ck′)
η−1

η (Pi(k′))
1
η

)
ck = ∑i Wi

ck(
Pi(k)

ck
)

1
ηi)

∑k′ ck′ (
Pi(k′)

ck′
)

1
ηi

Each agent has a utility function Ui(W) and belief Pi, with Pi(k) denoting the prob-

abilistic belief for that the outcome of the event will be k. Also, for each agent,

∑k Pi(k) = 1.

We consider multiclass classification problem here. Each individual classifier plays

as an agent in the market. And the market price c defines a probability distribution over

possible outcomes, which can be used for multiclass prediction. In the following we

will show how to calculate investment for each agent and how to compute the market

equilibrium, respectively.

2.8.1.1 Investment Calculation

Given the market price c and current wealth W , each agent i tries to maximize their

expected utility to determine how much they will invest on the goods.

r∗i = r∗i (Wi,c) = argmax
ri

∑
k

Pi(k)Ui(
rik

ck
)

s.t.∑
k

rik =Wi. (2.30)

The solution of this constrained optimization (2.30) is

r∗ik = ck(U ′i)
−1
(

λi(c)
ck

Pi(k)

)
, (2.31)

where the U ′ is the derivative of U and λi(c) is the a Lagrange multiplier such that

∑k = r∗ik = Wi is satisfied. Generally, λi cannot be solved explicitly. However, for a

number of utility functions, the investment functions are analytic. The third column of

Table.2.4 gives the investment functions (i.e., the r∗ik the optimal investment over the

price vector c) for some important utility functions.

2.8.1.2 Market Equilibrium

It is well known that the concavity of each agent’s utility guarantees the existence of

a fixed price point for which all the agents maximise their utility and the market con-

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 34

straints are satisfied. In MLMs, the fixed point price is unique. For the exponential and

logarithmic agents, we have an analytic form of market equilibrium, but not for the

isoelastic agents, see the fourth column of Table.2.4. Storkey et al. (2012) employed

the minimisation of KL divergence between price vector c and ∑i ri to find the equilib-

rium iteratively for the isoelastic agents. The computational complexity of each pass

of this algorithm is O(NA×NG), which is equivalent to a mixture model update. How-

ever, the wealth update needs to be done for every single data sample. For large-scale

problem, this will introduce a heavy computational burden.

The equilibrium for sets of isoelastic agents with η 6= 1 cannot be obtained in an

explicit form. However the form of solutions has some connections with existing mod-

els. For instance, considering the homogeneous market of isoelastic agents (i.e., all

having the same η), we can have its equilibrium solution in a non-close form:

ck =

[
∑

i
ViPi(k)

1
η

]η

(2.32)

where Vi =Wi/Zi and Zi is the implicit solution to

Zi = ∑
k

[
∑

j

Wj

Z j
Pj(k)

1
η

]η−1

Pi(k)
1
η . (2.33)

Eq. (2.32) is the same as the form of α-integration (Amari, 2007; Wu, 2009), but where

Vi is defined implicitly in terms of a set of weights (or wealths) Wi as in Eq. (2.33).

Figure 2.7 sketches the difference between an isoelastic market combination and a

logarithmic combination (i.e., a standard mixture). In the isolelastic MLM, for η >

1, the individual beliefs are raised to a fractional power (“squashed”) before being

mixed, and are then ‘unsquashed’ again after mixing. The result of this is the areas of

agreement between agents are emphasised relative to a standard mixture.

As described in Storkey et al. (2012), Eq. (2.32) can also be written into the fol-

lowing form

ck = ∑
i

WiP
η

ik(c) (2.34)

where Pη

ik(c) is defined as

Pη

ik(c) =
ck

(
Pi(k)

ck

)1/η

∑k′ ck′
(

Pi(k′)
ck′

)1/η
. (2.35)

It is easy to observe that the form expresses the equilibrium ck as a weighted sum

of the effective beliefs Pη

ik that are associated with each agent once the impact of the

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 35

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
(x

)

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

P
(x

)

(a) (b)

Figure 2.7: (a) Three different components (i.e. agent beliefs), each given weights Wi of 0.4,

0.4 and 0.2 from left to right. (b) The logarithmic (i.e. mixture) combination of these components

(dashed) and the isoelastic (η = 10) combination (solid). Note the isoelastic combination puts

more weight where the overlap of the different components are and down-weights the regions

of disagreement or isolated components. Source from Storkey et al. (2012)

combination with rest of the market is taken into account. Each effective belief is

weighted by the agent’s wealth Wi before aggregation.

2.8.1.3 Market Training

Considering the classification problem, the aim of market training is to obtain a new

wealth allocation for all the agents for belief aggregation in test phase. Intuitively, after

market training, the agents (classifiers) with high accuracy will own more wealth than

the agents with poor classification performance.

The individual belief Pi(k) of each agent is obtained from their corresponding clas-

sification models. Each agent has a specific wealth Wi. The wealth and market price

affect each other during the trading process. For each training point, all the agents

make purchases based on their wealth and changing market price and finally the mar-

ket reaches an equilibrium. When the true class of the current training point is revealed

after trading, the payouts are made based on the investment of each agent on the cor-

rect class (goods), and then the wealth is updated for each agent. One pass for all the

training points is called an epoch. This process should be repeated a number of epochs

to reach a converged wealth allocation.

There are two types of wealth update mechanism: online mode and batch mode.

Online update requires that the wealth is updated after passing each training data point,

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 36

Algorithm 2.4 MLM training and test

Input: Dtr (true classes included), Dte, utility type (with η), p(Dtr|h) and p(Dte|h).
Output: aggregated belief c for each test point.

MARKET TRAINING

repeat
for each training point do

Initialize: wealth Wi and prices ck.

Compute equilibrium and purchases by minimising KL divergence.

if Online wealth update then
Update the wealth based on the investment and payout.

end if
if Batch wealth update then

Update the wealth after passing a batch of training points.

end if
end for

until Wealth Wi does not change.

MARKET TEST

for each test point do
Initialize: goods prices ck.

Compute equilibrium ck for each goods based on the new wealth from training

phase.

end for

which is equivalent to Bayesian model updates. On the other hand, batch update is

conducted after passing a batch of training points and it is shown that this type of

update could avoid over penalising good predictors early on, and thus has a better

aggregation performance.

The Algorithm 2.4 sketches how the market training and test are implemented.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 37

2.8.2 Connection between MLMs and Rényi Divergence Aggrega-

tion

Following the notation and formalism in MLMs, agents indexed by i with belief Pi(y),

wealth Wi and utility function Ui(.) trade in Arrow-Debreu securities derived from each

possible outcome of an event. Given the agents maximize expected utility, the market

equilibrium price of the securities c(y) is used as an aggregate model P(y) = c(y) of

the agent beliefs. When each agent’s utility is an isoelastic utility of the form Ui(W) =

W 1−ηi/(1−ηi) with a risk-averseness parameter ηi, the market equilibrium P(y) is

implicitly given by

P(y) = ∑
i

Wi

∑l Wl

Pi(y)γiP(y)1−γi

∑y′ Pi(y′)γiP(y′)1−γi
(2.36)

with γi = η
−1
i (generalising (10) in Storkey et al. (2012)). This shows the isoelastic

market aggregator linearly mixes together components that are implicitly a weighted

product of the agent belief and the final solution. Simple comparison of this market

equilibrium with the Rényi Divergence aggregator (2.8) shows that the market solution

and the Rényi divergence aggregator are of exactly the same form.

We conclude that a machine learning market implicitly computes a Rényi diver-

gence aggregation via the actions of individual agents. The process of obtaining the

market equilibrium is a process for building the Rényi Divergence aggregator, and

hence machine learning markets provide a method of implementation of weighted

Rényi divergence aggregators. The benefit of market mechanisms for machine learning

is that they are incentivized. There is no assumption that the individual agents behave

cooperatively, or that there is an overall controller who determines agents’ actions.

Simply, if agents choose to maximize their utility (under myopic assumptions) then

the result is weighted Rényi Divergence aggregation.

In general, equilibrium prices are not necessarily straightforward to compute, but

the algorithm in the implementation section provides one such method. As this iterates

computing an interim P (corresponding to a market price) and an interim Qi corre-

sponding to agent positions given that price, the mechanism in this paper can lead to a

form of tâtonnement7 algorithm with a guaranteed market equilibrium – see e.g. (Cole

and Fleischer, 2007).

The direct relationship between the risk averseness parameter for the isoelastic

utilities and the bias controlling parameter of the Rényi mixtures (γi = η
−1
i) provides

7Tâtonnement is an iterative auction process by which an exchange equilibrium is assumed to be
achieved.

Chapter 2. Aggregation of Probabilistic Predictions Under Bias 38

an interpretation of the isoelastic utility parameter: if agents know they are reasoning

with respect to a biased belief, then an isoelastic utility is warranted, with a choice of

risk averseness that is dependent on the bias.

Storkey et al. (2012) show, on a basket of UCI datasets, that market aggregation

with agents having isoelastic utilities performs better than simple linear opinion pools

(markets with log utilities) and products (markets with exponential utilities) when the

data agents see is biased. As such markets implement Rényi mixtures, this provides

additional evidence that Rényi mixtures are appropriate when combining biased pre-

dictors.

2.9 Discussion

When agents are training and optimising on different datasets than one another, log

opinion pooling is no longer a maximum entropy aggregator. Instead, under certain

assumptions, the weighted Rényi divergence aggregator is the maximum entropy solu-

tion, and tests confirm this practically. The weighted Rényi divergence aggregator can

be implemented using isoelastic machine learning markets.

Though there is some power in providing aggregated prediction mechanisms as

part of competition environments, there is the additional question of the competition

mechanism itself. With the possibility of using the market-based aggregation mecha-

nisms, it would be possible to run competitions as prediction market or collaborative

scenarios (Abernethy and Frongillo, 2011), instead of as winner takes all competitions.

This alternative changes the social dynamics of the system and the player incentives,

and so it is an open problem as to the benefits of this. We recognize the importance of

such an analysis as an interesting direction for future work.

Chapter 3

Stochastic Methods for Separable

Saddle Point Problems

In this chapter, we consider a general class of Convex-Concave Saddle Point problems

with a Separable structure, and we refer to them as Sep-CCSP problems. This problem

structure covers a wide range of important machine learning models, such as empiri-

cal risk minimization (ERM) and linear constrained optimization (for instance, robust

principal component analysis). We aim at developing efficient methods for optimiz-

ing large-scale Sep-CCSP problems in the “Big Data” era to tame the computational

bottleneck.

The key strategy we use is to incorporate stochastic block coordinate descent into

the Sep-CCSP problems, as in the work by Zhang and Xiao (2015) i.e., in each itera-

tion, only a random subset of coordinate blocks are updated. This strategy only uses

local information from the chosen subset, and requires much less computation power

than updating the entire coordinate blocks. We extend this by using adaptive stepsizes

to accelerate the convergence speed.

Particularly, two different settings of Sep-CCSP problems are considered, Sep-

CCSP with strongly convex functions and non-strongly convex functions. We develop

efficient stochastic methods for both of the two cases, which allows fast parallel pro-

cessing for large-scale data. Both theoretically and empirically, we demonstrate the

developed methods perform comparably, or more often, better than state-of-the-art

methods.

This chapter is an extended work based on two following papers, where ZZ was

responsible for both the theoretical and empirical aspects, and AJS provided insightful

suggestions for the two papers.

39

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 40

Zhu, Z. and Storkey, A.J.(2015). Adaptive Stochastic Primal-Dual Coordinate De-

scent for Separable Saddle Point Problems. In Machine Learning and Knowledge Dis-

covery in Databases (ECML/PKDD), pages 645-658.

Zhu, Z. and Storkey, A.J.(2016). Stochastic Parallel Block Coordinate Descent for

Large-scale Saddle Point Problems. In 30th AAAI Conference on Artificial Intelligence

(AAAI 2016), accepted to appear.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 41

Terminology and Notations

Before introducing the Sep-CCSP problems, it is necessary to present the related ter-

minology and notations that are commonly used in the optimization literature.

In this chapter, we denote x ∈RDx as primal optimization variables and y ∈RDy as

dual variables.

1. Convex function and strongly convex function.

Let X be a convex set in D-dimensional real space, a function f : X → R is

convex if for all x,x′ ∈ X , and 0≤ α≤ 1, we have

f (αx+(1−α)x′)≤ α f (x)+(1−α) f (x′) (3.1)

Geometrically, this inequality means that the line segment between (x, f (x)) and

(x′, f (x′)) lies above the graph of f (·). Suppose f (·) is differentiable, then f (·)
is convex if and only if

f (x′)≥ f (x)+∇ f (x)T (x′−x) (3.2)

holds for all x,x′ ∈ X . This inequality shows that from local information about

a convex function (i.e., its value and derivative at a point) we can derive global

information (i.e., a global underestimator of it, f (x)+∇ f (x)T (x′−x)). This is

perhaps the most important property of convex functions, and explain some of

the remarkable properties convex functions and convex optimization problems.

A differentiable function f (·) is called strongly convex with parameter λ > 0 if

the following inequality holds for all x,x′ ∈ X :

f (x′)≥ f (x)+∇ f (x)T (x′−x)+
λ

2
‖x′−x‖2

2. (3.3)

This equality is also important for strongly convex functions since it can provide

a global quadratic estimator of the function f (·).

2. Lipschitz smoothness.

A function f (·) is Lipschitz smooth if its gradients are Lipschitz continuous with

constant L, that is, for all x,x′ ∈ RDx ,

‖∇ f (x)−∇ f (x′)‖ ≤ L‖x−x′‖. (3.4)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 42

Table 3.1: Some examples of conjugate functions.

Function f (·) f ∗(·)

Affine f (x) = aT x−b f ∗(y) =

b, if y = a

+∞, otherwise.

Power
f (x) = 1

a |x|
a,

1 < a < ∞

f ∗(y) = 1
b |y|

b,

where 1 < b < ∞, and 1
a +

1
b = 1.

Quadratic f (x) = 1
2(x−b)2 f ∗(y) = 1

2 y2 +by

Exponential f (x) = ex f ∗(y) =

y log(y)− y, if y > 0

0, if y = 0,

∞, otherwise.

Smooth hinge f (x) =

0 if x≥ 1,

1− γ

2 − x if x≤ 1− γ

1
2γ
(1− x)2 otherwise.

f ∗(y) = y+ 1
2 y2,

where y ∈ [−1,0].

Logistic f (x) = log(1+ exp(−x))
f ∗(yi) =−y log(−y)+(1+ y) log(1+ y),

where y ∈ (−1,0).

3. The conjugate function.

The function f ∗(·) is called the conjugate of the function f (·) defined as

f ∗(y) = max
x∈X
〈y,x〉− f (x), (3.5)

where 〈·, ·〉 is the inner product of two vectors. Figure 3.1 illustrates the conju-

gate function in one-dimensional space. We see immediately that f ∗ is a con-

vex function, since it is the pointwise supremum of a family of convex (indeed,

affine) functions of y. This is true whether or not f is convex.

We present several examples of conjugate functions in Table 3.1, some of which

will be used later.

There is a direct and important relation: a function is strongly convex with con-

stant λ if and only if its convex conjugate is Lipschitz smooth with constant 1/λ

(Theorem 4.2.2 in Hiriart-Urruty and Lemaréchal (2001)).

4. Proximal operators.

A proximal operator with parameter λ, proxλ f : RD→ RD of f is defined by

proxλ f (v) = argminx f (x)+
1

2λ
‖x−v‖2

2. (3.6)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 43

Figure 3.1: The conjugate function f ∗(y) is the maximum gap between the linear function yx

and f (x), as shown by the dashed line in the figure. If f is differentiable, this occurs at a point

x where ∇ f (x) = y.

This definition indicates that proxλ f (v) is a point that compromises between

minimizing f and being near to v.

Figure 3.2 illustrates the evaluation of a proximal operator. The thin black lines

are level curves of a convex function f ; the thicker black line indicates the

boundary of its domain. Evaluating prox f at the blue points moves them to

the corresponding red points. The three points in the domain of the function stay

in the domain and move towards the minimum of the function, while the other

two move to the boundary of the domain and towards the minimum of the func-

tion. The penalty parameter λ controls the extent to which the proximal operator

maps points towards the minimum of f , with larger values of λ associated with

mapped points near the minimum, and smaller values giving a smaller movement

towards the minimum.

We list the evaluation of several important proximal operators, which are used

frequently in proximal algorithms, see Parikh and Boyd (2013) for a more com-

prehensive review.

Quadratic functions. If f (x) = (1/2)xT Ax+bT x+ c, with A ∈ Sn
+, then

proxλ f (v) = (I+λA)−1 (v−λb). (3.7)

Particularly, if f (·) = (1/2)‖ · ‖2
2, then

proxλ f (v) =
v

1+λ
, (3.8)

is named as shrinkage operator.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 44

Figure 3.2: Evaluating a proximal operator at various points. The thin black lines are level

curves of a convex function f ; the thicker black line indicates the boundary of its domain. Eval-

uating prox f at the blue points moves them to the corresponding red points. The three points

in the domain of the function stay in the domain and move towards the minimum of the function,

while the other two move to the boundary of the domain and towards the minimum of the func-

tion. The penalty parameter λ controls the extent to which the proximal operator maps points

towards the minimum of f , with larger values of λ associated with mapped points near the mini-

mum, and smaller values giving a smaller movement towards the minimum. Source from Parikh

and Boyd (2013).

Logarithm functions. If f (x) =− log(x), then

proxλ f (v) =
v+
√

v2 +4v
2

. (3.9)

l1 norm. If f (x) = ‖x‖1, then each element of the proximal evaluation,

(
proxλ f (v)

)
i =

vi−λ vi ≥ λ

0 |vi| ≤ λ

vi +λ vi ≤−λ

, (3.10)

which is known as (elementwise) soft thresholding operator and can be ex-

pressed more compactly as

proxλ f (v) = (v−λ)+− (−v−λ)+, (3.11)

where the thresholding operator ((u)+)i = max(ui,0).

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 45

Euclidean (l2) norm. If f (x) = ‖x‖2, then

proxλ f (v) = (1−λ/‖v‖2)+v =

(1−λ/‖v‖2)v ‖v‖2 ≥ λ

0 ‖v‖2 < λ

, (3.12)

which is called block soft thresholding operator.

Elastic net. Elastic net regularization (Zou and Hastie, 2005) is a combination

of l1 and l2 norm,

f (x) = ‖x‖1 +(γ/2)‖x‖2
2, (3.13)

where γ > 0. Then

proxλ f (v) =
1

1+λγ
proxλ‖·‖1

(v), (3.14)

i.e., soft thresholding followed by multiplicative shrinkage.

Sum of norms. Another important case is sum-of-norms regularization, used

in group Lasso (Zhao et al., 2009; Jacob et al., 2009),

f (x) = ∑
g∈G
‖xg‖2, (3.15)

where G is a partition of [n]. The its proximal operator has the form

(proxλ f (v))g =

(
1− λ

‖vg‖2

)
+

vg (3.16)

for all g ∈ G .

Nuclear matrix norm. The nuclear norm or trace norm of a matrix X ∈ Rm×n

is the l1 norm of its singular values,

f (X) = ‖µµµ(X)‖1, (3.17)

where µµµ(X) denotes the vector including all the singular values of the matrix X.

The its proximal operator

proxλ f (A) =
n

∑
i=1

(µi−λ)+uivT
i , (3.18)

where A = ∑
n
i=1 µiuivT

i is the singular value decomposition of A. This operation

is called singular value thresholding since we soft threshold the singular values

rather than matrix entries.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 46

3.1 CCSP and Sep-CCSP Problems

The generic convex-concave saddle point (CCSP) problem is written as

min
x∈RDx

max
y∈RDy

{L(x,y) = f (x)+ 〈x,Ky〉−g∗(y)} , (3.19)

where we refer x ∈ RDx as primal variables and y ∈ RDy as dual variables. f (x) is a

proper convex function, g∗(·) is the convex conjugate of a convex function g(·), and

matrix K ∈ RDx×Dy . as Figure 3.3 depicts the CCSP problem in a two-dimensional

case.

Figure 3.3: Illustration of Convex-Concave Saddle Point problem in a two-dimensional case.

The red point is the saddle point (x?,y?).

Many tasks in machine learning, computer vision and game theory, reduce to solv-

ing a problem of this form (Jacob et al., 2009; Hastie et al., 2009; Chambolle and Pock,

2011, 2014). As a result, this saddle problem has been widely studied (Zhu and Chan,

2008; Tseng, 2008; Esser et al., 2010; Chambolle and Pock, 2011; He and Yuan, 2012;

He and Monteiro, 2014; Chambolle and Pock, 2014).

One important subclass of CCSP problem in (3.19) is where f (x) and/or g∗(y)
exhibits an block coordinate-wise separable structure. We say g∗(y) is separable when

g∗(y) =
q

∑
i=1

g∗i (yi), with yi ∈ RDyi , and
q

∑
i=1

Dyi = Dy. (3.20)

Separability of f (x) is defined likewise. We can also partition matrix K into q column

blocks Ki ∈ RDx×Dyi , for i = 1, . . . ,q, and therefore,

Ky =
q

∑
i=1

Kiyi, (3.21)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 47

resulting in the following problem

min
x∈RDx

max
y∈RDy

{
L(x,y) = f (x)+

q

∑
i=1

(〈x,Kiyi〉−g∗(yi))

}
. (3.22)

Or when f (x) is separable,

min
x∈RDx

max
y∈RDy

{
L(x,y) =

q

∑
j=1

(
f (x j)+

〈
y,KT

j xi
〉)
−g∗(y)

}
. (3.23)

We refer the problems in the form of (3.22) or (3.23) as Separable Convex-Concave

Saddle Point (Sep-CCSP) problems. Although the problem (3.22) and (3.23) can be

transformed between each other by changing role of primal and dual variable, in this

chapter we still keep the role of primal and dual variable intact and write Sep-CCSP

problem into two forms with separable primal and dual variables, respectively.

Sep-CCSP is a general form for many machine learning models. Now we introduce

two important instantiations of the Sep-CCSP problem.

Instantiation 1: Separable function minimization with linear constraints. This

optimization problem takes the form

min
x

q

∑
j=1

f j(x j)

s.t.
q

∑
j=1

A jx j = b,
(3.24)

where x = [x1,x2, . . . ,xq]
T . After introducing the Lagrangian multiplier y for the linear

constraint, we can reformulate the problem into the following Sep-CCSP problem with

separable primal variables,

min
x

max
y

{
L(x,y) =

q

∑
j=1

f j(x j)+

〈
y,

q

∑
j=1

A jx j

〉
−yT b

}
. (3.25)

A large number of machine learning problems can be cast as linearly constrained op-

timization problems of this form (Bertsekas and Tsitsiklis, 1989; Chen et al., 2001;

Boyd et al., 2011; Chandrasekaran et al., 2012a; Wainwright, 2014), for instance, ro-

bust principal component analysis (RPCA, Wright et al. (2009); Candès et al. (2011)),

and overlapping group Lasso problem (Zhao et al., 2009; Jacob et al., 2009).

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 48

Instantiation 2: Empirical risk minimization (ERM). ERM (Hastie et al., 2009)) of

linear predictors with a convex regularization function f (x):

min
x∈Rd

{
J(x) =

1
N

N

∑
i=1

φi(aT
i x)+ f (x)

}
, (3.26)

where a1, . . . ,an ∈ RD are the feature vectors of N data samples, φi(·) corresponds the

convex loss function w.r.t. the linear predictor aT
i x. Many practical classification and

regression models fall into this regularized ERM formulation, such as linear support

vector machine (SVM), regularized logistic regression and ridge regression, see Hastie

et al. (2009) for more details.

Reformulating the above regularized ERM by employing conjugate dual of the

function φi(·), i.e.

φi(aT
i x) = max

yi∈R
〈x,yiai〉−φ

∗
i (yi), (3.27)

leads directly to the following Sep-CCSP problem

min
x∈RD

max
y∈RN

f (x)+
1
n

n

∑
i=1

(〈x,yiai〉−φ
∗
i (yi)) . (3.28)

Comparing with the general form, we note that the matrix Ki in (3.22) is now a vector

ai.

3.2 Primal-Dual Framework for CCSP and Sep-CCSP

The CCSP problem (3.19) has been investigated by several works (Zhu and Chan,

2008; Tseng, 2008; Esser et al., 2010; Chambolle and Pock, 2011; He and Yuan, 2012;

He and Monteiro, 2014; Chambolle and Pock, 2014). The basic first-order primal-dual

framework was formalized by Chambolle and Pock (2011). We refer this algorithm

as PDCP. The key idea behind PDCP is to alternatively optimize with respect to pri-

mal and dual variables employing proximal algorithms, which can be summarized as

follows.

With certain initialization (x0,y0) and x0 = x0. Then update of PDCP in the (t +

1)th iteration is as follows:

yt+1 = argminyg∗(y)−
〈
xt ,Ky

〉
+

1
2σ
‖y−yt‖2

2 (3.29)

xt+1 = argminx f (x)+
〈
x,Kyt+1〉+ 1

2τ
‖x−xt‖2

2 (3.30)

xt+1 = xt+1 +θ(xt+1−xt), (3.31)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 49

where the subproblem (3.29) and (3.30) is exactly the proximal operator with respect

to function g∗(y)−〈xt ,Ky〉 and f (x)+
〈
x,Kyt+1〉, with parameter σ and τ (i.e., the

step sizes of primal and dual optimization). Eq. (3.31) is an extrapolation from xt to

xt+1, which is similar to Nesterov’s acceleration technique, see Section 2.2 of Nesterov

(2004) and Su et al. (2014).

When the parameter configuration satisfies τσ ≤ 1/‖K‖2 and θ = 1, PDCP could

achieve O(1/T) convergence rate for general convex function f (·) and g∗(·), where T

is total number of iterations. When f (·) and g∗(·) are both strongly convex, a linear

convergence rate can be achieved by adjusting stepsizes in each iteration.

PDCP is a batch method and is non-stochastic, i.e., it has to update all the dual

coordinates in each iteration. When solving the Sep-CCSP problems with a number

of coordinate blocks q (say q has a magnitude 105 or more), PDCP will be computa-

tionally intensive since it has to evaluate the proximal operators for all the coordinate

blocks in each iteration.

3.2.1 Scalable Methods for Large-Scale Sep-CCSP

The key issue for large-scale Sep-CCSP problems is the computational bottleneck to

handle a large number of coordinate blocks. Fortunately, current active research on co-

ordinate descent methods (CD, Nesterov (2012a,b); Richtárik and Takáč (2012, 2014))

motivates developing scalable methods for large-scale Sep-CCSP problems. The basic

idea of CD methods is simple but rather efficient and effective; one or several coor-

dinates are updated in each iteration. In these works mentioned above, (stochastic)

coordinate descent methods demonstrate their attractive benefits for efficiently solving

large-scale and/or high-dimensional problems and are amenable to parallel optimiza-

tion.

Due to the similarity between the problems addressed by those works and the Sep-

CCSP problem, stochastic coordinate descent could be adopted as a key strategy for

Sep-CCSP problems. For more details of coordinate descent methods, we suggest

readers to see a comprehensive review by Wright (2015).

One representative work for handling large-scale Sep-CCSP problems is Stochas-

tic Primal-Dual Coordinate Descent (SPDC) (Zhang and Xiao, 2015), which can be

viewed as a stochastic variant of the batch method PDCP. SPDC adopts the stochastic

coordinate descent into the PDCP, which updates a random subset of coordinates in

each iteration to reduce the computation. However, SPDC has several limitations,

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 50

1. SPDC uses a conservative constant step size for primal and dual updates, which

limits its convergence performance both theoretically and empirically;

2. SPDC assumes that both of f (x) and g∗(y) are strongly convex, and only can be

applied to the problems similar to regularized ERM (3.28) with Lipschitz smooth

loss functions (since the conjugate dual of Lipschitz smooth loss functions are

strongly convex) and strongly convex regularization term;

3. SPDC only implements coordinate descent, and it is not clear how to implement

block coordinate descent.

In this chapter, we develop two scalable methods to overcome SPDC’s limitations

for large-scale Sep-CCSP problems. The two proposed methods focus on different

aspects of SPDC’s limitations and introduce series of novel rules of updates.

One is named as Adaptive SPDC (AdaSPDC) for Sep-CCSP problems with strongly

convex functions (particularly for ERM problems with strongly convex functions),

which is a non-trivial extension of SPDC. By carefully exploiting the structure of indi-

vidual subproblem, we propose an adaptive (i.e., larger data-dependent) step size rule

for both primal and dual updates according to the chosen subset of coordinate blocks

in each iteration. Both theoretically and empirically, we show that AdaSPDC could

yield a significantly better linear convergence rate than SPDC and other state-of-the-

art methods.

Another proposed method, referred as Stochastic Parallel Block Coordinate Descent

(SP-BCD), particularly, deals with large-scale Sep-CCSP with general (non-strongly

convex) functions. SP-BCD covers a wider range of machine learning applications

than SPDC and AdaSPDC, since its capability of solving non-strongly convex func-

tions enables it can be applied to separable function minimization problem with linear

constraints 3.25. SP-BCD also exploits the structure of the matrix K, and suggests a

novel rule of step sizes, which can achieve better sublinear convergence rate without

any strong convexity assumption. Various applications in the field of machine learning

and economics are experimented that demonstrate SP-BCD’s efficacy and efficiency.

In the following, we elaborate both of the two newly-established methods.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 51

3.3 Adaptive Stochastic Primal-Dual Coordinate Descent

Since the proposed AdaSPDC mainly focuses on solving regularized ERM problems (3.28),

we present a generalized version of problem (3.28),

min
x∈RD

max
y∈RN

{
L(x,y) = f (x)+

1
N

N

∑
i=1

(〈x,Aiyi〉−φ
∗
i (yi))

}
, (3.32)

where the coordinates {yi}N
i=1 are generalized to block coordinates {yi}N

i=1, and the

feature vectors {ai}N
i=1 are generalized into feature matrices {Ai}N

i=1.

We further assume that each φ∗i (yi) is γ-strongly convex, and f (x) is λ-strongly

convex, i.e.,

φ
∗
i (y
′
i)≥ φ

∗
i (yi)+∇φ

∗(yi)
T (y′i−yi

)
+

γ

2
‖y′i−yi‖2

2, ∀yi,y′i ∈ Rni

f (x′)≥ f (x)+∇ f (x)T (x′−x
)
+

λ

2
‖x′i−xi‖2

2, ∀x,x′ ∈ RD.

Now we introduce AdaSPDC based on this Sep-CCSP form.

As a non-trivial extension of SPDC (Zhang and Xiao, 2015), our method AdaSPDC

solves the Sep-CCSP problem by using an adaptive parameter configuration. Con-

cretely, we optimize L(x,y) in Eq. (3.32) by alternatively updating the dual and primal

variables in a principled way. Thanks to the separable structure of φ∗(y), in each iter-

ation we can randomly select m blocks of dual variables whose indices are denoted as

St , and then we only update these selected blocks in the following way,

yt+1
i = argminyi

[
φi(yi)−

〈
xt ,Aiyi

〉
+

1
2σi
‖yi−yt

i‖2
2

]
, if i ∈ St . (3.33)

For those coordinates in blocks not selected, i /∈ St , we just keep yt+1
i = yt

i. By exploit-

ing the structure of individual Ai, we configure the step size parameter of the proximal

term σi adaptively

σi =
1

2Ri

√
Nλ

mγ
, (3.34)

where Ri = ‖Ai‖2 =
√

µmax
(
AT

i Ai
)
, with ‖ · ‖2 is the spectral norm of a matrix and

µmax(·) to denote the maximum singular value of a matrix.

Our step size is different from the one used in SPDC (Zhang and Xiao, 2015),

where R is a constant R = max{‖ai‖2 : i = 1, . . . ,N} (since SPDC only considers ERM

problem, the matrix Ai is a feature vector ai).

Remark. Intuitively, Ri in AdaSPDC can be understood as the coupling strength

between the i-th dual variable block and primal variable, measured by the spectral

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 52

norm of matrix Ai. Smaller coupling strength allows us to use a larger step size for

the current dual variable block without caring too much about its influence on primal

variable, and vice versa. Compared with SPDC, our proposal of an adaptive coupling

strength for the chosen coordinate block directly results in a larger step size, and thus

helps to improve convergence speed.

In the stochastic dual update, we also use an intermediate variable xt as Eq. (3.31)

in PDCP algorithm , and we will describe its update later.

Since we assume f (x) is not separable, we update the primal variable as a whole,

xt+1 = argminx

[
f (x)+

〈
x,rt +

1
m ∑

j∈St

A j(yt+1
j −yt

j)

〉
+

1
2τt ‖x−xt‖2

2

]
. (3.35)

The proximal parameter τt is also configured adaptively,

τ
t =

1
2Rt

max

√
mγ

Nλ
, (3.36)

where Rt
max = max{Ri|i ∈ St}, compared with constant R used in SPDC. To account

for the incremental change after the latest dual update, an auxiliary variable rt =
1
N ∑

N
i=1 Aiyt

i is used and updated as follows

rt+1 = rt +
1
N ∑

j∈St

A j

(
yt+1

j −yt
j

)
. (3.37)

Finally, we update the intermediate variable x, which implements an extrapolation step

over the current xt+1 and can help to provide faster convergence rate (Nesterov, 2004;

Chambolle and Pock, 2011).

xt+1 = xt+1 +θ
t(xt+1−xt), (3.38)

where θt is configured adaptively as

θ
t = 1− 1

N/m+Rt
max
√

(N/m)/(λγ)
, (3.39)

which is much smaller than the constant θ used in SPDC, θSPDC = 1− 1
N/m+R

√
(N/m)/(λγ)

.

The whole procedure for solving Sep-CCSP problem (3.32) using AdaSPDC is

summarized in Algorithm 3.1. There are several notable characteristics of AdaSPDC.

• Compared with SPDC, our method uses adaptive step size to obtain faster con-

vergence (will be shown in Theorem 1), while the whole algorithm does not

bring any other extra computational complexity. As demonstrated in the ex-

periment Section 3.3.3, in many cases, AdaSPDC provides significantly better

performance than SPDC.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 53

Algorithm 3.1 AdaSPDC for Sep-CCSP problem (3.32)
1: Input: number of blocks picked in each iteration m and number of iterations T .

2: Initialize: x0, y0, x0 = x0, r0 = 1
N ∑

N
i=1 Aiy0

i

3: for t = 0,1, . . . ,T −1 do
4: Randomly pick a subset with size m from all the N coordinate blocks, denoted

as St .

5: According to the selected subset St , compute the adaptive parameter configura-

tion of σi, τt and θt using Eq. (3.34), (3.36) and (3.39), respectively.

6: for each selected block in parallel do
7: Update the dual variable block using Eq.(3.33).

8: end for
9: Update primal variable using Eq.(3.35).

10: Extrapolate primal variable block using Eq.(3.38).

11: Update the auxiliary variable r using Eq.(3.37).

12: end for

• Since, in each iteration, a number of block coordinates can be chosen and up-

dated independently (with independent evaluation of individual step size), this

directly enables parallel processing, and hence use on modern computing clus-

ters. The ability to select an arbitrary number of blocks can help to make use

of all the computation structure available as effectively as possible. The prop-

erty of arbitrary number of blocks selection was previously studied in detail by

Richtárik and Takáč (2012); ?.

3.3.1 Convergence Analysis for AdaSPDC

We characterise the convergence performance of AdaSPDC in the following theorem.

Theorem 1. Assume that each φ∗i (·) is γ-strongly convex, and g(·) is λ-strongly convex,

and given the parameter configuration in Eq. (3.34), (3.36) and (3.39), then after T it-

erations in Algorithm 3.1, AdaSPDC achieves the following convergence performance

E
[(

1
2τT +λ

)
‖xT −x?‖2

2

]
+E

[
‖yT −y?‖2

ννν

]
≤

(
T

∏
t=1

E[θt]

)((
1

2τ0 +λ

)
‖x0−x?‖2

2 +‖y0−y?‖2
ννν′

)
, (3.40)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 54

where (x?,y?) is the optimal saddle point, νi =
1

4mσi
+ γ

2m , ν′i =
1

2mσi
+ γ

2m , and ‖yT −
y?‖2

ννν = ∑
N
i=1 νi‖yT

i −y?i ‖2
2.

Compared with the convergence rate of SPDC by Zhang and Xiao (2015), AdaSPDC

achieves a much sharper rate since the term ∏
T
t=1E[θt] will be much smaller than

∏
T
t=1 θSPDC. This is due to the usage of data-dependent stepsizes during each iteration.

Since the proof of the above is technical, we provide it in the Appendix B.

In our proof, given the proposed parameter θt , the critical point for obtaining a

sharper linear convergence rate than SPDC is that we configure τt and σi as Eq. (3.36)

and (3.34) to guarantee the positive definiteness of the following matrix in the t-th

iteration,

P =

 m
2τt I −ASt

−AT
St

1
2diag(σσσSt)

 , (3.41)

where ASt = [. . . ,Ai, . . .]∈RD×mni and diag(σσσSt)= diag(. . . ,σiIni, . . .) for i∈ St . How-

ever, we found that the parameter configuration to guarantee the positive definiteness

of P is not unique, and there exist other valid parameter configurations besides the pro-

posed one in this work. We leave the further investigation on other potential parameter

configurations as future work.

3.3.2 Further Comparison with SDPC

Compared with SPDC (Zhang and Xiao, 2015), AdaSPDC follows the similar primal-

dual framework. The crucial difference between them is that AdaSPDC proposes a

larger step size for both dual and primal updates, see Eq. (3.34) and (3.36) compared

with SPDC’s parameter configuration given in Eq.(10) in Zhang and Xiao (2015),

where SPDC applies a large constant R = max{‖ai‖2 : i = 1, . . . ,n} while AdaSPDC

uses a more adaptive value of Ri and Rt
max for t-th iteration to account for the different

coupling strength between the selected dual coordinate block and primal variable. This

difference directly means that AdaSPDC can potentially obtain a significantly sharper

linear convergence rate than SPDC, since the decay factor θt of AdaSPDC is smaller

than θ in SPDC (Eq.(10) in Zhang and Xiao (2015)) , see Theorem 1 for AdaSPDC

compared with SPDC (Theorem 1 in Zhang and Xiao (2015)). The empirical perfor-

mance of the two algorithms will be demonstrated in the experimental Section 3.3.3.

To improve the algorithm performance, the authors of SPDC propose to non-uniformly

sample the the dual coordinate to update in each iteration according to the norm of the

each ai. However, as we show later in the empirical experiments, this non-uniform

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 55

sampling does not improve the convergence a lot for some datasets. By configur-

ing the data-dependent step size explicitly, our method AdaSPDC provides a better

solution for unnormalized data compared with SPDC, see Section 3.3.3 for more em-

pirical evidence. Moreover, our method AdaSPDC can be potentially extended by

non-uniformly sampling the dual coordinates, and we will leave this as future work.

Another difference is that SPDC only considers the regularized ERM task, i.e., only

handling the case that each Ai is a feature vector ai, while AdaSPDC extends that Ai

can be a matrix so that AdaSPDC can cover a wider range of applications than SPDC,

i.e. in each iteration, a number of block coordinates could be selected while for SPDC

only a number of coordinates are allowed.

3.3.3 Empirical Results

In this section, we apply AdaSPDC to several regularized empirical risk minimiza-

tion problems. The experiments are conducted to compare our method AdaSPDC

with other competitive stochastic optimization methods, including (1) Stochastic Dual

Coordinate Ascent (SDCA, Shalev-Shwartz and Zhang (2013)), a dual optimization

method which stochastically update one coordinate in each iteration; (2) Stochastic

Averaging Gradient (SAG, Schmidt et al. (2013)), a primal optimization method by

incorporating a memory of previous gradient values; (3) SPDC with uniform sam-

pling (Zhang and Xiao, 2015) and (4) SPDC with non-uniform sampling (Zhang and

Xiao, 2015). In order to provide a fair comparison with these methods, in each iteration

only one dual coordinate (or data instance) is chosen, i.e., we run all the methods se-

quentially. To obtain results that are independent of the practical implementation of the

algorithm, we measure the algorithm performance in term of objective suboptimality

w.r.t. the effective passes to the entire data set.

Each experiment is run 10 times and the average results are reported to show sta-

tistical consistency. We present all the experimental results we have done for each

application.

3.3.3.1 Ridge Regression

We firstly apply our method AdaSPDC into a simple ridge regression problem with

synthetic data. The data is generated in the same way as Zhang and Xiao (2015);

N = 1000 i.i.d. training points {ai,bi}n
i=1 are generated in the following manner,

b = aT x�+ ε, a∼N (0,ΣΣΣ), ε∼N (0,1),

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 56

where a ∈ RD and D = 1000, and the elements of the vector x� are all ones. The

covariance matrix ΣΣΣ is set to be diagonal with Σ j j = j−2, for j = 1, . . . ,D. Then the

ridge regression tries to solve the following optimization problem,

min
x∈RD

{
J(x) =

1
N

N

∑
i=1

1
2
(aT

i x−bi)
2 +

λ

2
‖x‖2

2

}
. (3.42)

The optimal solution of the above ridge regression can be found as

x? =
(
AAT +nλID

)−1 Ab.

By employing the conjugate dual of quadratic loss (crossref, Eq. (3.27) and Table 3.1),

we can reformulate the ridge regression as the following Sep-CCSP problem,

min
x∈RD

max
y∈RN

λ

2
‖x‖2

2 +
1
N

N

∑
i=1

(
〈x,yiai〉−

(
1
2

y2
i +biyi

))
. (3.43)

It is easy to figure out that f (x)= λ/2‖x‖2
2 is λ-strongly convex, and φ∗i (yi)=

1
2y2

i +biyi

is 1-strongly convex.

Thus, for ridge regression, the dual update in Eq. (3.33) and primal update in

Eq. (3.35) of AdaSPDC have closed form solutions as below,

yt+1
i =

1
1+1/σi

(〈
xt ,ai

〉
+bi +

1
σi

yi

)
, if i ∈ St

xt+1 =
1

λ+1/τt

(
1
τt xt−

(
rt +

1
m ∑

j∈St

a j(yt+1
j − yt

j)

))
The algorithm performance is evaluated in term of objective suboptimality (mea-

sured by J(xt)−J(x?)) w.r.t. number of effective passes to the entire datasets. Varying

values of regularization parameter λ are experimented to demonstrate algorithm per-

formance with different degree of ill-conditioning, λ = {10−3,10−4,10−5,10−6}.
Figure 3.4 shows algorithm performance with different degrees of regularization.

It is easy to observe that AdaSPDC converges substantially faster than other compared

methods, particularly for less regularized (i.e. smaller λ) problems. Compared with

SPDC and its variant with non-uniform sampling, the usage of adaptive step size in

AdaSPDC significantly improves convergence speed. For instance, in the case with

λ = 10−6, AdaSPDC achieves 100 times better suboptimality than both SPDC and its

variant SPDC with non-uniform sampling after 300 passes.

Note that the SDCA we implemented is the original version, and recently some

extended versions of SDCA were developed and expected to have better performance,

see ??.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 57

0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

(a) λ = 10−3 (b) λ = 10−4

0 50 100 150 200 250 300

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

(c) λ = 10−5 (d) λ = 10−6

Figure 3.4: Ridge regression with synthetic data: comparison of convergence performance

w.r.t. the number of passes. Problem size: D = 1000,N = 1000. We evaluate the convergence

performance using objective suboptimality, J(xt)− J(x?).

Table 3.2: Benchmark datasets used in our experiments for binary classification.

Datasets Number of samples N Number of features D Sparsity

w8a 49,749 300 3.9%

covertype 20,242 47,236 0.16%

url 2,396,130 3,231,961 0.0018%

quantum 50,000 78 43.44%

protein 145,751 74 99.21%

3.3.3.2 Binary Classification on Real-world Datasets

We now compare the performance of our method AdaSPDC with other competitive

methods on several real-world data sets. Our experiments focus on the freely-available

benchmark data sets for binary classification, whose detailed information are listed in

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 58

Table 4.2. The w8a, covertype and url data are obtained from the LIBSVM collection1.

The quantum and protein data sets are obtained from KDD Cup 20042. For all the

datasets, each sample takes the form (ai,bi) with ai is the feature vector and bi is the

binary label −1 or 1. We add a bias term to the feature vector for all the datasets. We

aim to minimize the regularized empirical risk with following form

J(x) =
1
N

N

∑
i=1

φi(aT
i x)+

λ

2
‖x‖2

2 (3.44)

To provide a more comprehensive comparison between these methods, we experiment

with two different loss function φi(·), smooth Hinge loss (Shalev-Shwartz and Zhang,

2013) and logistic loss, described in the following.

3.3.3.2.1 Smooth Hinge loss (with smoothing parameter γ = 1.)

φi(z) =

0 if biz≥ 1,

1− γ

2 −biz if biz≤ 1− γ

1
2γ
(1−biz)2 otherwise.

And its conjugate dual is

φ
∗
i (yi) = biyi +

1
2

y2
i , with biyi ∈ [−1,0].

We can observe that φ∗i (yi) is γ-strongly convex with γ = 1. The dual update of

AdaSPDC for smooth Hinge loss is nearly the same with ridge regression except the

necessity of projection into the interval biyi ∈ [−1,0].

3.3.3.2.2 Logistic loss

φi(z) = log(1+ exp(−biz)) ,

whose conjugate dual has the form

φ
∗
i (yi) =−biyi log(−biyi)+(1+biyi) log(1+biyi) with biyi ∈ [−1,0].

It is also easy to obtain that φ∗i (yi) is γ-strongly convex with γ= 4. Note that for logistic

loss, the dual update in Eq. (3.33) does not have a closed form solution, and we can

start from some initial solution and further apply several steps of Newton’s update to

obtain a more accurate solution.
1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
2http://osmot.cs.cornell.edu/kddcup/datasets.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://osmot.cs.cornell.edu/kddcup/datasets.html

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 59

During the experiments, we observe that the performance of SAG is very sensitive

to the choice of step size . To obtain best results of SAG, we try different candidates of

step size in the interval [1/16L,1/L] and report the best result for each dataset, where L

is Lipschitz constant of φi(aT
i x), 1/16L is the theoretical step size choice for SAG and

1/L is the suggested empirical choice by (Schmidt et al., 2013). For smooth Hinge loss,

L = maxi{‖ai‖2, i = 1, . . . ,N}, and for logistic loss, L = 1
4 maxi{‖ai‖2, i = 1, . . . ,N}.

Figure 3.5 and Figure 3.6 depict the algorithm performance on the different meth-

ods with smooth Hinge loss and logistics loss, respectively. We compare all these

methods with different values of λ = {10−5,10−6,10−7}. Generally, our method

AdaSPDC performs consistently better or at least comparably with other methods, and

performs especially well for the tasks with small regularized parameter λ. For some

datasets, such as covertype and quantum, SPDC with non-uniform sampling decreases

the objective faster than other methods in early epochs, however, cannot achieve com-

parable results with other methods in later epochs, which might be caused by its con-

servative step size.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 60

Dataset λ = 10−5 λ = 10−6 λ = 10−7

w8a

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

covtype

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−20

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

url

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes
J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

quantum

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−4

10
−3

10
−2

10
−1

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 100 200 300 400 500

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

protein

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

Figure 3.5: Comparison of algorithm performance with smooth Hinge loss.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 61

Dataset λ = 10−5 λ = 10−6 λ = 10−7

w8a

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes
J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

covertype

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−20

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

url

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

quantum

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

protein

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

Number of Passes

J
(x

t)
−

 J
(x

*)

SDCA

SAG

SPDC

SPDCnonUniform

AdaSPDC

Figure 3.6: Comparison of algorithm performance with Logistic loss.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 62

Interim Summary The proposed Adaptive Stochastic Primal-Dual Coordinate De-

scent (AdaSPDC) for Sep-CCSP problem is a non-trivial extension of a recent work

SPDC (Zhang and Xiao, 2015). AdaSPDC uses an adaptive step size choices for

both primal and dual updates in each iteration. The design of the step size for our

method AdaSPDC explicitly and adaptively models the coupling strength between

chosen block coordinates and primal variable through the spectral norm of each Ai.

We theoretically characterise that AdaSPDC holds a sharper linear convergence rate

than SDPC. Additionally, we demonstrate the superiority of the proposed AdaSPDC

method on ERM problems through extensive experiments on both synthetic and real-

world data sets.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 63

3.4 SP-BCD for General Sep-CCSP Problems

In last section, we introduce AdaSDPC and SPDC, which are particularly designed for

Sep-CCSP problems with strongly convex functions. This part focuses on Sep-CCSP

problems with general (non-strongly convex) functions that can be directly be applied

to the problems of separable function minimization with linear constraints (3.23) and

some ERM problems with non-strongly convex functions.

Considering the explicit forms of non-strongly convex Sep-CCSP problems for

various applications, we focus on the following Sep-CCSP form with separable primal

variables

min
x∈RDx

max
y∈RDy

{
L(x,y) =

q

∑
j=1

(
f (x j)+

〈
y,A jx j

〉)
−g∗(y)

}
, (3.45)

where x j ∈RDx j , A j ∈RDy×Dx j for j = 1, . . . ,q, and ∑
q
j=1 Dx j =Dx. We do not enforce

any strong convexity assumptions to f j(·) and g(·).
Now we elaborate the novel method Stochastic Parallel Block Coordinate Descent

(SP-BCD) method for solving general (non-strongly convex) Sep-CCSP form (3.45).

SP-BCD also incorporates stochastic coordinate descent, which is same as SPDC and

AdaSPDC. The key difference is how to choose step size for primal and dual opti-

mization. Concretely, due to the separable structure of f (x), in each iteration we can

randomly select m blocks of variables whose indices are denoted as St , and then we

only update these selected blocks, given the current y = yt , in the following way. If

j ∈ St then

xt+1
j = argminx j

f j(x j)+
〈
yt ,A jx j

〉
+

1
2
‖x j−xt

j‖2
1/τττ j

, (3.46)

otherwise, we just keep xt+1
j = xt

j. In the blockwise update, we add a proximal term to

penalize the deviation from last update xt
j, i.e.,

1
2
‖x j−xt

j‖2
1/τττ j

=
1
2
(x j−xt

j)
T diag(1/τττ j)(xi−xt

j), (3.47)

where 1/τττ j is a shorthand notation for the inverse of each element of the vector τττ j ∈
RDx j , the diagonal matrix diag(1/τττ j) is applied for scaling each dimension of x j, and

each τττ j is a subvector of τττ =
[
τττT

1 , . . . ,τττ
T
J
]T . We configure the each dimension of τττ as

τd =
1

∑
Dy
j=1 |A jd|

, d = 1,2, . . . ,Dx. (3.48)

Employing the same intuition as AdaSPDC, τd in SP-BCD can be interpreted as the

coupling strength between the d-th dimension of the primal variable x and dual variable

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 64

y, measured by the L1 norm of the vector A:,d (i.e., the d-th column of matrix A).

Smaller coupling strength allows us to use smaller proximal penalty (i.e., larger step

size) for updating the current primal variable block without caring too much about its

influence on dual variable, and vice versa.

Then for those selected block variables, we use extrapolation technique given in

Eq.(3.31) (Chambolle and Pock (2011), Chapter 2.2 in Nesterov (2004)) to yield an

intermediate variable xt+1 as follows,

xt+1
j =

xt+1
j +θ

(
xt+1

j −xt
j

)
if j ∈ St

xt
j otherwise,

(3.49)

where θ = m/q to account for there being only m blocks out of q selected in each

iteration.

Assuming g∗(y) is not separable, we update the dual variable as a whole. A similar

proximal term is added with the diagonal matrix diag(1/σσσt):

yt+1 = argminyg∗(y)−

〈
y,rt +

q
m ∑

j∈St

A j(xt+1
j −xt

j)

〉
+

1
2
‖y−yt‖2

1/σσσt , (3.50)

where rt = ∑
J
j=1 A jxt

j. We configure the dual step size σσσt adaptively for each iteration,

σ
t
k =

m
q
· 1

∑ j∈St |Ak j|
, k = 1,2, . . . ,Dy. (3.51)

This configuration adaptively accounts for the coupling strength between the dual vari-

able and the chosen primal variable blocks in St through measuring the structure of the

matrix A. Later we show that the usage of the proposed adaptive proximal penalty

for both primal and dual update contributes to significantly improve the convergence

performance for many machine learning applications.

Another crucial component of the dual update is the construction of the term rt +
q
m ∑ j∈St A j(xt+1

j − xt
j), which is inspired by a recently proposed fast incremental gra-

dient method for non-strongly convex functions, SAGA (Defazio et al., 2014). We use

the combination of the cached sum of all A jxt
j, i.e., rt , and the newly updated sample

average 1
m ∑ j∈St A j(xt+1

j −xt
j) to obtain a variance reduced estimation of E[r], which is

essentially the spirit of SAGA. We refer the reader to see (Defazio et al., 2014, Section

3) for more details. After the dual update, rt is updated to rt+1 using,

rt+1 = rt + ∑
j∈St

A j

(
xt+1

j −xt
j

)
. (3.52)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 65

Algorithm 3.2 SP-BCD for Sep-CCSP problem (3.45)
1: Input: number of blocks picked in each iteration m, the configuration of parameter

θ = m/q, τττ and σσσt as given in Eq. (3.48) and (3.51).

2: Initialize: x0, y0, x0 = x0, r0 = ∑
q
j=1 A jx0

j

3: for t = 1,2, . . . ,T do
4: Randomly pick a subset with size m from all the q coordinate blocks, denoted

as St .

5: for each block in parallel do
6: Update each primal variable block using Eq.(3.46).

7: Extrapolate primal variable block using Eq.(3.49).

8: end for
9: Update dual variable using Eq.(3.50)

10: Update rt+1 using Eq.(3.52)

11: end for

The whole procedure for solving Sep-CCSP problem (3.45) using SP-BCD is sum-

marized in Algorithm 3.2.

There are several notable characteristics of our algorithm:

• This algorithm is amenable to parallelism, which is suitable for modern comput-

ing clusters. Our method possesses one of key advantages of stochastic parallel

coordinate descent method (Richtárik and Takáč, 2012): providing the flexibility

that in each iteration the number of selected blocks can be optimized completely

in parallel according to available number of machines or computational cores.

This could make use of all the computational availability as effectively as possi-

ble.

• Each subproblem involves the evaluation of a scaled version of the proximal

operators of fi(xi) and g∗(y). And for many applications, the evaluation of prox-

imal operators is well-studied and easy to implement in terms of computation

complexity and scalability; see Parikh and Boyd (2013) for more details.

• The related non-stochastic primal-dual algorithms (Chambolle and Pock, 2011;

He and Monteiro, 2014; Chambolle and Pock, 2014) need evaluation of the norm

of A. If the problem size is huge, the evaluation of the norm might be cumber-

some and highly time-consuming. The parameter configuration in our algorithm

shares the same spirit with Pock and Chambolle (2011), which avoids the norm

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 66

estimation, but still leads to a O(1/T) convergence rate. When all the blocks are

chosen in each iteration, SP-BCD is equivalent to (Pock and Chambolle, 2011).

• Compared with recent work by Zhang and Xiao (2015), we do not assume any

smoothness or strong convexity of the function f (x) and g∗(y). This property en-

ables the applicability of our method to a wider-range of applications, as demon-

strated in Section 3.4.2.

• For the optimization problem with linear constraints, although an augmented

Lagrangian framework, such as Alternating Direction Method of Multipliers

(ADMM, Boyd et al. (2011)), is capable of implementing an effective opti-

mization in many problems, the selection of penalty parameter has a dramatic

influence on its performance. The current rule of selecting the penalty parameter

relies on various heuristics or exhaustive search, and no theoretical justifications

exist. Our method SP-BCD avoids this issue.

3.4.1 Convergence Analysis for SP-BCD

For the convergence analysis of SP-BCD, we employ the following gap for any saddle

point (x,y),

G(x′,y′), max
y

L(x′,y)−min
x

L(x,y′), (3.53)

This gap was also used and discussed by Chambolle and Pock (2011), which could

practically measure the optimality of the algorithm for CCSP problems. Since we do

not assume any strong convexity of function f (x) or g∗(y), there might exist multiple

saddle points. Thus, it is not easy to measure the optimality by the distance to the

saddle points as AdaSPDC. The following theorem establishes the convergence of SP-

BCD. Note that since we do not assume strong convexity of functions f j(·) and g∗(·),
we cannot establish the linear convergence rate owned by SPDC and AdaSPDC, only

sublinear convergence rate can be achieved.

Theorem 2. Given that all f j(x j) and g∗(y) are convex functions, and we set θ = m/q,

proximal parameters for primal and dual update as Eq.(3.48) and (3.51), respectively.

Then for any saddle point (x,y), the expected gap decays as the following rate:

E

[
L

(
T

∑
t=1

xt/T,y

)
−L

(
x,

T

∑
t=1

yt/T

)]
≤ 1

T
M(0),

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 67

where

M(0) =
q
m
· 1

2
‖x0−x‖2

1/τττ
+

1
2
‖y0−y‖2

1/σσσ0−
〈
y0−y,A

(
x0−x

)〉
+

q−m
m

(
f (x0)+

〈
y,Ax0〉− (f (x)+ 〈y,Ax〉)

)
.

We can easily observe that the convergence rate of this gap imply the same pri-

mal/dual rate by transforming CCSP problem into pure primal/dual problem. The

proof of the above theorem is presented in Appendix C.

Remark. For the parameter configuration of SP-BCD when θ = m/q, the key point

for obtaining the convergence of SP-BCD is that we select one particular configuration

of τττ and σσσt to guarantee the positive semidefiniteness of the following matrix,

P =

[
diag(1/τττSt) −AT

St

−ASt
m
q diag(1/σσσt)

]
� 0. (3.54)

Under the chosen parameter configuration of τττ and σσσt in SP-BCD, we can guarantee

matrix P is diagonally dominant, directly leading positive semidefiniteness. However,

the parameter configuration to make P � 0 is not unique. We find that other config-

urations are also valid, for instance, for each block j, τττ j =
(
1/‖A j‖

)
I and σσσ = m

q σI,

where σ = 1/max{‖A j‖}q
j=1. Different parameter configuration might provide some

influence on the performance of the algorithm. We leave the comparison between them

and further theoretical analysis as future work.

Implementation Details

For the selection of randomized blocks, before each pass (epoch) over all the blocks,

we suggest firstly randomly permuting all the q blocks and then selecting m blocks

cyclically. This way of selecting random blocks follows the custom of general stochas-

tic gradient descent methods, and provides slightly better performance, in our experi-

mental experience.

For some applications, such as Lasso in Section 3.4.2.2, each block variable could

be a scalar. Then in each iteration, we just randomly select m coordinates to update.

3.4.2 Applications

In this section, we provide various examples of separable convex-concave saddle point

problem from the area of machine learning applications. For each application, experi-

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 68

ments are conducted to compare our method SP-BCD with other competitive methods

for that application. Note that in each application, we select different methods to com-

pare with that have already shown strong performance in that particular scenario.

We run all the experiments in Matlab R2014a sequentially for demonstration with one

Scientific Linux PC (quad-core) Intel(R) Core i5-2400 3.1 GHz CPU and 7.7 GB

RAM. The parameters for each method for each different application will be speci-

fied below. Each experiment is run 10 times and the average results are reported to

show statistical consistency. We present all the experimental results we have done for

each application.

3.4.2.1 Matrix Decomposition

We consider a generic matrix decomposition problem with the form,

min
{X j}q

j=1

ψ1(X1)+ γ2ψ2(X2)+ · · ·+ γqψq(Xq)

s.t.
q

∑
j=1

X j = B,
(3.55)

where the matrix variables X1, . . . ,Xq ∈ Rs×n, B ∈ Rs×n is a given data matrix and

γi > 0 are trade-off parameters.

The goal of this optimization problem is to decompose a given matrix B into a sum

of individual components X j such that each of them is “simple” and “meaningful” in

a sense described by its corresponding objective term ψ(·). This type of problems

exhibit a variety of applications and have attracted substantial interests, see some of

recent works for more details (Wright et al., 2009; Candès et al., 2011; Chandrasekaran

et al., 2012a,b; Ma et al., 2013).

We list several choices of the objective terms, which are commonly used to enforce

certain property for the matrix decomposition depending on different tasks.

• Squared Frobenius norm.

ψ(X) =
1
2
‖X‖2

F =
1
2 ∑

i j
X2

i j. (3.56)

This penalty is a classic least squares measure and enforces the entries of X to

be small enough.

• Entrywise l1 norm.

ψ(X) = ‖X‖1 = ∑
i j
|Xi j|. (3.57)

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 69

As a convex surrogate for the number of nonzero entries in X, this norm encour-

ages X to be sparse.

• Sum-column-norm.

ψ(X) = ∑
j
‖X: j‖2, (3.58)

where X: j is the jth column of X. This term enforces column sparsity in X, i.e.,

choosing X with many zero columns. There is a corresponding row version.

• Elementwise constraints. In some cases, we would like to constrain some or all

entries to lie in some set, i.e., Xi j ∈ Ci j. For example, enforcing certain entries of

the matrix to known values. This can be used to, e.g., require X to be diagonal (if

X is square) or to follow some fixed sparsity pattern. Another example is the box

constraint Xi j ∈ [li j,ui j]; a common special case is to require to be non-negative.

• Nuclear norm.

ψ(X) = ‖X‖∗, (3.59)

which encourages X to be low rank (as a convex surrogate for non-convex rank

function). It can seen as the l1 norm of the singular values of the matrix X.

In the following, we introduce one particular interesting matrix decomposition prob-

lem, Robust Principal Component Analysis (RPCA) in computer vision (Wright et al.,

2009; Candès et al., 2011), which involves some choices of the objective terms above.

We then compare our method SP-BCD with other state-of-the-art approaches on this

application.

Robust Principal Component Analysis (RPCA) is a variant of PCA to obtain a

low rank and sparse decomposition of an observed data matrix B corrupted by noise

(Wright et al., 2009; Candès et al., 2011), which could help to handle outliers existing

in datasets. RPCA aims to solve the following optimization problem,

min
X1,X2,X3

1
2
‖X1‖2

F + γ2‖X2‖1 + γ3‖X3‖∗ (3.60)

s.t. B = X1 +X2 +X3, (3.61)

where B ∈ Rs×n, X1 is a noise matrix, X2 is a sparse matrix, X3 is a low rank matrix,

and ‖ · ‖∗ is the nuclear norm of a matrix.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 70

We generate the observation matrix B in the same way as (Parikh and Boyd, 2014)3;

chose B = L+S+V , where L is a rank r matrix, S is a sparse matrix, and V is a dense

noise matrix. The matrix L is generated as L = L1L2 with L1 ∈ Rs×r and L2 ∈ Rr×n,

where entries in both L1 and L2 were sampled independently from N (0,1). The matrix

S was generated with density 0.05, with each non-zero entry sampled uniformly from

[−10,10]. Each entry in V was sampled from N (0,10−3). We set s = 2000, n = 5000

and the rank is r = 100.

The regularization parameters are set as γ2 = 0.15‖B‖∞ and γ3 = 0.15‖B‖. Note

that RPCA problem with this matrix size is non-trivial since there are in total 3×107

variables and 107 equality constraints to handle.

As a concrete example of separable function minimization with linear constraints,

RPCA can be easily reformulated into Sep-CCSP form (3.45). The parameter config-

uration for SP-BCD with each different number of blocks m chosen from the possible

q = 3 in each iteration can be obtained using Algorithm 3.2: (1) m = 1, (θ,τ,σt) =

(1/3,1,1); (2) m = 2, (θ,τ,σt) = (2/3,1,1/2); (3) m = 3, (θ,τ,σt) = (1,1,1/3).

Our method is compared with (1) ADMM implemented by Parikh and Boyd (2014);

(2) Gauss-Seidel ADMM (GSADMM) (Hong and Luo, 2012), which solves the prob-

lem (3.24) in a cyclic block coordinate manner. However, GSADMM with multiple

blocks is not well understood and there is no theory guarantee, and GSADMM has to

be implemented sequentially and cannot be parallel; (3) PDCP (Chambolle and Pock,

2011), for which the recommended parameter configuration can be easily obtained

as (θ,τ,σ) =
(
1,1/
√

3,1/
√

3
)
; (4) Parallel Direction Method of Multipliers (PDMM,

Wang et al. (2014)) with suggested parameters (see Eq.(8) in Wang et al. (2014)) and

different numbers of blocks, m = {1,2,3}. For each of the three compared meth-

ods (ADMM, GSADMM and PDMM), we run extensive experiments using different

penalty parameter ρ, and report the results for best performing ρ, despite the fact that

knowledge of which ρ is optimal is not available to the algorithms a priori.

Figure 3.7 depicts the performance of the all the methods on evolution of the objec-

tive (in Eq.(3.60)) and the residual (i.e., the deviation from satisfied constraints mea-

sured by ‖X1 +X2 +X3−B‖F) w.r.t. number of passes and consumed time. For the

objective function, all the compared methods can quickly achieve the consensus value

in 20 passes. The key difference of algorithm performance between them focuses on

how fast they satisfy the constraint for Eq.(3.61). Our method SP-BCD with m = 2

is the fastest, achieving almost the same performance with GASDMM and fully par-

3http://stanford.edu/˜boyd/papers/prox_algs/matrix_decomp.html

http://stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 71

allelizable, while GSADMM can only be run sequentially. More details of algorithm

performance are provided in Table 3.3.

0 5 10 15 20

10
8

Number of Passes

O
bj

ec
tiv

e

ADMM
GSADMM
PDCP
PDMM1
PDMM2
PDMM3
SP−BCD1
SP−BCD2
SP−BCD3

0 10 20 30 40 50 60
10

−4

10
−2

10
0

10
2

10
4

Number of Passes

R
es

id
ua

l

0 200 400 600 800
10

−4

10
−2

10
0

10
2

10
4

Time (s)

R
es

id
ua

l

Figure 3.7: RPCA problem: comparison of our method and ADMM, GSADMM, PDCP and

PDMM with m = {1,2,3}. The first column shows the evolution of objective function w.r.t. num-

ber of passes. The left and right panel of the second column depict the residual evolution

(measured by ‖X1 +X2 +X3−B‖F) as function of number of passes and consumed time, re-

spectively. All the compared methods can quickly achieve the consensus objective value in 20

passes. The main difference is how fast they satisfy the constraint. SP-BCD with m = 2 is the

fastest, achieving almost the same performance with GASDMM and fully parallelizable, while

GSADMM can only be run sequentially.

Note that our method is also capable of handling two types of popular problems in

economics, exchange and allocation (Parikh and Boyd, 2013, Chap 5.3 and 5.4), both

of which share the similar structure with robust PCA.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 72

Table 3.3: RPCA problem: performance of all compared methods. All the methods achieve the

same objective value. Our method SP-BCD with K = 2 achieves nearly the same performance

with GSADMM and can be fully parallelized, while GSADMM can only be run sequentially.,

Although PDMM2 obtains the lowest residual (measured by Frobenus Norm of deviation of sat-

isfied constraints), it spends much longer time 750s, compared with 492s for SP-BCD2. When

we run the SP-BCD2 with the same amount of time as that of PDMM2, SP-BCD2 could achieve

Frobenus Norm of residual as 2.36×10−4, which shows better performance than PDMM2.

Methods Iteration Time (s) Frobenus Norm of residual (10−4) Objective (108)

ADMM 149 2191 9.71 1.924

GSADMM 23 448 8.69 1.924

PDCP 59 911 7.80 1.924

PDMM1 125 927 9.92 1.924

PDMM2 73 750 4.55 1.924

PDMM3 67 834 8.56 1.924

SP-BCD1 104 784 7.63 1.924

SP-BCD2 48 492 6.17 1.924

SP-BCD3 42 553 6.72 1.924

• Exchange:

min
{x j}q

j=1

q

∑
j=1

f j
(
x j
)
,

s.t.
q

∑
j=1

x j = 0.
(3.62)

• Allocation:

min
{x j}q

j=1

q

∑
j=1

f j
(
x j
)

s.t. x j ≥ 0, j = 1, . . . ,q
q

∑
j=1

x j = b,

(3.63)

where f j(·) represents the cost function for subsystem (or agent) j, the components of

the vectors x j represent quantities of commodities that exchanged or allocated among

q agents or subsystems. In exchange problem (3.62), the linear constraint ∑
q
j=1 x j =

0 represents the equilibrium constraint that each commodity clears, or balances. In

allocation problem (3.63), the constraint ∑
q
j=1 x j = b simply means that the sum of all

the allocated commodities should be equivalent to the total quantity b.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 73

Table 3.4: Lasso problem: performance of all compared methods. Problem size is described

as: number of data samples N, number of features D, and d is number of non-zero entries

in xtrue. For smaller sized problems, ADMM and SP-BCD are the fastest, achieving nearly

the same performance in term of consumed time. For larger sized problems, SP-BCD is the

fastest, since ADMM needs to solve a large-scale linear system in each iteration, involving a

high computational burden.

Methods N,D,d Time (s) Number of passes ‖x∗−xtrue‖2 Objective

ISTA
1000,5000,100 2.27 100 13.401 111.405

5000,20000,500 45.67 100 25.552 448.351

FISTA
1000,5000,100 1.16 56 13.115 111.320

5000,20000,500 19.00 49 25.207 448.271

ADMM
1000,5000,100 0.69 63 13.088 111.318

5000,20000,500 19.83 51 25.154 448.258

PDCP
1000,5000,100 1.40 100 13.097 111.318

5000,20000,500 26.80 100 25.157 448.263

SP-BCD
1000,5000,100 0.70 30 13.088 111.318

5000,20000,500 13.32 30 25.153 448.263

3.4.2.2 Lasso

Lasso is an important l1 regularized linear regression Hastie et al. (2009), which in-

volves solving the following optimization problem,

min
x

1
2
‖Ax−b‖2

2 +λ‖x‖1, (3.64)

where λ is a regularization parameter, A ∈ RN×D is an observed feature matrix and

each row of A is one data point. In typical applications, there are many more features

than number of training examples, i.e., N < D. Lasso has been widely studied and

applied, particularly in the analysis of biological data, where only a small fraction of

a large number of possible factors are actually predictive of some outcome of interest

(Hastie et al., 2009, Chap 18.4).

To put Lasso problem into Sep-CCSP form, we dualize the first quadratic loss

function in Eq.(3.64), naturally yielding

min
x∈RD

max
y∈RN

λ‖x‖1 + 〈y,Ax〉−
N

∑
i=1

(
1
2

y2
i +biyi

)
(3.65)

Since ‖x‖1 is totally separable and non-strongly convex, we can apply our SP-BCD

method to the above saddle point problem, i.e., in each iteration we randomly select

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 74

m coordinates of primal variable x to update. For the dual update, the corresponding

problem has a simple close-formed solution that can be updated directly.

Due to the vast literature on optimization methods for the Lasso problem, we only

choose several representative methods to compare with our method (There are several

recently developed methods using pure coordinate decent, such as Richtárik and Takáč

(2012, 2014), which are expected to have good convergence performance. We did

not inclue here.) (1) ISTA (Iterative Shrinkage Thresholding Algorithm); (2) FISTA

(Fast ISTA, Beck and Teboulle (2009)); (3) ADMM (Boyd et al., 2011, Chap 6.4),

note that the formulation of ADMM for Lasso problem is different from Eq.(3.65).

ADMM splits the loss function and regularization term using two separable variables,

which needs to solve a linear system in each iteration. When the problem size is

very large, the time complexity is high and even computationally inacceptable. (4)

PDCP (Chambolle and Pock, 2011), which needs estimation of norm of matrix A.

We generate the data in the same way as (Boyd et al., 2011, Chap 11.1): each

element of matrix A, ai j ∼ N (0,1) and then normalize the columns to have unit l2
norm; a “true” value xtrue ∈ Rn has d nonzeros entries, each of which is sampled

from N (0,1); the output b = Axtrue + ε, where ε ∼ N
(
0,10−3I

)
. The regularization

parameter is set as λ = 0.1‖AT b‖∞. The implementation of ISTA, FISTA and ADMM

is based on code by Parikh and Boyd (2013) 4. The proximal parameter for these

methods are set as 1. For our method SP-BCD, in each iteration we randomly choose

m = 100 coordinates to run the experiments.

Table 3.4 reports the performance of all these methods on two problems with dif-

ferent sizes and sparsity. Figure 3.8 depicts the objective evolution as a function of

number of passes and time for problem size: N = 5000,N = 20000 and number of

non-zero entries of xtrue, d = 500. We can observe that SP-BCD uses the least number

of passes and time to achieve same objective value with other methods. For smaller

sized problems, ADMM also performs very well. However, when the problem size

is rising, the computational burden from solving large linear systems becomes a se-

rious issue for ADMM. The issue of scalability also influences the performance of

PDCP since it needs the estimation of norm of matrix A. Our method SP-BCD is not

restricted heavily by a large problem size.

4http://web.stanford.edu/˜boyd/papers/prox_algs/lasso.html

http://web.stanford.edu/~boyd/papers/prox_algs/lasso.html

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 75

20 40 60 80 100
350

400

450

500

550

600

650

700

Number of Passes

O
bj

ec
tiv

e

ISTA
FISTA
ADMM
PDCP
SP−BCD (m=100)

0 10 20 30 40
350

400

450

500

550

600

650

700

Time (s)

O
bj

ec
tiv

e

ISTA
FISTA
ADMM
PDCP
SP−BCD (m=100)

Figure 3.8: Lasso: comparison of convergence performance w.r.t. the number of passes and

time. Problem size: m = 5000,n = 20000 and number of nonzero entries of xtrue, d = 500. SP-

BCD uses least number of passes and time to achieve same objective value with other methods.

ADMM needs to solve a large-scale linear system in each iteration. PDCP needs estimation of

the norm of the large matrix A. Both of them are hindered by the issue of scalability. Our method

SP-BCD avoids this issue.

3.4.2.3 Feature Selection with Group Lasso

As an extension of Lasso, group Lasso is an structured regularized regression model for

high-dimensional data, which can help to select key explanatory factors in a grouped

manner (Yuan and Lin, 2006).

Given a training dataset consisting of N i.i.d. observations, {(ai,zi)} , where ai ∈
RD is a D-dimensional vector and zi ∈ {−1,1} for the binary classification problem

or zi ∈ R for the regression problem. Suppose that these d features are divided into

G disjoint groups with dg, the number in g-th group. Hence, we can rewrite a =

[aT
1 ,a

T
2 , . . . ,a

T
G]

T . When dg = 1 for all groups, the data do not form a group in the

feature space. Then group Lasso tries to find the optimal regression coefficient vector

x ∈ RD by solving the following optimization problem,

min
x

λ

G

∑
g=1

√
dg‖xg‖2 +

1
N

N

∑
i=1

gi(aT
i x,zi), (3.66)

where x is partitioned according to feature grouping, i.e., x = [xT
1 ,x

T
2 , . . . ,x

T
G]

T , the

loss function gi(aT
i x,zi) should be convex, such as the squared loss, logit loss, or hinge

loss. The regularization term is the sum of groupwise L2-norm ‖xg‖2, and the trade-off

constant λ is to balance between the loss and the regularization term. The value dg

accounts for the varying group sizes.

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 76

λ Objective w.r.t. number of passes Objective w.r.t. time

10−4

10
0

10
1

10
2

10
3

10
40.12

0.14

0.16

0.18

0.2

Number of Passes

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

0 5 10 15 20
0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

10−5

10
0

10
1

10
2

10
3

10
4

0.1

0.12

0.14

0.16

0.18

0.2

Number of Passes

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

0 5 10 15 20

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

10−6

10
0

10
1

10
2

10
3

10
40.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Passes

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

0 5 10 15 20
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

OSGA
FOBOS
FISTA
PDCP
SP−BCD (m=3)

Figure 3.9: Group Lasso on MEMset dataset with different regularization parameter λ: com-

parison of our method SP-BCD (m= 3 blocks are chosen in each iteration) with OSGA, FOBOS,

FISTA and PDCP. In all these test cases, SP-BCD demonstrates its superiority on both the num-

ber of passes and the consumed time. When the regularization is strong with large λ = 10−4, all

the methods tend to converge fast, but SP-BCD is the fastest one. PDCP performs poorly in the

first hundreds or thousands of passes, since it only uses a constant step size 1/‖A‖. Compared

with PDCP, our method considers the structure of matrix A and scales each dimension of primal

and dual updates, which can achieve better empirical performance.

We use hinge loss function gi(aT
i x,zi)=max(0,1−ziaT

i x) for demonstration, which

is a non-smooth loss function. By employing the conjugate dual transformation of

hinge loss,

gi(aT
i x,zi) = sup

yi∈[0,1]
〈−yiziai,x〉+ yi, (3.67)

we can easily transform the group Lasso problem into the following saddle point prob-

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 77

0 1 2 3 4
0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

m=1
m=3
m=9
m=21
m=63

0 1 2 3 4

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

m=1
m=3
m=9
m=21
m=63

0 1 2 3 4
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

O
bj

ec
tiv

e

m=1
m=3
m=9
m=21
m=63

(a) λ = 10−4 (b) λ = 10−5 (c) λ = 10−6

Figure 3.10: SP-BCD for Group Lasso on MEMset dataset with different regularization param-

eter λ and different number chosen blocks m. The effect of m: a smaller number of blocks yields

faster convergence, which shows the advantage of the flexible stochastic update of our method

compared with Pock and Chambolle (2011).

lem,

min
x

max
y∈[0,1]N

λ

G

∑
g=1

√
dg‖xg‖2 +

1
N
〈−

N

∑
i=1

yiziai,x〉+
1
N

N

∑
i=1

yi.

Note that g∗(y) = 1
N ∑

N
i=1 yi in not strongly convex, and then SP-BCD can be applied

since it does not assume strong convexity. This reformulation of group Lasso makes

both the dual and primal update extremely simple and efficient, both of which have

closed-formed solution and can be easily derived.

In order to evaluate performance of our method for the group Lasso problem, we

apply it to a real-world dataset for splice site detection, which plays an important role in

gene finding. The MEMset Donor dataset5 is used for the evaluation, which is widely

used to demonstrate the advantages of the group Lasso models Meier et al. (2008);

Roth and Fischer (2008). It contains a training set of 8,415 true and 179,438 false

human donor sites. An additional test set consists of 4,208 true and 89,717 false donor

site. From the original training set, we construct a balanced training set with 8,415 true

and 8,415 false donar sites. Group lasso on this data with up to 2nd order interactions

and up to 4 order interactions has been analyzed by Meier et al. (2008) and Roth and

Fischer (2008), respectively. As shown in Roth and Fischer (2008), there is not much

improvement using higher order interactions. Therefore we only consider all three-

way and lower order interactions. This forms G = 63 groups or D = 2604-dimensional

feature space with {7,21,35} groups of {4,16,64}-dimensional coordinate block, re-

spectively.

We compare our method SP-BCD with several recent developed competitive opti-

mization methods for the non-smooth regularized problem: (1) OSGA (Optimal Sub-

5http://genes.mit.edu/burgelab/maxent/ssdata/

http://genes.mit.edu/ burgelab/maxent/ssdata/

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 78

Gradient Algorithm, Neumaier (2014)), A fast subgradient algorithm with optimal

complexity; (2) FOBOS (FOrward-Backward Splitting, Duchi and Singer (2009)); (3)

FISTA (Beck and Teboulle, 2009), in which we use smoothing technique with make it

applicable with chosen smoothing parameter ε = 5×10−4; (4) PDCP (Chambolle and

Pock, 2011).

In this application, we evaluate the performance of these methods under differ-

ent configurations of the regularization parameter λ = {10−4,10−5,10−6}. Figure 3.9

compares our method SP-BCD (with m = 3) with other methods in terms of the evo-

lution of the objective function in Eq.(3.66) both w.r.t. the number of passes and w.r.t

time. We can observe that nearly all the compared methods could achieve sublinear

convergence rate. In all these test cases, SP-BCD demonstrates its superiority on both

number of passes and consumed time. When the regularization is strong with large

λ = 10−4, all the methods tend to converge fast, but SP-BCD is the fastest one. PDCP

performs poorly in first hundreds or thousands of passes, since it only applies the con-

stant step size 1/‖A‖. Compared with PDCP, our method considers the structure of

matrix A and scales each dimension of primal and dual updates, which can achieve

better empirical performance.

In order to investigate the effect of the number of chosen blocks for SP-BCD, we

implement it using different m values, m = {1,3,9,21,63}. The results are shown

in Figure 3.10. In all the tested cases, a smaller number of blocks yields faster con-

vergence, which shows the advantage of the flexible stochastic update of our method

compared with Pock and Chambolle (2011). The approach of Pock and Chambolle

(2011) is equivalent to SP-BCD when all blocks are chosen in each iteration, m = 63.

3.5 Discussion and Future Directions

This chapter introduces two novel methods for Sep-CCSP problems, AdaSPDC and

SP-BCD. Now we provide a comprehensive comparison between the two propose

methods for Sep-CCSP problems, which could guide its usage in practice and enlighten

future work.

1. Both AdaSPDC and SP-BCD are based on a primal-dual framework for CCSP

problems, which alternatively optimizes primal and dual variable through prox-

imal algorithms. Both of them are stochastic coordinate descent methods de-

signed for large-scale CCSP problems. Compared with Stochastic Gradient

Chapter 3. Stochastic Methods for Separable Saddle Point Problems 79

Descent (SGD, a pure stochastic primal method) and Stochastic Dual Coordi-

nate Descent (SDCA, a pure stochastic dual method), the primal-dual framework

plays an “intermediate” role. This “intermediate” approach transforms the orig-

inal problems, such as separable function minimization with linear constraints

and regularized ERM, into the Sep-CCSP form, leading to simple and easy up-

dates for the subproblems in each iteration and showing superior theoretical and

empirical evidence through our algorithm design in AdaSDPC and SP-BCD.

2. The key difference between AdaSPDC and SP-BCD focuses on their assump-

tions that whether the separable functions f (x) and g∗(y) are strongly convex

or not. AdaSPDC assumes that both f (x) and g(y) are strongly convex, par-

ticularly applicable to regularized ERM with Lipschitz smooth loss functions

(since the conjugate dual of Lipschitz smooth loss functions are strongly con-

vex) and strongly convex regularization term. Under the strong convexity as-

sumption, AdaSPDC can achieve a sharper linear convergence rate that SPDC,

as shown both theoretically and empirically. On the other hand, SP-BCD only

assume f (x) and g ∗ (y) are general convex functions, which are suitable for a

wider range of applications, such as separable function minimization with linear

constraints, and regularized ERM with non-smooth loss functions and/or gen-

eral non-strongly convex regularization terms. Since without strong convexity

assumption, SP-BCD can only achieve a sublinear convergence rate.

3. Both AdaSPDC and SP-BCD exploit the structure of connection matrix K be-

tween the primal and dual variable, and propose to use adaptive step sizes ac-

cording to the randomly selected blocks in each iteration. However, due to dif-

ferent assumptions, AdaSPDC and SP-BCD use different stepsize rules.

As mentioned in Section 3.3.1 and 3.4.1, the parameter configuration of stepsizes

in the proximal algorithms are not unique, and there exists other valid parameter con-

figuration to induce the algorithm convergence. Thus, an immediate future research

direction is to investigate other valid parameter configuration for both AdaSPDC and

SP-BCD and compare their performance both theoretically and empirically.

Since Sep-CCSP has a wide range of applications in machine learning, computer

vision and economics, etc, it is worthy of exploring more interesting applications in

these areas besides the considered experiments in this chapter.

Chapter 4

Dynamics-based Methods for

Large-scale Bayesian Sampling

Using Monte Carlo sampling for Bayesian posterior inference is a common approach

in machine learning. Markov Chain Monte Carlo (MCMC) is a general and powerful

framework, which allows sampling from a large class of target distributions, and which

scales well with the dimensionality of the sample space. However, when faced with ex-

tremely large-scale data, traditional MCMC methods involve expensive computational

cost due to its evaluation over the entire dataset in each iteration.

To handle the scalability issue in Bayesian sampling methods, this chapter explores

series of dynamics-based sampling methods based on stochastic gradient. All of these

methods employ the spirit of integrating local information, i.e., only touching a small

mini-batch of data items for every sample we generate. In this setting, existing tech-

niques rely on estimating the variance or covariance of the subsampling error, and as-

sume constant variance. We propose a covariance-controlled adaptive Langevin ther-

mostat that can effectively dissipate parameter-dependent noise while maintaining a

desired target distribution. This method achieves a substantial speedup over popular

alternative schemes for large-scale machine learning applications.

This chapter is an extended work based on the following published paper, where

ZZ and SX initialized the idea and algorithm; SX contributed to proof of the theorem;

ZZ implemented all the experiments and analysis; BL and AJS provided insightful

suggestions for the paper.

Shang, X.*, Zhu, Z.*, Leimkuhler, B. and Storkey, A.J.(2015). Covariance-Controlled

Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling. In Advances in

Neural Information Processing Systems 28 (NIPS). (* indicates the equal contribution,

80

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 81

the order was decided by lot.)

4.1 Problem Settings

Bayesian analysis gives us a simple recipe for learning from data: given a set of un-

known parameters or latent variables θθθ ∈ RD that are of interest, we specify a prior

distribution p(θθθ) quantifying what we know about θθθ before observing any data. Then

we quantify how the observed data X = {xi}N
n=1 relates to θθθ by specifying a likelihood

function p(X|θθθ) = ∏
N
i=1 p(xi|θθθ). Finally, we apply Bayes’ rule to obtain the posterior

distribution

p(θθθ|X) = p(X|θθθ)p(θθθ)/Z, (4.1)

where Z is the normalization constant, Z =
∫

p(X|θθθ)p(θθθ)dθθθ. To simplify the notation,

we denote

π(θθθ), p(θθθ|X) = π̃(θθθ)/Z. (4.2)

The fundamental problem we wish to address in Bayesian inference involves find

the expectation of some function g(θθθ) with respect to the posterior distribution π(θθθ) =

p(θθθ|X),

E [g(θθθ)] =
∫

g(θθθ)π(θθθ)dθθθ, (4.3)

Generally, the expectation in Eq (4.3) is too complex to be evaluated exactly using

analytical techniques. The Monte Carlo sampling methods solve this issue by ob-

taining a set of samples θθθt (where t = 1, . . . ,T) drawn independently from π(θθθ) and

approximately evaluating the expectation by a finite sum

E [g(θθθ)]≈ 1
T

T

∑
i=1

g(θθθt). (4.4)

4.2 MCMC Methods

A general and powerful Monte Carlo sampling framework, called Markov Chain Monte

Carlo (MCMC), allows sampling from a large class of distributions and scales well

with dimensionality of the sample space. MCMC methods have their origins in physics

(Metropolis and Ulam, 1949), and it was only towards the end of the 1980s that they

started to have a significant impact in the field of statistics.

The MCMC methods involve continuously sampling from certain proposal distri-

bution q(θθθ|θθθt−1) depending on its current state θθθt−1, and so the sequence of samples

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 82

Algorithm 4.1 Metropolis-Hasting algorithm (MH)

1: Choose a starting state θθθ
(0).

2: for t = 0,1,2, . . . ,T −1 do
3: Sample θθθ

∗ ∼ q(θθθ|θθθt−1);

4: Computing the accepting ratio

ρt = min
(

1,
π̃(θθθ∗)q(θθθt |θθθ∗)
π̃(θθθt)q(θθθ∗|θθθt)

)
(4.5)

5: Generate ut ∼U(0,1), and accept or reject according to the following,

θθθt+1 =

θθθ
∗ if un ≤ ρt ,

θθθt otherwise.
(4.6)

6: end for

θθθ1,θθθ2, . . . forms a Markov chain. It is assumed that π̃(θθθ) can readily be evaluated for

any given value of θθθ although Z may be unknown. The proposal distribution itself

is chosen to be sufficiently simple that it is straightforward to draw samples from it

directly. At each iteration of the algorithm, we generate a candidate sample θθθ
∗ from

the proposal distribution and then accept the sample according to an appropriate cri-

terion. For more comprehensive details of MCMC methods, see the review books

and articles (Brooks et al., 2011; Robert and Casella, 2013; Neal, 1993). The generic

Metropolis-Hasting (MH) algorithm is summarized in Algorithm 4.1.

In the Metropolis-Hasting, it is flexible to choose the proposal distribution q(·).
However the choice has a dramatic effect on the algorithm performance. Traditional

MCMC methods often use some random walk proposal (e.g., Gaussian distribution),

which lead to highly correlated samples. High acceptance rates can be obtained by

proposing smaller transitions; however, it will require more time to make full traversals

of parameter space. In high dimensions, when D is large, the random walk becomes

inefficient, resulting in low rates of acceptance, poor mixing of the chain and highly

correlated samples. A consequence of this is a small effective sample size (ESS) from

the chain; see Robert and Casella (2013).

In the following, we introduce several dynamics-based sampling methods to allevi-

ate this issue with better proposal distributions. These methods use information from

the gradient of the log density to reduce the random walk effect, and the Metropolis

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 83

step to be a correction of the discretization error introduced by numerical integration

of the corresponding dynamical systems.

4.3 Dynamical MCMC

In this section, we will review several dynamics-based Monte Carlo methods, which

are faster than traditional MH approaches, largely because the dynamical methods

avoid the random walk behaviour inherent in simple forms of the MH methods.

The dynamical sampling methods originally derive from the “molecular dynamics”

approach (Alder and Wainwright, 1959), which was developed concurrently with the

MH algorithm as a means of simulating physical systems. These methods are widely

applicable to problems with continuous state variables, provided the gradient of the log

density can be calculated.

Dynamical sampling methods are based on a physical analogy. To facilitate this

analogy, we often write the distribution π(θθθ) into a canonical distribution form,

π(θ) = (1/Z)exp(−βU(θθθ)), (4.7)

where β = 1/(kBT) is a positive constant, kB is the Boltzmann constant, and T is the

system temperature. In the context of Bayesian inference, we often let β be unity, i.e,

β = 1. Thus,

U(θθθ) =− log p(X|θθθ)− log p(θθθ) (4.8)

is referred as potential energy function.

The gradient of the potential energy for a physical system with respect to its con-

figuration coordinates defines the “force”,

f(θθθ) =−∇U(θθθ) (4.9)

that acts to change this configuration, via its effect on the system’s momentum. When

a physical system is in contact with a heat reservoir , it also experiences influences that

can be modelled as being random. These dynamical and stochastic effects together

result in the system visiting states with a frequency given by its canonical distribution.

Therefore, simulating the dynamics of such a physical system provides a way of sam-

pling from the canonical distribution. Dynamical simulation also allows one to observe

in detail how the system behaves as it visits states with this distribution.

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 84

4.3.1 Metropolis Adjusted Langevin Algorithm (MALA)

MALA is based on a Langevin diffusion process, with π(θθθ) as its stationary and limit-

ing distribution, defined by the stochastic differential equation (SDE)

dθθθ(t) = f(θθθ)dt +
√

2db(t), (4.10)

where f(θθθ) is often called as the drift term, b denotes a D-dimensional Brownian mo-

tion, and db(t) colloquially represents a vector of infinitesimal Wiener increments,

which is often informally written as N (0,dtI). Simulating the dynamics using a first-

order Euler discretization of the SDE above gives the proposal mechanism

θθθ
∗ = θθθt + f(θθθ)h+

√
2hN (0,I), (4.11)

where h is the integration step size. Convergence to the invariant distribution π(θθθ) is

no longer guaranteed for finite step size h due to the introduced first-order integration

error. A Metropolis acceptance probability after each integration step is utilized to

correct the integration error and thus guarantee the convergence to the invariant distri-

bution. Observing that discrete form of the SDE defines a proposal density

q(θθθ∗|θθθt) = N (θθθ∗|θθθt + f(θθθ)h,2hI) , (4.12)

then MALA accepts each sample with the probability min
(

1, π̃(θθθ∗)q(θθθt |θθθ∗)
π̃(θθθt)q(θθθ∗|θθθt)

)
.

We can observe that the drift term in the Brownian dynamics determines the direc-

tion for the proposal based on the gradient information. However, when the dimensions

in θθθ are highly correlated with widely different variances, the isotropic diffusion might

be inefficient to accommodate the variate with smallest variance. This issue can be

circumvented by employing a preconditioning matrix that applies Riemann Manifold

metric M (Girolami and Calderhead, 2011)

θθθ
∗ = θθθt +M f (θθθ)h+

√
2MhN (0,I), (4.13)

for more details of Riemann Manifold MALA, see Girolami and Calderhead (2011).

4.3.2 Hamiltonian Monte Carlo (HMC)

This subsection briefly describes the HMC methods (also known as Hybrid Monte

Carlo); for a detailed introduction and extensive review see Neal (2011). HMC intro-

duces an independent auxiliary variable p ∈ RD with density π(p) = N (p|0,M). The

joint density follows in a factorized form as

π(θθθ,p) = π(θθθ)π(p) = π(θθθ)N (p|0,M). (4.14)

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 85

The negative joint log probability is

H(θθθ,p) =U(θθθ)+
1
2

pT M−1p+ const. (4.15)

This negative joint log-probability can be interpreted as a Hamiltonian (Duane et al.,

1987; Horowitz, 1991; Leimkuhler and Reich, 2004) in physical analogy, which de-

scribes the sum of a potential energy function U(θθθ) at the position θθθ, and a kinetic

energy 1
2pT M−1p. The auxiliary variable p can be interpreted as a momentum vari-

able and the covariance matrix M denotes a mass matrix.

The Hamiltonian has an nice property that the derivatives of H with respect to θθθ

and p are equivalent to the derivatives of θθθ and p with respect to a fictitious time t,

respectively. This can be described by the Hamilton’s equations

dθθθ

dt
=

dH
dp

= M−1p (4.16)

dp
dt

=−dH
dθθθ

=−∇U(θθθ). (4.17)

The solutions to the differential equations at every time t have three markable charac-

teristics:

• energy preservation, i.e. H (θθθ(t),p(t)) =H (θθθ(0),p(0)), and hence the joint den-

sity π(θθθ(t),p(t)) = π(θθθ(0),p(0));

• volume preservation dθθθ(t)dp(t) = dθθθ(0)dp(0), which implies that as the region

within the space of variables (θθθ,p) evolves under the Hamiltonian dynamcis, its

shape might change but its volume will not;

• time reversibility (Leimkuhler and Reich, 2004).

Using the first two characteristics of H, it follows that the Hamiltonian dynamics will

leave π(θθθ,p) invariant. Therefore, by integrating the dynamics over a finite time dura-

tion it is feasible to make large moves to the position θθθ in a systematic way that avoids

random walk behaviour.

However, in practical applications, we cannot solve the differential equations (4.16)

and (4.17 analytically, where certain numerical methods are employed. Leimkuhler

and Reich (2004) review a number of numerical integrators for Hamiltonian systems

which fully satisfy volume preservation and time reversibility, and approximately sat-

isfy total energy preservation with a given order of integration error. One popular

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 86

integrator is the leapfrog Duane et al. (1987), alternatively updating discrete-time ap-

proximations of θθθ and p,

p(t +h/2) = p(t)−h∇θθθU(θθθ(t))/2, (4.18)

θθθ(t +h) = θθθ(t)+hM−1p(t +h/2), (4.19)

p(t +h) = p(t +h/2)−h∇θθθU(θθθ(t +h))/2. (4.20)

We can investigate the properties of the leapfrog integrator as follows. Since the

Hamiltonian is separable, it is easy to observe that each complete leapfrog step (Eq

(4.18), (4.19) and (4.20)) is reversible by the negation of the step size h. Likewise as

the Jacobians of the transformations

(θθθ,p) 7→ (θθθ,p−h∇θθθU(θθθ)/2) (4.21)

(θθθ,p) 7→ (θθθ+hM−1p,p) (4.22)

have unit determinant then the volume is preserved. Using this integrator, the total

energy is only approximately preserved and then certain bias will be introduced into

the joint distribution, where a Metropolis accept-reject step is employed to correct

the bias. For a deterministic mapping (θθθ,p) 7→ (θθθ∗,p∗) obtained from a number of

leapfrog integration steps, the acceptance probability is

ρ = min(1,H(θθθ,p)−H(θθθ∗,p∗)) (4.23)

and owing to the reversibility of the dynamics the joint density and hence the marginals

π(θθθ) and π(p) are left invariant.

The overall HMC sampling from the invariant posterior density π(θθθ|X) can be

considered as a Gibbs sampler where the momentum p acts simply as an auxiliary

variable drawn from a symmetric density

pt+1|θθθt ∼ π(pt+1|θθθt) = π(pt+1) = N (pt+1|0,M), (4.24)

θθθt+1|pt+1 ∼ π(θθθt+1|pt+1), (4.25)

where samples of θθθt+1 from π(θθθt+1|pt+1) are obtained by running leapfrog integrator

from initial values pt+1 and θθθt+1 for a number of steps to give proposed moves θθθ
∗ and

p∗ and accepting or rejecting with probability min(1,exp(H(θθθt ,pt+1)−H(θθθ∗,p∗))).
This Gibbs sampling scheme produces an ergodic, time reversible Markov chain satis-

fying detailed balance whose stationary marginal density is π(θθθ).

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 87

In HMC, the choice of step size h and the number of leapfrog steps can be manually

tuned to make it satisfy certain accepting rate, or can be automatically tuned by “No-U-

Turn” technique (Homan and Gelman, 2014). Similar to Riemann Manifold MALA,

the mass matrix M can also be set based on Hamiltonian on a Riemann Manifold, see

Girolami and Calderhead (2011) for more details.

Interim Summary Both of the two dynamical sampling methods, MALA and HMC,

ultilize the gradient information of log density to explore the state space efficiently,

and apply Metropolis step to be a correction of the discretization error introduced by

numerical integration. However, in each iteration for generating one sample, we have

to evaluate the full log likelihood and its gradient over the entire data set. When faced

with large-scale data, the involved computation becomes dramatically expensive and

even intractable in certain cases. To handle this issue, inspired by stochastic gradient

descent (SGD) in optimization community, recent works explore several possibilities

for Bayesian posterior sampling with large-scale data sets, which will be reviewed and

discussed in the following section.

4.4 Stochastic Gradient Dynamical Sampling Methods

As mentioned before, though dynamical MCMC methods alleviate random walk be-

haviour, they are incapable of handling large-scale data due to intractable computa-

tion induced by the evaluation of full likelihood and its gradient over entire data set.

Stochastic gradient dynamical methods overcome this issue from two aspects:

• instead of evaluating the log likelihood in each iteration over entire data set, a

new random subset of X in each iteration is used to approximate it, i.e.,

log p(X|θθθ)≈ N
n

log p(Xr) =
N
n

n

∑
i=1

log p(xri|θθθ) , (4.26)

where Xr = {xri}
n
i=1 represents a random subset of X. Thus, the noisy potential

energy can be written as

Ũ(θθθ) =−N
n

n

∑
i=1

log p(xri|θθθ)− log p(θθθ) , (4.27)

Then, the stochastic force can be defined as

f̃(θθθ) =−∇Ũ(θθθ). (4.28)

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 88

We introduce a crucial assumption on the distribution of the noisy force, which

will be used for developing efficient sampling methods discussed later. Given

the observed data {xi}N
i=1 and the size of the random subset n is large enough

for the central limit theorem to hold, we can make following assumption that

the gradient noise follows a normal distribution with zero mean and covariance

ΣΣΣ(θθθ),

f̃(θθθ) =−∇U(θθθ)+N (0,ΣΣΣ(θθθ)). (4.29)

It is easily observed that the covariance of the stochastic gradient noise depends

on the size of subset and the current parameters. As the size of n increases, this

Gaussian approximation becomes more accurate.

• Another way of overcoming computational issue is to omit the Metropolis cor-

rection step since the calculation of accepting probability requires evaluating the

true potential energy, which cancels the benefits of using stochastic gradients.

Therefore, dynamical sampling methods based on stochastic gradient are a class of

approximate sampling methods, which trade accuracy with computation. They still

bring computational benefits and practical advantages, which will be shown later. Now

we review several stochastic gradient dynamical sampling methods.

In the following description for various stochastic gradient dynamical sampling

methods, we always assume the mass matrix (metric matrix) M = I for simplicity. We

leave how to select the metric matrix as future work.

4.4.1 Stochastic Gradient Langevin Dynamics (SGLD)

SGLD proposed by Welling and Teh (2011) is the first attempt of Bayesian sampling

with large-scale data based on stochastic gradient. SGLD generates samples by simu-

lating Brownian dynamics with stochastic gradient and annealed step sizes,

dθθθ = f̃(θθθ)dt +N (0,2dtI), (4.30)

where the stochastic force f̃(θθθ) is defined from Eq. (4.27) and (4.28) based on a random

subset of the entire data X. After discretization, the update has the form

θθθt+1 = θθθt +ht f̃(θθθ)+N (0,2htI), (4.31)

where the step sizes {ht}T−1
t=0 have to be annealed to guarantee the convergence to the

desired invariant distribution, i.e.,
∞

∑
t=0

ht = ∞,
∞

∑
t=0

h2
t < ∞. (4.32)

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 89

Intuitively, the first constraint ensures that parameters will reach the high probability

regions no matter how far away it was initialized to, while the second ensures that

the parameters will sample around the mode due to introduced variance by stochastic

gradient. Typically, step sizes ht = a(b + t)−γ are decayed polynomially with γ ∈
(0.5,1] and certain user-specified parameter a and b.

SGLD is a valid marriage between Brownian dynamics and stochastic gradient

descent in optimization community. However, since the step sizes are reduces to zero,

the mixing rate is reduced as well, and a large number of iterations are required to

obtain a good coverage of the state space.

4.4.2 Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

SGHMC (Chen et al., 2014) proposed to apply second-order Langevin dynamics with

a friction term that counteracts the effects of the noisy gradient approximation, main-

taining the desired target distribution as the invariant distribution. Another difference

of SGHMC from SGLD is that it allows fixed step size to produce faster mixing rate.

We now introduce this method.

Recalling that we assume the noisy gradient follows an approximate normal dis-

tribution with certain variance as shown in Eq. (4.29), larger size of the subsets will

induce more smaller variances. However, we want the subsets (mini batches of the

data) to be small to obtain sought-after computational gains. In a wide range of prac-

tical settings, simply considering a a mini batch size on the order of hundreds of data

points is sufficient for the central limit theorem to hold (Ahn et al., 2012).

For the Gaussian approximation of the gradient in a typical setting of numerical

integration with associated step size h, one has

h∇Ũ(θθθ) = h∇U(θθθ)+
√

h
√

hΣΣΣ(θθθ)N (0,I). (4.33)

If we know the noise model ΣΣΣ(θθθ) of the stochastic gradient, SGHMC simulates the

following SDE (modified from standard HMC dynamics expressed in Eq. (4.16) and

(4.17)) with associated h-discretization,

dθθθ = pdt,

dp =−∇U(θθθ)dt− 1
2

hΣΣΣ(θθθ)pdt +N (0,hΣΣΣ(θθθ)dt).
(4.34)

where the noise term N (0,hΣΣΣ(θθθ)dt) is introduced by the stochastic gradient noise, and

the “friction” term −1
2hΣΣΣ(θθθ)pdt prevents the states to run far away and helps decrease

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 90

the energy H(θθθ,p), and thus reducing the influence of the noise. This type of dynami-

cal system is commonly referred as second-order Langevin dynamics in physics (Wang

and Uhlenbeck, 1945). Note that the Brownian dynamics used in SGLD are first-order,

which are a limiting case of the second-order Langevin dynamics when the friction

term is large.

Chen et al. (2014) showed that π(θθθ,p) ∝ exp(−H(θθθ,p)) is the unique stationary

distribution of the dynamics in Eq. (4.34). However, in practice, we do not know

the true noise model ΣΣΣ(θθθ), instead, we have to rely on its estimate Σ̂ΣΣ(θθθ). SGHMC

introduces a user-specified friction term A such that AI � 1
2hΣ̂ΣΣ(θθθ) and consider the

following dynamics,

dθθθ = pdt,

dp =−∇U(θθθ)dt +N (0,hΣΣΣ(θθθ)dt)−Apdt +N (0,2(AI− 1
2

hΣ̂ΣΣ(θθθ))dt),
(4.35)

resulting in the Algorithm 4.2.

In Chen et al. (2014), the authors showed when the estimate of ΣΣΣ is exact, Σ̂ΣΣ(θθθ) =

ΣΣΣ(θθθ), the dynamics of Eq. (4.35) yield the stationary distribution π(θθθ,p)∝ exp(−H(θθθ,p)).
Thus, to guarantee the performance of SGHMC empirically, one has to consider two

aspects: one is to estimate the noise model ΣΣΣ(θθθ) as accurate as possible though dif-

ficult in practice; the other is to set the hyperparameter A to guarantee the positive

semidefiniteness of the matrix AI− 1
2hΣ̂ΣΣ(θθθ). One may attempt to use a large value of

the friction term A and/or a small step size h. However, too-large a friction would es-

sentially reduce SGHMC to SGLD, which is not desirable, as pointed out in Chen et al.

(2014), while extremely small step size would significantly impact the computational

efficiency.

4.4.3 Stochastic Gradient Nosé-Hoover Thermostat (SGNHT)

Recall that SGHMC suffers from inaccurate estimate of stochastic gradient noise model

ΣΣΣ(θθθ) and selection of friction of parameter A, SGNHT (Ding et al., 2014) attempted to

adaptively fit to the noise without explicit estimation, an idea originally coming from

the practice of sampling a canonical ensemble in statistical physics.

In statistical physics, a canonical ensemble represents the possible states of a sys-

tem in thermal equilibrium with a heat bath at fixed temperature Te. The probabil-

ity of the states in a canonical ensemble follows the canonical distribution π(θθθ,p) ∝

(−βH(θθθ,p)), where β = 1/(kBTe), kB is the Boltzmann constant. A critical charac-

teristic of the canonical ensemble is that the system temperature, defined as the mean

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 91

Algorithm 4.2 Stochastic Gradient HMC (SGHMC)

1: Input: h, A, estimate Σ̂ΣΣ(θθθ).

2: Initialize θθθ0, p0.

3: for t = 1,2, . . . do
4: Optionally, resample the momentum p as pt ∼N (0,I);
5: (θθθ(0),p(0)) = (θθθt ,pt);

6: Simulate the dynamics in Eq. (4.35) as follows:

7: for τ = 1,2, . . . ,m do
8: θθθ

(τ) = θθθ
(τ−1)+hp(τ−1)

9: p(τ) = p(τ−1)−h∇Ũ(θθθ(τ))−hAp(τ−1)+N (0,2h(AI− 1
2hΣ̂ΣΣ(θθθ)))

10: end for
11: (θθθt+1,pt+1) = (θθθ(m),p(m))

12: end for

kinetic energy, satisfies the following thermal equilibrium condition,

kBTe = E[pT p]/D, (4.36)

We can easily observe that all dynamics-based sampling methods approximate the

canonical ensemble to generate samples. In Bayesian statistics, D is the dimension

of the parameter of interest θθθ, and kBTe = 1 so that π(θθθ,p) ∝ (−H(θθθ,p)) which leaves

its marginal distribution as π(θθθ) ∝ exp(−U(θθθ)). As emphasized in Ding et al. (2014),

the dynamics that correctly simulate the canonical ensemble must maintain the thermal

equilibrium condition in Eq. (4.36).

We can easily verify that both of standard HMC and MALA using true gradi-

ent maintain the condition in Eq. (4.36). However, when using stochastic gradient

∇Ũ(θθθ), the dynamics of SGHMC might drift away from thermal equilibrium if ΣΣΣ(θθθ)

is poorly estimated. To adaptively control the mean kinetic energy, SGNHT adopts

the “thermostat” idea, which is widely used in molecular dynamics (Frenkel and Smit,

2001; Leimkuhler and Matthews, 2015). Concretely, SGNHT simulates the following

second-order Langevin dynamics with extended variable (with β = 1),

dθθθ = pdt ,

dp =−∇Ũ(θθθ)dt−ξpdt +N (0,2Adt)

dξ = µ−1 (pT p−D
)

dt ,

(4.37)

where the auxiliary variable ξ ∈ R is governed by a Nosé-Hoover device (Hoover,

1991; Nosé, 1984) via a negative feedback mechanism, i.e. when the instantaneous

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 92

Algorithm 4.3 Stochastic Gradient Nośe-Hoover Thermostat (SGNHT)
1: Input: h, A.

2: Initialize θθθ0, p0 ∼N (0,I), and ξ0 = A.

3: for t = 1,2, . . . do
4: pt = pt−1−∇Ũ(θθθt−1)h−ξt−1pt−1h+

√
2AhN (0,I);

5: θθθt = θθθt−1 +pth;

6: ξt = ξt−1 +(pT p/D−1)h;

7: end for

system temperature is below the target temperature, the “dynamical friction” ξ would

decrease allowing an increase of temperature, while ξ would increase when the tem-

perature is above the target. The parameter µ is a scaling factor, in practice, we set

it as µ = D to ensure good practical performance (Ding et al., 2014). We summarize

SGNHT in Algorithm 4.3.

A key assumption made by SGNHT is that the noise model of stochastic gradient

approximation in Eq. (4.29) has a constant covariance matrix, i.e., Σ(θθθ) = σ2I. There-

fore, with associated h-discretization, the dynamics in Eq. (4.37) could also be written

as
dθθθ = pdt ,

dp =−∇U(θθθ)dt +N (0,hσ
2dt)−ξpdt +N (0,2Adt)

dξ = µ−1 (pT p−D
)

dt .

(4.38)

Then the following proposition showed that the dynamics above has the stationary

invariant distribution as our desired target distribution.

Proposition 3. (See Jones and Leimkuhler (2011)) The SGNHT method (4.38) pre-

serves the modified canonical (stationary) distribution

π(θθθ,p,ξ) =
1
Z

exp(−H(θθθ,p))exp
(
−µ

2
(ξ− ξ̄)2

)
, (4.39)

where Z is the normalizing constant, H(θθθ,p) = pT p/2+U(θθθ) is the Hamiltonian, and

ξ̄ = A+
hσ2

2
. (4.40)

Proposition 3 tells us that the SGNHT method can adaptively dissipate excess noise

pumped into the system while maintaining the correct distribution. The variance of the

gradient noise, σ2, does not need to be known a priori. As long as σ2 is constant,

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 93

the auxiliary variable ξ will be able to automatically find its mean value (4.36) on the

fly. However, with a parameter-dependent ΣΣΣ(θθθ), the SGNHT method (4.38) would not

produce the required target distribution (4.39).

Ding et al. (2014) claimed that it is reasonable to assume the covariance matrix

ΣΣΣ(θθθ) is constant when the size of the dataset, N, is large, in which case the variance of

the posterior of θθθ is small. The magnitude of the posterior variance does not actually

relate to the constancy of the ΣΣΣ, however, in general ΣΣΣ is not constant. Simply assum-

ing the non-constancy of ΣΣΣ can have a significant impact on the performance of the

method (most notably the stability measured by the largest usable step size). There-

fore, it is essential to have an approach that can handle parameter-dependent noise.

In the following section we propose a covariance-controlled thermostat that can ef-

fectively dissipate parameter-dependent noise while maintaining the target stationary

distribution.

4.5 Covariance-Controlled Adaptive Langevin Thermo-

stat

As mentioned in the previous section, the SGNHT method can only dissipate noise

with a constant covariance matrix. When the covariance matrix becomes parameter-

dependent, in general a parameter-dependent covariance matrix does not imply the

required “thermal equilibrium”, i.e. the system cannot be expected to converge to the

desired invariant distribution (4.39), typically resulting in poor estimation of functions

of parameters of interest. In fact, in that case it is not clear whether or not there exists

an invariant distribution at all.

In order to construct a stochastic-dynamical system that preserves the canonical

distribution, we suggest adding a suitable damping (viscous) term to effectively dis-

sipate the parameter-dependent gradient noise. To this end, we propose the following

covariance-controlled adaptive Langevin (CCAdL) thermostat (with β = 1)

dθθθ = pdt ,

dp =−∇U(θθθ)dt +N (0,hΣΣΣ(θθθ)dt)− (h/2)ΣΣΣ(θθθ)pdt−ξpdt +N (0,2Adt) ,

dξ = µ−1 (pT p−D
)

dt .

(4.41)

Theorem 3. The CCAdL thermostat (4.41) preserves the modified Gibbs (stationary)

distribution

ρ(θθθ,p,ξ) =
1
Z

exp(−H(θθθ,p))exp
(
−µ

2
(ξ−A)2

)
. (4.42)

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 94

Proof. The Fokker-Planck equation corresponding to (4.41) is

∂tρ(θθθ,p,ξ) = −p ·∇θθθρ+∇U(θθθ) ·∇pρ

+
h
2

∇p · (Σ(θθθ)pρ)+ξ∇p · (pρ)−µ−1 (pT p−D
)

∇ξρ

+
h
2

∇p · (Σ(θθθ)∇pρ)+A∇p ·∇pρ

=p ·∇U(θθθ)ρ−∇U(θθθ) · (ρp)

+
h
2

∇p · (Σ(θθθ)pρ)+ξDρ−ξp ·p+
(
pT p−D

)
(ξ−A)ρ

− h
2

∇p · (Σ(θθθ)pρ)−ADρ+Ap · (−pρ)

=0.

Thus, the vanishing of the Fokker-Planck equation guarantees the proposed dynamics

has the desired stationary distribution.

The above proof needs some preliminary knowledge about Fokker-Planck equation

for SDEs, which we provide in Appendix A.

The incorporation of the parameter-dependent covariance matrix ΣΣΣ(θθθ) in (4.41)

is intended to offset the covariance matrix coming from the gradient approximation.

However, in practice, one does not know ΣΣΣ(θθθ) a priori. Thus instead one must estimate

ΣΣΣ(θθθ) during the simulation, a task which will be addressed in Section 4.5.1. This

procedure is related to the method used in the SGHMC in Eq. (4.35).

Although both CCAdL (4.41) and SGHMC (4.35) preserve their respective invari-

ant distributions, let us note several advantages of the former over the latter in practice:

(i) CCAdL and SGHMC both require estimation of the covariance matrix ΣΣΣ(θθθ) dur-

ing simulation, which can be costly in high dimension. In numerical experi-

ments, we have found that simply using the diagonal of the matrix, at signifi-

cantly reduced computational cost, works quite well in CCAdL. By contrast, it

is difficult to find a suitable value of the parameter A in SGHMC since one has to

make sure the matrix AI−hΣΣΣ(θθθ)/2 is positive semi-definite. One may attempt to

use a large value of the “effective friction” A and/or a small stepsize h. However,

too-large a friction would essentially reduce SGHMC to SGLD, which is not

desirable, as pointed out in Chen et al. (2014), while extremely small stepsize

would significantly impact the computational efficiency.

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 95

(ii) Estimation of the covariance matrix ΣΣΣ(θθθ) unavoidably introduces additional noise

in both CCAdL and SGHMC. Nonetheless, CCAdL can still effectively control

the system temperature (i.e. maintaining the correct distribution of the momenta)

due to the use of the stabilizing Nosé-Hoover control, while in SGHMC poor

estimation of the covariance matrix may lead to significant deviations of the sys-

tem temperature (as well as the distribution of the momentum), resulting in poor

sampling of the parameters of interest.

4.5.1 Covariance Estimation of Noisy Gradient

Under the assumption that the noise of the stochastic gradient follows a normal distri-

bution, we apply a similar method to that of Ahn et al. (2012) to estimate the covariance

matrix associated with the noisy gradient. If we let g(θθθ;x) = ∇θθθ logπ(x|θθθ) and assume

that the size of subset n is large enough for the central limit theorem to hold, we have

1
n

n

∑
i=1

g(θθθt ;xri)∼N
(
Ex[g(θθθt ;x)],

1
n

ΓΓΓt

)
, (4.43)

where ΓΓΓt = Cov[g(θθθt ;x)] is the covariance of the gradient at θθθt . Given that the noisy

(stochastic) gradient based on current subset ∇Ũ(θθθt)=−N
n ∑

n
i=1 g(θθθt ;xri)−∇ logπ(θθθt),

and the clean (full) gradient ∇U(θθθt)=−∑
N
i=1 g(θθθt ;xi)−∇ logπ(θθθt), we have Ex[∇Ũ(θθθt)]=

Ex[∇U(θθθt)], and thus

∇Ũ(θθθt) = ∇U(θθθt)+N
(

0,
N2

n
ΓΓΓt

)
, (4.44)

i.e. ΣΣΣ(θθθt) = N2ΓΓΓt/n. Assuming θθθt does not change dramatically over time, we use the

moving average update to estimate ΓΓΓt ,

Γ̂ΓΓt = (1−κt)Γ̂ΓΓt−1 +κtV(θθθt) , (4.45)

where κt = 1/t, and

V(θθθt) =
1

n−1

n

∑
i=1

(g(θθθt ;xri)− ḡ(θθθt))(g(θθθt ;xri)− ḡ(θθθt))
T (4.46)

is the empirical covariance of gradient. ḡ(θθθt) represents the mean gradient of the log

likelihood computed from a subset. As proved in Ahn et al. (2012), this estimator has a

convergence order of O(1/N). The selection of κt (i.e., a fixed value or changing value

w.r.t time) depends on different applications, which needs certain cross-validating pro-

cedure. Here we use κt = 1/t suggested by Ahn et al. (2012) and it works well in our

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 96

Algorithm 4.4 Covariance-Controlled Adaptive Langevin (CCAdL)

1: Input: h, A, {κt}∞
t=1.

2: Initialize θθθ0, p0, ΓΓΓ0, and ξ0 = A.

3: for t = 1,2, . . . , do
4: θθθt = θθθt−1 +pt−1h;

5: Estimate Γ̂ΓΓt using Eq. ((4.45));

6: pt = pt−1−∇Ũ(θθθt)h− h
2

N2

n Γ̂ΓΓtpt−1h−ξt−1pt−1h+
√

2AhN (0,I);
7: ξt = ξt−1 +

(
pT

t pt/D−1
)

h;

8: end for

experiments. We can observe that in a long run of the estimation, it might be asymp-

totically converging to a fixed value. We leave the issue of how to estimate an optimal

parameter-dependent covariance as future work.

As already mentioned, estimating the full covariance matrix is computationally

intractable in high dimension. However, we have found that employing a diagonal

approximation of the covariance matrix (i.e. only estimating the variance along each

dimension of the noisy gradient), works quite well in practice, as demonstrated in

Section 4.6.

The procedure of the CCAdL method is summarized in Algorithm 4.4, where we

simply used β= 1, and µ=D in order to be consistent with the original implementation

of SGNHT Ding et al. (2014).

Note that this is a simple, first-order (in terms of the stepsize) algorithm. A recent

article Leimkuhler and Shang (2015) has introduced higher order of accuracy schemes

which can improve accuracy, but our interest here is in the direct comparison of the

underlying machinery of SGHMC, SGNHT and CCAdL, so we avoid further modifi-

cations and enhancements related to timestepping at this stage.

In the following section, we compare the newly-established CCAdL method with

SGHMC and SGNHT on various machine learning tasks to demonstrate the benefits

of CCAdL in Bayesian sampling with a noisy gradient.

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 97

4.6 Numerical Experiments

4.6.1 Bayesian Inference for a Gaussian Distribution

We first compare the performance of the newly-established CCAdL method with SGHMC

and SGNHT for a simple task using synthetic data, i.e. Bayesian inference of both the

mean and variance of a one-dimensional normal distribution. We apply the same ex-

perimental setting as in Ding et al. (2014). We generated N = 100 samples from the

standard normal distribution N (0,1). We used the likelihood function of N (xi|µ,γ−1)

and assigned Normal-Gamma distribution as their prior distribution, i.e.

µ,γ∼N (µ|0,γ)Gam(γ|1,1). (4.47)

Then the corresponding posterior distribution is another Normal-Gamma distribution,

(µ,γ)|X∼N (µ|µN ,(κNγ)−1)Gam(γ|αN ,βN), (4.48)

with

µN =
Nx̄

N +1
, κN = 1+N , αN = 1+

N
2
, βN = 1+

N

∑
i=1

(xi− x̄)2

2
+

Nx̄2

2(1+N)
,

where x̄ = ∑
N
i=1 xi/N. The posterior marginals are

µ|X∼ T2 (µ|µN ,βN/(αNκN)) (4.49)

γ|X∼ Gam(γ|αN ,βN), (4.50)

where Tν(·) represents the Student t distribution with ν as its degree of freedom. For

more details of derivation of conjugate Bayesian analysis of the Gaussian distribution,

see Murphy (2007).

A random subset of size n = 10 was selected at each timestep to approximate the

full gradient, resulting in the following stochastic gradients,

∇µŨ = (N +1)µγ− γN
n

n

∑
i=1

xri , ∇γŨ = 1− N +1
2γ

+
µ2

2
+

N
2n

n

∑
i=1

(xri−µ)2 .

It can be seen that the variance of the stochastic gradient noise is no longer constant and

actually depends on the size of the subset, n, and the values of µ and γ in each iteration.

This directly violates the constant noise variance assumption of SGNHT Ding et al.

(2014), while CCAdL adjusts to the varying noise variance.

The marginal distributions of µ and γ obtained from various methods with different

combinations of h and A were compared and plotted in Figure 4.1, with Table 4.1

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 98

consisting of the corresponding root mean square error (RMSE) of the distribution

and autocorrelation time from 106 samples. The autocorrelation time is defined as

1+2∑
∞
s=1 ω(s) with ω(s) the autocorrelation at lag s (Neal, 1993).

h = 0.001,A = 1

−0.5 0 0.5
0

1

2

3

4

µ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

0.5 1 1.5
0

1

2

3

γ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

h = 0.001,A = 10

−0.5 0 0.5
0

1

2

3

4

µ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

0.5 1 1.5
0

1

2

3

γ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

h = 0.01,A = 1

−0.5 0 0.5
0

1

2

3

4

µ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

0.5 1 1.5
0

1

2

3

γ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

h = 0.01,A = 10

−0.5 0 0.5
0

1

2

3

4

µ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

0.5 1 1.5
0

1

2

3

γ

D
en

si
ty

True
SGHMC
SGNHT
CCAdL

Figure 4.1: Comparisons of marginal distribution (density) of µ (top row) and γ (bottom row)

with various values of h and A indicated in each column. The peak region is highlighted in the

inset.

In most of the cases, both SGNHT and CCAdL easily outperform the SGHMC

method possibly due to the presence of the Nosé-Hoover device, with SGHMC only

showing superiority with small values of h and large value of A, neither of which is

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 99

Table 4.1: Comparisons of (RMSE, Autocorrelation time) of (µ,γ) of various methods for

Bayesian inference of Gaussian mean and variance.

Methods h = 0.001,A = 1 h = 0.001,A = 10 h = 0.01,A = 1 h = 0.01,A = 10

SGHMC (0.0148,236.12) (0.0029,333.04) (0.0531,29.78) (0.0132,39.33)

SGNHT (0.0037,238.32) (0.0035,406.71) (0.0044,26.71) (0.0043,55.00)

CCAdL (0.0034,238.06) (0.0031,402.45) (0.0021,26.71) (0.0035,54.43)

desirable in practice as discussed in Section 4.5. Between SGNHT and the newly-

proposed CCAdL method, the latter achieves better performance in each of the cases

investigated, highlighting the importance of the covariance control with parameter-

dependent noise.

4.6.2 Large-scale Bayesian Logistic Regression

We then consider a Bayesian logistic regression model trained on the benchmark MNIST

dataset for binary classification of digits 7 and 9 using 12,214 training data points, with

a test set of size 2037. A 100-dimensional random projection of the original features

was used. We used the likelihood function

p
(
w|{xi,yi}N

i=1
)

∝

N

∏
i=1

1/
(
1+ exp(−yiwT xi)

)
, (4.51)

and the prior distribution

p(w) ∝ exp(−wT w/2), (4.52)

respectively. A subset of size n = 500 was used at each timestep. Since the dimen-

sionality of this problem is not that high, a full covariance estimation was used for

CCAdL.

We investigate the convergence speed of each method through measuring test log

likelihood using posterior mean against the number of passes over the entire dataset,

see Figure 4.2 (first column). CCAdL displays significant improvements over SGHMC

and SGNHT with different values of h and A: (1) CCAdL converges much faster than

the other two, which also indicates its faster mixing speed and shorter burn-in period;

(2) CCAdL shows robustness in different values of the “effective friction” A, with

SGHMC and SGNHT relying on a relative large value of A (especially the SGHMC

method) which is intended to dominate the gradient noise.

To compare the sample quality obtained from each method, Figure 4.2 (second col-

umn) plots the two-dimensional marginal posterior distribution in randomly-selected

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 100

dimensions of 2 and 5 based on 106 samples from each method after the burn-in pe-

riod (i.e. we start to collect samples when the test log likelihood stabilizes). The true

(reference) distribution was obtained by a sufficiently long run of standard HMC. The

step size was automatically tuned by No-U-Turn technique by Homan and Gelman

(2014). We implemented 10 runs of standard HMC and found there was no variation

between these runs, which guarantees its qualification as the true (reference) distri-

bution. Again, CCAdL shows much better performance than SGHMC and SGNHT.

Note that the SGHMC does not even fit in the region of the plot, and in fact it shows

significant deviation even in the estimation of the mean.

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 101

h = 0.2×10−4

0 200 400 600

−800

−700

−600

−500

−400

−300

Number of Passes

T
es

t L
og

 L
ik

el
ih

oo
d

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

0.03 0.035 0.04 0.045 0.05 0.055
−5

0

5

10

15

x 10
−3

w
2

w
5

True(HMC)
SGHMC
SGNHT
CCAdL

h = 0.5×10−4

0 100 200 300

−800

−700

−600

−500

−400

−300

Number of Passes

T
es

t L
og

 L
ik

el
ih

oo
d

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

0.03 0.035 0.04 0.045 0.05 0.055
−5

0

5

10

15

x 10
−3

w
2

w
5

True(HMC)
SGHMC
SGNHT
CCAdL

h = 1×10−4

0 100 200 300

−800

−700

−600

−500

−400

−300

Number of Passes

T
es

t L
og

 L
ik

el
ih

oo
d

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

0.03 0.035 0.04 0.045 0.05 0.055
−5

0

5

10

15

x 10
−3

w
2

w
5

True(HMC)
SGHMC
SGNHT
CCAdL

Figure 4.2: Comparisons of Bayesian Logistic Regression of various methods on the MNIST

dataset of digits 7 and 9 with various values of h and A: (first column) test log likelihood us-

ing posterior mean against number of passes over the entire dataset; (second column) two-

dimensional marginal posterior distribution in (randomly selected) dimensions 2 and 5 with

A = 10 fixed, based on 106 samples from each method after the burn-in period (i.e. we start

to collect samples when the test log likelihood stabilizes). Magenta circle is the true (refer-

ence) posterior mean obtained from standard HMC, and crosses represent the sample mean

computed from various methods. Ellipses represent iso-probability contours covering 95% prob-

ability mass. Note that the contour of SGHMC is well beyond the scale of figure and thus we do

not include it here.

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 102

4.6.3 Discriminative Restricted Boltzmann Machine (DRBM)

DRBM (Larochelle and Bengio, 2008) is a self-contained non-linear classifier, and

the gradient of its discriminative objective can be explicitly computed. Different from

traditional RBMs (Smolensky, 1986), DRBM adds an extra visible layer showing the

class label of the observed covariates, as shown in Figure 4.3.

Figure 4.3: Model illustration of Discriminative Restricted Boltzmann Machine (DRBM). {x,y}
is the pair of input data and its class label, −→y is the one-hot coding for the class label y, and z

represents the hidden variables. W is the weight matrix connecting the input and hidden layer,

while U connects the hidden and output layer. In this illustration, we ignore the bias vector for

each layer, see text for complete models details.

A DRBM with Nh hidden units is a parametric model to describe the joint distribu-

tion between the hidden layer z = (z1,z2, . . . ,zNh), the observed variables x ∈ RD, and

the class label y, which has the form,

p(y,x,z)∼ exp(−E(y,x,z)) , (4.53)

where the energy function

E(y,x,z) =−zT Wx−bT x− cT z−dT−→y − zT U−→y (4.54)

with parameters ΘΘΘ = (W,b,c,d,U) and the vector−→y is one-hot coding for class label,
−→y = (1y=i)

C
i=1 for C classes.

DRBM directly optimizes p(y|x) instead of the joint distribution p(y,x), since one

is ultimately only interested in correct classification,

L(X;ΘΘΘ) =−
N

∑
i=1

log p(yi|xi;ΘΘΘ), (4.55)

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 103

with the conditional distribution

p(y|x;ΘΘΘ) =
exp(dy)∏

N
j=1
(
1+ exp(c j +U jy +∑iWjixi)

)
∑y′ exp(dy′)∏

N
j=1
(
1+ exp(c j +U jy′+∑iWjixi)

) . (4.56)

Since this conditional distribution can be computed exactly, we can also evaluate its

gradient tractably,

∂ log p(yi|xi)

∂θ
= ∑

j
sigm

(
oy j(xi)

) ∂oy j(xi)

∂θ
−∑

j,y′
sigm

(
oy′ j(xi)

)
p(y′|xi)

∂oy′ j(xi)

∂θ
,

(4.57)

where the sigmoid function sigm(a) = 1/(1+exp(−a)), and o ji(x) = c j +∑k Wjkxk +

U jy. For more details of DRBM, we refer the readers to Larochelle and Bengio (2008)

for more details.

We assume the prior distribution over parameters ΘΘΘ are flat, and thus we can sam-

ple ΘΘΘ directly from the conditional distribution ∏
N
i=1 p(y|x;ΘΘΘ). We trained a DRBM

on different large-scale multi-class datasets from LIBSVM1 dataset collection, includ-

ing connect-4, letter, and SensIT Vehicle acoustic. The detailed information of these

datasets are presented in Table 4.2.

We selected the number of hidden units using cross-validation to achieve their best

results. Since the dimension of parameters, Nd, is relatively high, we only used diago-

nal covariance matrix estimation for CCAdL to significantly reduce the computational

cost, i.e. only estimating the variance along each dimension. The size of the subset was

chosen as 500–1000 to obtain a reasonable variance estimation. For each dataset, we

chose the first 20% of the total number of passes over the entire dataset as the burn-in

period, and collected the remaining samples for prediction.

Table 4.2: Datasets used in DRBM with corresponding parameter configurations.

Datasets training/test set classes features hidden units number of parameters D

connect-4 54,046/13,511 3 126 20 2603

letter 10,500/5,000 26 16 100 4326

acoustic 78,823/19,705 3 50 20 1083

The error rate computed by various methods on the test set using posterior mean

against number of passes over entire dataset was plotted in Figure 4.4. It can be ob-

served that SGHMC and SGNHT only work well with a large value of the effective

friction A, which corresponds to a strong random walk effect and thus slows down the

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 104

convergence. On the contrary, CCAdL works reliably (much better than the other two)

in a wide range of A, and more importantly in the large stepsize regime, which speeds

up the convergence rate in relation to the computational work performed. It can be

easily seen that the performance of SGHMC heavily relies on using a small value of h

and large value of A, which significantly limits its usefulness in practice.

50 100 150 200
0.27

0.28

0.29

0.3

0.31

0.32

0.33

Number of Passes

T
es

t E
rr

or

SGHMC, A=10
SGHMC, A=50
SGNHT, A=10
SGNHT, A=50
CCAdL, A=10
CCAdL, A=50

50 100 150 200
0.27

0.28

0.29

0.3

0.31

0.32

0.33

Number of Passes

T
es

t E
rr

or

SGHMC, A=10
SGHMC, A=50
SGNHT, A=10
SGNHT, A=50
CCAdL, A=10
CCAdL, A=50

50 100 150 200
0.27

0.28

0.29

0.3

0.31

0.32

0.33

Number of Passes

T
es

t E
rr

or

SGHMC, A=10
SGHMC, A=50
SGNHT, A=10
SGNHT, A=50
CCAdL, A=10
CCAdL, A=50

(1a) connect-4, h = 0.5×10−3 (1b) connect-4, h = 1×10−3 (1c) connect-4, h = 2×10−3

100 200 300 400

0.1

0.15

0.2

0.25

T
es

t E
rr

or

Number of Passes

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

100 200 300 400

0.1

0.15

0.2

0.25

T
es

t E
rr

or

Number of Passes

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

100 200 300 400

0.1

0.15

0.2

0.25

T
es

t E
rr

or

Number of Passes

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

(2a) letter, h = 1×10−3 (2b) letter, h = 2×10−3 (2c) letter, h = 5×10−3

50 100 150 200
0.25

0.3

0.35

0.4

Number of Passes

T
es

t E
rr

or

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

50 100 150 200
0.25

0.3

0.35

0.4

Number of Passes

T
es

t E
rr

or

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

50 100 150 200
0.25

0.3

0.35

0.4

Number of Passes

T
es

t E
rr

or

SGHMC, A=1
SGHMC, A=10
SGNHT, A=1
SGNHT, A=10
CCAdL, A=1
CCAdL, A=10

(3a) acoustic, h = 0.2×10−3 (3b) acoustic, h = 0.5×10−3 (3c) acoustic, h = 1×10−3

Figure 4.4: Comparisons of DRBM on datasets connect-4 (top row), letter (middle row), and

acoustic (bottom row) with various values of h and A indicated: test error rate of various methods

using posterior mean against number of passes over the entire dataset.

4.7 Conclusions and Future Work

In this chapter, we have provided a systematic analysis on dynamical sampling meth-

ods for Bayesian posterior inference. We pointed out the key challenge faced by

Bayesian inference in “Big Data” era, i.e., how to handle the computational issues

Chapter 4. Dynamics-based Methods for Large-scale Bayesian Sampling 105

within large-scale data. Several recent developed stochastic gradient methods are re-

viewed.

The fundamental issue arising in these stochastic gradient sampling methods is how

to deal with the noise introduced by stochastic gradient approximation. Particularly,

we proposed a novel Covariance-Controlled Adaptive Langevin (CCAdL) formulation

that can effectively dissipate parameter-dependent noise while maintaining a desirable

invariant distribution. CCAdL combines ideas of SGHMC and SGNHT from the lit-

erature, but achieves significant improvements over each of these methods in practice.

Our findings have been verified in large-scale machine learning applications. In par-

ticular, we have consistently observed that SGHMC relies on a small stepsize h and

large friction A, which significantly reduces its usefulness in practice as discussed.

The techniques presented in this article could be of use in the more general setting of

large-scale Bayesian sampling and optimization, which we leave for future work.

A naive first-order discretization method for SDEs has been applied for CCAdL

for fair comparison in this thesis. However, we point out that optimal design of split-

ting methods in ergodic SDE systems has been explored recently in the mathematics

community (Abdulle et al., 2015; Leimkuhler and Matthews, 2015; Leimkuhler et al.,

2015). Moreover, it has been shown Leimkuhler and Shang (2015) that a certain type

of symmetric splitting method for the Ad-Langevin/SGNHT method with a clean (full)

gradient inherits the superconvergence property (i.e. fourth order convergence to the

invariant distribution for configurational quantities) recently demonstrated in the set-

ting of Langevin dynamics (Leimkuhler and Matthews, 2013; Leimkuhler et al., 2015).

We leave further exploration of this direction in the context of noisy gradients for future

work.

Chapter 5

Conclusions

Employing the philosophy of integrating local information, we have developed several

novel approaches to solve three important tasks in machine learning: aggregating prob-

abilistic predictions, large-scale optimization and Bayesian posterior sampling. Now,

we summarize our contributions, and point out potential research directions.

5.1 Contributions

The key contributions, summarized by chapter, are as follows.

Chapter 2

• We introduced a class of Rényi divergence aggregators which interpolate be-

tween linear opinion pools and log opinion pools, and show that they are the

maximum entropy estimators for aggregation of beliefs potentially subject to

bias. We also demonstrate this relationship practically via simulated and real

problems. Particularly, we designed a real-world Kaggle-in-Class machine learn-

ing competition, ran the competition, and used the obtained competition results

to verify our theoretical findings.

• We discovered the theoretical connection between Rényi divergence aggrega-

tors and machine learning markets, i.e., Rényi divergence aggregators can be

directly implemented by machine learning markets with different isoelastic util-

ities. And we showed that the risk averseness of the isoelastic utility relates to

the Rényi divergence parameter that is used to control the assumed individual

106

Chapter 5. Conclusions 107

bias. This important connection unifies two streams of the research in aggregat-

ing beliefs, which also provides the possibility of implementing a general recipe

of aggregating probabilistic predictions in machine learning context through an

collaborative and incentivized market-based environment.

Chapter 3

• We introduced the Sep-CCSP problem, a general form covering a wide range of

machine learning models, including ERM and separable linear constrained opti-

mization. We analyzed the problem structure with large-scale data, and investi-

gated the possibilities of developing efficient algorithms for solving this type of

problems.

• We developed efficient stochastic block coordinate descent methods for large-

scale Sep-CCSP problems, where adaptive stepsizes are used to accelerate the

convergence and parallelization of separable block coordinates is possible. Par-

ticularly, we proposed scalable methods for large-scale Sep-CCSP with both

strongly convex and non-strongly convex functions.

– AdaSPDC proposed in Section 3.3 focuses on Sep-CCSP with strongly

convex functions. It extends the previous method SPDC in a non-trivial

way, where adaptive stepsizes are introduced to dramatically improve its

linear convergence rate. Various types of ERM problems have been tested

through extensive experiments to demonstrated its superior empirical per-

formance compared with other state-of-the-art methods.

– SP-BCD proposed in Section 3.4 handles Sep-CCSP with (general) non-

strongly convex functions, which extends its applicability to more gen-

eral problems, such as separable function minimization with linear con-

straints. We developed novel stepsize rules in SP-BCD to accommodate

non-strongly convex Sep-CCSP. SP-BCD owns a sublinear convergence

rate O(1/T), which is the best rate achieved for general convex functions.

We compared SP-BCD with other methods in different types of scenarios,

such as matrix decomposition, Lasso and group Lasso, etc.

Chapter 5. Conclusions 108

Chapter 4

• We provided a comprehensive review on the existing scalable dynamics-based

sampling methods relying on stochastic approximation techniques. We com-

pared these methods in a systematic way in terms of stepsizes, the variance of

noisy stochastic gradients, and preservation of canonical distribution. In partic-

ular, we pointed out the existing drawbacks in these sampling schemes, either

the ignorance of the variance introduced by stochastic gradient, or the improper

handling of the variance in practice.

• We proposed a covariance-controlled adaptive Langevin thermostat that can ef-

fectively dissipate parameter-dependent noise variance while maintaining a de-

sired target distribution. This novel proposal contains two important compo-

nents, correction term for noise variance, and Nosé-Hoover thermostat, both of

which contribute to maintain the system temperature, and thus allow larger step-

sizes and faster convergence compared with existing methods. This proposal also

brings a fresh message to the field of large-scale Bayesian posterior sampling,

i.e., it is beneficial of incorporating the introduced noise variance in dynamics-

based systems for efficient sampling.

5.2 Future Directions

Here, we discuss some preliminary investigations and potential future research direc-

tions aimed at extending some of our methods and ideas.

The Collaborative Mechanism for Crowdsourcing Prediction

In Chapter 2, we showed that Rényi divergence aggregators are successful in aggregat-

ing probabilistic predictions even with individual biases, In particular, these findings

are verified by Kaggle machine learning competition environments. Though there is

some power in providing aggregated prediction mechanisms as part of competition en-

vironments, there is the additional question of the competition mechanism itself. The

current competition mechanism has several weakness pointed out by Abernethy and

Frongillo (2011).

• Anti-collaborativeness. Due to the strong incentive to win, competitors rarely

share their models or techniques used. This is contrary to crowdsourcing projects,

Chapter 5. Conclusions 109

such as Wikipedia, where participants must build upon the work of others. Al-

though it is possible to implement aggregation by collecting all the competitors’

prediction after the competition (i.e., what we have done in the thesis), there is

ignorance of possibilities of collaboration between the competitors during the

competition.

• Misaligned incentives. The winner-take-all prize structure easily leads to a sit-

uation that only a few teams are actually competing, and potential new teams

never form since it is too difficult to catch up. This obvious discourages other

teams’ continuous contributions during the competitions.

• Precluding the use of proprietary methods. Most the machine learning compe-

titions require the final winners to reveal their methods, and then the potential

competitors trying to use non-open software or proprietary techniques will be

unwilling to compete. By participating in the competition, a user has to effec-

tively give away his intellectual property.

To overcome some of the issues above, Abernethy and Frongillo (2011) proposed a

general framework of collaborative learning mechanism for crowdsourcing predic-

tions. It is interesting to investigate the relationship between divergence-based (or other

distance-based) aggregators with this collaborative learning mechanism, which poten-

tially helps to simplify this mechanism and make it implementable in practice. Also,

in various machine learning scenarios, such as regression, classification and cluster-

ing, further developments and implementations under this general framework are also

worthy of considering to provide practical benefits.

A Unified Optimization Framework for Sep-CCSP

In Chapter 3, we developed efficient stochastic block coordinate descent methods for

large-scale Sep-CCSP with strongly convex and general non-strongly convex func-

tions, AdaSPDC and SP-BCD, respectively. Though derived from the same primal-

dual framework, there exists some differences in the updates to accommodate the dif-

ferent properties of the functions involved. Fortunately, we found that in both of the

two methods, a particular matrix (see Eq. (3.41) and (3.54)) has to be positive definite

to guarantee algorithm convergence. It is hopeful that, using the positive definiteness

constraint of a more unified matrix, we can construct a unified optimization framework

such that it can be flexibly applied for both strongly convex and general non-strongly

Chapter 5. Conclusions 110

convex functions. Additionally, the stepsizes configuration in both AdaSPDC and SP-

BCD is not unique, it is crucial to investigate possible configurations to compare their

theoretical and empirical performance in different applications.

Another potential direction is to investigate the exact benefits of parallelism in these

methods. Further, if implemented in a distributed manner, the communication cost will

become a non-negligible issue, where further exploration are need for communication

efficient optimization schemes.

Further Explorations for Dynamics-based Sampling

Dynamical systems with stochastic gradient provides a general framework for scalable

Bayesian sampling, where the smaller mini batch of data can be used for stochastic

approximation. Here we discuss some of its potential extensions.

• The variance introduced by noisy gradient plays a crucial role in the performance

of stochastic gradient methods. In our work, we tried to incorporate the estimated

variance of the noisy gradient into the Langevin dynamics. However, a bad esti-

mation of this variance will make the dynamics unstable, where smaller stepsizes

have to be used. Therefore, an accurate estimation of the variance is always of

need, which will not only be beneficial for large-scale Bayesian sampling, but

also for stochastic optimization. Another way of handling the noisy gradients is

to reduce the variance as much as possible, where the ideas from optimization

community are worthy of considering, such as control variate technique (Wang

et al., 2013) and semi-stochastic gradients (Johnson and Zhang, 2013; Konečnỳ

and Richtárik, 2013).

• A naive nonsymmetric splitting method has been applied for simulating the

Langevin dynamics for fair comparison with other methods. However, we note

that optimal design of splitting methods in ergodic SDE systems has been ex-

plored recently in the mathematics community (Abdulle et al., 2015; Leimkuhler

and Matthews, 2015; Leimkuhler et al., 2015). Moreover, it has been shown (Leimkuh-

ler and Shang, 2015) that a certain type of symmetric splitting method for the

Ad-Langevin/SGNHT method with a clean (full) gradient inherits the supercon-

vergence property (i.e. fourth order convergence to the invariant distribution

for configurational quantities) recently demonstrated in the setting of Langevin

dynamics. It might be beneficial to apply other splitting methods for dynamics-

Chapter 5. Conclusions 111

based sampling methods, and investigate their convergence performance (Chen

and Carin, 2015; LeCun and Hinton, 2015).

• Langevin dynamics also provides a theoretical foundation for some stochastic

optimization methods, heavily used for deep learning models (Bengio, 2009;

LeCun and Hinton, 2015), such as SGD with momentum (Sutskever et al., 2013)

and Adam (Kingma and Ba, 2015). It is promising to extend CCAdL as a

stochastic optimizer to leverage the power of thermostat and variance estima-

tion for fast and stable optimization.

5.3 Concluding Remarks

Generally, when models are large or data is intensive to the extent that we cannot

handle, a natural way is to split them into parts and integrate the local information to

achieve the big goal. The key point is to properly handle the inconsistency or approx-

imation error introduced by the individual or local information. The three pieces of

works done in this thesis are devoted to solving this issue and providing some bene-

fits to distributed model aggregation, large-scale optimization and inference in several

machine learning scenarios. We hope that these new frameworks and schemes will be

valuable to future research in these fields.

Appendix A

Background on Fokker-Planck

Equation for SDEs

In the literature of statistical mechanics and molecular dynamics, the Fokker-Planck

equation is a partial differential equation that describes the time evolution of the prob-

ability density function of a particle z under the influence of a drag force u(z) and

random diffusion, as in Brownian motion and second-order Langevin dynamics. For

instance, consider the following SDE:

dz = u(z)dt +
√

2Q(z)db(t), (A.1)

where z ∈ RM, the drift term u(z) ∈ RM, Q ∈ RM×M, b denotes a D-dimensional

Brownian motion, and db(t) colloquially represents a vector of infinitesimal Wiener

increments. The probability distribution of z governed by Eq. (A.1) (we denote it

as ρt(z)), evolves as time under the following equation, referred as Fokker-Planck

equation,

∂tρt(z) =−
M

∑
i=1

∂zi [ui(z)ρt(z)]+
M

∑
i=1

M

∑
j=1

∂zi∂z j

[
Qi j(z)ρt(z)

]
. (A.2)

When the condition ∂tρt(z)= 0 is satisfied, it indicates that the dynamics has stationary

distribution as ρ(z).
In Theorem 3 of Chapter 4, the proposed dynamics by CCAdL can be reformulated

112

Appendix A. Background on Fokker-Planck Equation for SDEs 113

as the form in standard SDE as Eq. (A.1),

z =

θθθ

p
ξ

 , u(z) =

M−1p

−∇U(θθθ)− (h/2)ΣΣΣ(θθθ)p−ξp
µ−1 (pT M−1p−D

)

Q(z) =

0 0 0
0 AM+(h/2)Σ(θθθ)M 0
0 0 0

 . (A.3)

Then we can derive the Fokker-Planck equation for CCAdL as shown in Theorem 3

of Chapter 4, we can verify that with the distribution ∂tρ(θθθ,p,ξ) = 0, which indicates

that it is indeed the stationary distribution of the dynamics.

Appendix B

Convergence Proofs for AdaSPDC

We restate the AdaSPDC algorithm procedure in Chapter 3.3 in the following.

114

Appendix B. Convergence Proofs for AdaSPDC 115

AdaSPDC for Sep-CCSP problem (3.32)
1: Input: number of blocks picked in each iteration m and number of iterations T .

2: Initialize: x0, y0, x0 = x0, r0 = 1
N ∑

N
i=1 Aiy0

i

3: for t = 0,1, . . . ,T −1 do
4: Randomly pick a subset with size m from all the N coordinate blocks, denoted

as St .

5: According to the selected subset St , compute the adaptive parameter configura-

tion of σi, τt and θt as following,

σi =
1

2Ri

√
Nλ

mγ
, (B.1)

τ
t =

1
2Rt

max

√
mγ

Nλ
, (B.2)

θ
t = 1− 1

n/m+Rt
max
√

(N/m)/(λγ)
, (B.3)

where Ri =
√

µmax
(
AT

i Ai
)
, and Rt

max = max{Ri|i ∈ St}.
6: for each selected block in parallel do
7: Update the dual variable block,

yt+1
i = argminyi

φi(yi)−
〈
xt ,Aiyi

〉
+

1
2σi
‖yi−yt

i‖2
2, if i ∈ St . (B.4)

8: end for
9: Update primal variable,

xt+1 = argminx f (x)+

〈
x,rt +

1
m ∑

j∈St

A j(yt+1
j −yt

j)

〉
+

1
2τt ‖x−xt‖2

2. (B.5)

10: Extrapolate primal variable block,

xt+1 = xt+1 +θ
t(xt+1−xt), (B.6)

11: Update the auxiliary variable r,

rt+1 = rt +
1
N ∑

j∈St

A j

(
yt+1

j −yt
j

)
. (B.7)

12: end for

Appendix B. Convergence Proofs for AdaSPDC 116

Before presenting the proof of Theorem 1, we firstly provide the following lemma

and its proof, which characterizes positive definiteness of an important matrix used in

the proof of Theorem 1.

Lemma 1. Given any matrix K ∈ Rd×m, we partition the matrix K into J column

blocks, K j ∈ Rd×m j , j = 1, . . . ,J, and then ∑
J
j=1 m j = m. We then define two diag-

onal matrices, U = uI ∈ Rd×d , and V = diag(v1Im1,v2Im2, . . . ,vJImJ) ∈ Rm×m and

let V j = v jIm j . And denote R j = ‖K j‖2 =

√
λmax

(
KT

j K j

)
, where ‖ · ‖2 is the spec-

tral norm and λmax(·) is the maximum singular value of a matrix. And let Rmax =

max
{

R j| j = 1, . . . ,J
}

. Now we consider the following parameter configuration, for

any positive constant c > 0,

v j =
c

R j
, j = 1, . . . ,J (B.8)

u =
1

cJRmax
. (B.9)

Under the above parameter configuration, the following matrix is positive semi-definite,

P =

[
U−1 −K
−KT V−1

]
� 0. (B.10)

Proof. Firstly consider each separable column block K j, then

‖U
1
2 K jV

1
2
j ‖

2
2 ≤

(
‖U

1
2‖2‖K j‖2‖V

1
2
j ‖2

)2

=

(
1√

cJRmax
R j

√
c

R j

)2

≤ 1
J
. (B.11)

For any x ∈ Rd , y j ∈ Rm j , we consider

−2
〈
x,K jy j

〉
=−2

〈
U−

1
2 x,U

1
2 K jV

1
2
j V−

1
2

j y j

〉
. (B.12)

Applying the Cauchy-Schwarz inequality and the fact that 2ab ≤ ha2 + b2/h for any

a,b and h > 0, we obtain,

−2
〈
x,K jy j

〉
≥−2‖U−

1
2 x‖2‖U

1
2 K jV

1
2
j V−

1
2

j y j‖2 (B.13)

≥−
(

1
h

〈
x,U−1x

〉
+h‖U

1
2 K jV

1
2
j ‖

2
2

〈
y j,V−1

j y j

〉)
(B.14)

In view of the inequality (B.11), it is obvious that there exists certain ε > 0 such that

the following equality holds,

(J+ ε)(1+ ε)‖U
1
2 K jV

1
2
j ‖

2
2 = 1. (B.15)

Appendix B. Convergence Proofs for AdaSPDC 117

Thanks to this equality, now we set h = J + ε, and the inequality (B.14) can be further

simplified,

−2
〈
x,K jy j

〉
≥−

 1
J+ ε

〈
x,U−1x

〉
+

(J+ ε)‖U 1
2 K jV

1
2
j ‖2

2

(J+ ε)(1+ ε)‖U 1
2 K jV

1
2
j ‖2

2

〈
y j,V−1

j y j

〉
(B.16)

=−
(

1
J+ ε

〈
x,U−1x

〉
+

1
1+ ε

〈
y j,V−1

j y j

〉)
(B.17)

Let y = (y1, . . . ,yJ) ∈ Rm, and now we consider for any non-zero (xT ,yT)T ∈ Rd+m,

the following inner product can be expanded,

(xT ,yT)P(xT ,yT)T =
〈
x,U−1x

〉
+

J

∑
j=1

〈
y j,V−1

j y j

〉
−2

J

∑
j=1

〈
x,K jy j

〉
. (B.18)

Inserting the inequality (B.17) into the above equation, we obtain,

(xT ,yT)P(xT ,yT)T ≥
〈
x,U−1x

〉
+

J

∑
j=1

〈
y j,V−1

j y j

〉
(B.19)

−
J

∑
j=1

(
1

J+ ε

〈
x,U−1x

〉
+

1
1+ ε

〈
y j,V−1

j y j

〉)
(B.20)

=
ε

J+ ε

〈
x,U−1x

〉
+

ε

1+ ε

〈
y j,V−1

j y j

〉
≥ 0, (B.21)

which guarantees the positive semi-definiteness of the matrix P.

Now we are ready to prove the following theorem, which appears as Theorem 1 in

Chapter 3.3:

Theorem 1 in Chapter 3.3: Assume that each φ∗i (·) is γ-strongly convex, and g(·)
is λ-strongly convex, and given the parameter configuration in Eq. (B.1), (B.2) and

(B.3), then after T iterations in Algorithm 3.1, the algorithm achieves the following

convergence performance(
1

2τT +λ

)
E
[
‖xT −x?‖2

2
]
+E

[
‖yT −y?‖2

ννν

]
≤

(
T

∏
t=1

θ
t

)((
1

2τ0 +λ

)
‖x0−x?‖2

2 +‖y0−y?‖2
ννν′

)
, (B.22)

where (x?,y?) is the optimal saddle point, νi =
1/(4σi)+γ

m , ν′i =
1/(2σi)+γ

m , and ‖yT −
y?‖2

ννν = ∑
N
i=1 νi‖yT

i −y?i ‖2
2.

Appendix B. Convergence Proofs for AdaSPDC 118

Proof. First, we analyze the value of the dual variable y after t-th update in Algorithm

1. For any i ∈ {1,2, . . . ,N}, let ỹi be the value of yt+1
i if i ∈ St , i.e.,

ỹi = argminyi
φ
∗
i (yi)−

〈
xt ,Aiyi

〉
+

1
2σi
‖yi−yt

i‖2
2 (B.23)

Since φ∗(·) is γ-strongly convex, thus the function to be minimized above is (1/σi+γ)-

strongly convex. Then we have,

φ
∗
i (y

?
i)−

〈
xt ,Aiy?i

〉
+

1
2σi
‖y?i −yt

i‖2
2 ≥ φ

∗
i (ỹi)−

〈
xt ,Aiỹi

〉
+

1
2σi
‖ỹi−yt

i‖2
2

+

(
1
σi

+ γ

)
‖ỹi−y?i ‖2

2
2

(B.24)

Since the (x?,y?) is the saddle point, we can obtain following inequality,

φ
∗
i (ỹi)−〈x?,Aiỹi〉 ≥ φ

∗
i (y

?
i)−〈x?,Aiy?i 〉 (B.25)

Adding the two inequalities together, we have

‖yt
i−y?i ‖2

2
2σi

≥
(

1
2σi

+
γ

2

)
‖ỹi−y?i ‖2

2+
1

2σi
‖ỹi−yt

i‖2
2+
〈
x?−xt ,Ai (ỹi−y?i)

〉
(B.26)

In our algorithm, an index set St is randomly chosen. For every specific index i,

the event i ∈ St happens with probability m/N. If i ∈ St , then yt+1
i is updated to the

value ỹt
i. Otherwise, yt+1

i is kept to be its old value yt
i. Let ξt be the random event that

contains the set of all random variable before round t,

ξt = {S1,S2, . . . ,St}, (B.27)

and then we have

Eξt

[
‖yt+1

i −y?i ‖2
2
]
=

m
N
‖ỹi−y?i ‖2

2 +
N−m

N
‖yt

i−y?i ‖2
2

Eξt

[
‖yt+1

i −yt
i‖2

2
]
=

m
N
‖ỹi−yt

i‖2
2

Eξt

[
yt+1

i
]
=

m
N

ỹi +
N−m

N
yt

i,

where Eξt [·] denotes the conditional expectation E[·|ξt] for simplicity.

As a consequence, we can insert the representations of ‖ỹi− y?i ‖2
2, ‖ỹi− yt

i‖2
2 and

ỹi in terms of the above expectations into the inequality (B.26),(
N

2mσi
+

N−m
2m

γ

)
‖yt

i−y?i ‖2
2 ≥

(
N

2mσi
+

N
2m

γ

)
Eξt

[
‖yt+1

i −y?i ‖2
2
]

+
N

2mσi
Eξt

[
‖yt+1

i −yt
i‖2

2
]

+

〈
x?−xt ,Ai

(
yt

i−y?i +
N
m
Eξt

[
yt+1

i −yt
i
])〉

(B.28)

Appendix B. Convergence Proofs for AdaSPDC 119

Then we add the above inequality from i = 1,2, . . . ,N, and divide both sides by N, and

obtain

‖yt−y?‖2
µµµ ≥ Eξt

[
‖yt+1−y?‖2

µµµ′

]
+

1
2m

Eξt

[
‖yt+1−yt‖2

σσσ

]
+Eξt

[〈
x?−xt ,ut−u?+

1
m ∑

j∈St

A j

(
yt+1

j −yt
j

)〉]
, (B.29)

where µi =
1

2mσi
+ N−m

2mN γ, µ′i =
1

2mσi
+ γ

2m , u? = 1
N ∑

N
i=1 Aiy?i , and ut = 1

N ∑
N
i=1 Aiyt

i. In

the crossing term between primal and dual variable, we use the fact that ∑
N
i=1 Ai(yt+1

i −
yt

i) = ∑ j∈St A j(yt+1
j −yt

j) since only the blocks in index set St are chosen and updated

in t-th update.

Now we characterize the t-th update of primal variable x. Following the same

derivation for dual variable and using the assumption that g(·) is λ-strongly convex,

we can easily obtain

1
2τt ‖x

t−x?‖2
2 ≥

(
1

2τt +λ

)
‖xt+1−x?‖2

2 +
1

2τt ‖x
t+1−xt‖2

2

+

〈
xt+1−xt ,ut−u?+

1
m ∑

j∈St

A j

(
yt+1

j −yt
j

)〉
. (B.30)

Taking expectation over both sides of the above inequality and adding it to the the

inequality (B.29), then we have

1
2τt ‖x

t−x?‖2
2 +‖yt−y?‖2

µµµ ≥
(

1
2τt +λ

)
Eξt

[
‖xt+1−x?‖2

2
]
+Eξt

[
‖yt+1−y?‖2

µµµ′

]
+

1
2τt Eξt

[
‖xt+1−xt‖2

2
]
+

1
2m

Eξt

[
‖yt+1−yt‖2

σσσ

]
+Eξt

[〈
xt+1−xt−θ

t (xt−xt−1) ,A(1
N
(yt−y?)+

1
m
(yt+1−yt)

)〉]
, (B.31)

where the matrix A = [A1,A2, . . . ,An].

Now we focus on the most crucial part of the proof: bounding the last term of

R.H.S. of the above inequality (B.31). Firstly we rearrange this crossing term as fol-

lows, 〈
xt+1−xt−θ

t (xt−xt−1) ,A(1
N
(yt−y?)+

1
m
(yt+1−yt)

)〉
=

1
N

〈
xt+1−xt ,A

(
yt+1−yt)〉− θt

N

〈
xt−xt−1,A

(
yt−y?

)〉
+

N−m
mN

〈
xt+1−xt ,A

(
yt+1−yt)〉− θt

m

〈
xt−xt−1,A

(
yt+1−yt)〉 . (B.32)

Appendix B. Convergence Proofs for AdaSPDC 120

Given the parameter configuration in Eq (B.2) and (B.1), we consider the following

symmetric matrix,

P =

 m
2τt I −ASt

−AT
St

1
2diag(σσσSt)

 (B.33)

Applying the Lemma 1, we can guarantee the positive semi-definiteness of the matrix

P, which naturally leads the following inequality,

m
4τt ‖x

t+1−xt‖2
2 + ∑

i∈St

1
4σi
‖yt+1

i −yt
i‖2

2 ≥

〈
xt+1−xt , ∑

i∈St

Ai
(
yt+1

i −yt
i
)〉

(B.34)

Similarly, we can also obtain

m
4τt ‖x

t+1−xt‖2
2 + ∑

i∈St

1
4σi
‖yt+1

i −yt
i‖2

2 ≥−

〈
xt+1−xt , ∑

i∈St

Ai
(
yt+1

i −yt
i
)〉

(B.35)

Taking the expectation for both sides of the above two equalities and using the facts

that

Eξt

[
m
4τt ‖x

t+1−xt‖2
2 +‖yt+1−yt‖2

1
4diag(σσσ)

]
= Eξt

[
m
4τt ‖x

t+1−xt‖2
2 + ∑

i∈St

1
4σi
‖yt+1

i −yt
i‖2

2

]
,

Eξt

[∣∣〈xt+1−xt ,A
(
yt+1−yt)〉∣∣]

= Eξt

[∣∣∣∣∣
〈

xt+1−xt , ∑
i∈St

Ai
(
yt+1

i −yt
i
)〉∣∣∣∣∣

]
,

we have that

Eξt

[∣∣〈xt+1−xt ,A
(
yt+1−yt)〉∣∣]≤ Eξt

[
m
4τt ‖x

t+1−xt‖2
2 +‖yt+1−yt‖2

1
4diag(σσσ)

]
(B.36)

Similarly, we can obtain

Eξt

[∣∣〈xt−xt−1,A
(
yt+1−yt)〉∣∣]≤ Eξt

[
m
4τt ‖x

t−xt−1‖2
2 +‖yt+1−yt‖2

1
4diag(σσσ)

]
(B.37)

Therefore,

Eξt

[〈
xt+1−xt ,A

(
yt+1−yt)〉]≥−Eξt

[m
4τt ‖x

t+1−xt‖2
2

]
−Eξt

[
‖yt+1−yt‖2

1
4diag(σσσ)

]
(B.38)

Eξt

[〈
xt−xt−1,A

(
yt+1−yt)〉]≥−Eξt

[m
4τt ‖x

t−xt−1‖2
2

]
−Eξt

[
‖yt+1−yt‖2

1
4diag(σσσ)

]
(B.39)

Appendix B. Convergence Proofs for AdaSPDC 121

Now we insert the Eq. (B.32) into the inequality (B.31), and then apply the two bounds

(B.38) and (B.39), we have

1
2τt ‖x

t−x?‖2
2 +‖yt−y?‖2

µµµ ≥
(

1
2τt +λ

)
Eξt

[
‖xt+1−x?‖2

2
]
+Eξt

[
‖yt+1−y?‖2

µµµ′

]
+

1
4τt Eξt

[
‖xt+1−xt‖2

2
]
+

1
N
Eξt

[〈
xt+1−xt ,A

(
xt+1−xt)〉]

− θt

4τt ‖x
t−xt−1‖2

2−
θt

N

〈
xt−xt−1,A

(
yt−y?

)〉
+

1−θt +m/N
4m

Eξt

[
‖yt+1−yt‖2

σσσ

]
.

Recall the configuration for θt in Eq. (B.3), the last term of R.H.S. of the above in-

equality is non-negative, and can be bounded away. Then we have the following,

1
2τt ‖x

t−x?‖2
2 +‖yt−y?‖2

µµµ +
θt

4τt ‖x
t +xt−1‖2

2 +
θt

N

〈
xt−xt−1,A

(
yt−y?

)〉
≥(

1
2τt +λ

)
Eξt

[
‖xt+1−x?‖2

2
]
+Eξt

[
‖yt+1−y?‖2

µµµ′

]
+

1
4τt Eξt

[
‖xt+1−xt‖2

2
]

+
1
N
Eξt

[〈
xt+1−xt ,A

(
xt+1−xt)〉], Eξt

[
∆

t+1] (B.40)

According to the defined sequence ∆t+1, we have

θ
t
∆

t =θ
t
(

1
2τt +λ

)
‖xt−x?‖2

2 +θ
t‖yt−y?‖2

µµµ′

+
θt

4τt ‖x
t−xt−1‖2

2 +
θt

N

〈
xt−xt−1,A

(
yt−y?

)〉
(B.41)

According to the parameter configuration for τt , σi and θt , we can easily verify that

θ
t
(

1
2τt +λ

)
≥ 1

2τt

θ
tµ′i ≥ µi

Combining these two inequalities with the inequality (B.40) and Eq. (B.41), we have

Eξt

[
∆

t+1]≤ θ
t
∆

t . (B.42)

Apply this relation recursively and taking expectation with respect to all random vari-

ables up to time T , we have

E
[(

1
2τT +λ

)
‖xT −x?‖2

2

]
+E

[
‖yT −y?‖2

µµµ′

]
+E

[
1

4τT ‖x
T −xT−1‖2

2

]
+

1
N
E
[〈

xT −xT−1,A
(
yT −y?

)〉]
≤

(
T

∏
t=1

E
[
θ

t])
∆

0, (B.43)

Appendix B. Convergence Proofs for AdaSPDC 122

where

∆
0 =

(
1

2τ0 +λ

)
‖x0−x?‖2

2 +‖y0−y?‖2
µµµ′. (B.44)

Consider the following matrix

Q =

 N
2τT I ±AST

±AT
ST

n
2mdiag(σσσSt)

 (B.45)

Applying the Lemma 1 again, we can guarantee the positive definiteness of the matrix,

which implies that

± 1
N

〈
xT −xT−1, ∑

i∈ST

Ai
(
yT

i −y?i
)〉
≤ 1

4τT ‖x
T −xT−1‖2

2 +
1

4m ∑
i∈ST

1
σi
‖yT

i −y?i ‖2
2

(B.46)

Taking expectation,

1
N
E
[∣∣〈xT −xT−1,A

(
yT −y?

)〉∣∣]≤E[1
4τT ‖x

T −xT−1‖2
2

]
+

1
4m

E
[
‖yT −y?‖1/diag(σσσ)

]
(B.47)

Thus,

1
N
E
[〈

xT −xT−1,A
(
yT −y?

)〉]
≥−E

[
1

4τT ‖x
T −xT−1‖2

2

]
− 1

4m
E
[
‖yT −y?‖1/diag(σσσ)

]
(B.48)

Then combining the above inequality with inequality (B.43), we have

E
[(

1
2τT +λ

)
‖xT −x?‖2

2

]
+E

[
‖yT −y?‖2

ννν

]
≤

(
T

∏
t=1

E
[
θ

t])((1
2τ0 +λ

)
‖x0−x?‖2

2 +‖y0−y?‖2
ννν′

)
, (B.49)

where νi =
1

(4mσi)
+ γ

2m , ν′i = µ′i =
1

(2mσi)
+ γ

2m , and ‖yT − y?‖2
ννν = ∑

N
i=1 νi‖yT

i − y?i ‖2
2,

which completes the proof.

Appendix C

Convergence Proofs for SP-BCD

Now restate the SP-BCD in Algorithm 3.2 in the following for convenience.

123

Appendix C. Convergence Proofs for SP-BCD 124

SP-BCD for Sep-CCSP problem (3.45)
1: Input: number of blocks picked in each iteration m.

2: Initialize: x0, y0, x0 = x0, r0 = ∑
q
j=1 A jx0

j

3: for t = 1,2, . . . ,T do
4: Randomly pick a subset with size m from all the q coordinate blocks, denoted

as St .

5: Compute the configuration of parameter θ, τττ and σσσt :

θ =
m
q

(C.1)

τd =
1

∑
Dy
j=1 |A jd|

, d = 1,2, . . . ,Dx (C.2)

σ
t
k =

m
q
· 1

∑ j∈St |Ak j|
, k = 1,2, . . . ,Dy. (C.3)

6: for each block in parallel do
7: Update each selected primal variable block using

xt+1
j = argminx j

f j(x j)+
〈
yt ,A jx j

〉
+

1
2
‖x j−xt

j‖2
1/τττ j

, (C.4)

8: Extrapolate primal variable block using

xt+1
j =

xt+1
j +θ

(
xt+1

j −xt
j

)
if j ∈ St

xt
j otherwise,

(C.5)

9: end for
10: Update dual variable using

yt+1 = argminyg∗(y)−

〈
y,rt +

q
m ∑

j∈St

A j(xt+1
j −xt

j)

〉
+

1
2
‖y−yt‖2

1/σσσt ,

(C.6)

11: Update rt+1 using

rt+1 = rt + ∑
j∈St

A j

(
xt+1

j −xt
j

)
. (C.7)

12: end for

Appendix C. Convergence Proofs for SP-BCD 125

Recall Theorem 2 in Section 3.4 as follows.

Theorem 2 in Section 3.4: Given that all f j(x j) and g∗(y) are convex functions,

and we set θ = m/q, proximal parameters for primal and dual update as Eq.(C.2) and

(C.3), respectively. Then for any saddle point (x,y), the expected gap decays as the

following rate:

E

[
L

(
T

∑
t=1

xt/T,y

)
−L

(
x,

T

∑
t=1

yt/T

)]
≤ 1

T
M(0),

where

M(0) =
q
m
· 1

2
‖x0−x‖2

1/τττ
+

1
2
‖y0−y‖2

1/σσσ0−
〈
y0−y,A

(
x0−x

)〉
+

q−m
m

(
f (x0)+

〈
y,Ax0〉− (f (x)+ 〈y,Ax〉)

)
.

Proof. First, we analyze the primal and dual variables x and y after t-th update in the

Algorithm 3.2. We introduce a temporary variable x̃ j to be the value of xt+1
j if j ∈ St ,

for any j ∈ {1,2, . . . ,q}, i.e. (crossref Eq.(C.4)),

xt+1
j = argminx j

f j(x j)+
〈
yt ,A jx j

〉
+

1
2
‖x j−xt

j‖2
1/τττ j

,

Due to the strong convexity of the added proximal term, the function minimized above

is 1/τττ j-strongly convex, and then for any x j we have

f j(x j)+
〈
yt ,A jx j

〉
+

1
2
‖x j−xt

j‖2
1/τττ j
≥ f j(x̃ j)+

〈
yt ,A jx̃ j

〉
+

1
2
‖x̃ j−xt

j‖2
1/τττ j

+
1
2
‖x̃ j−x j‖2

1/τττ j
.

(C.8)

In our algorithm, an index set St is randomly chosen. For every specific index j, the

event j ∈ St happens with probability m/q. If j ∈ St , then xt+1
j is updated to the value

x̃t
j. Otherwise, xt+1

j is kept to be its old value xt
j. Let ξt be the random event that

contains the set of all random variable before round t,

ξt = {S1,S2, . . . ,St}, (C.9)

and then we have

Eξt

[
‖xt+1

j −x j‖2
1/τττ j

]
=

m
q
‖x̃ j−x j‖2

1/τττ j
+

q−m
q
‖xt

j−x j‖2
1/τττ j

Eξt

[
‖xt+1

j −xt
j‖2

1/τττ j

]
=

m
q
‖x̃ j−xt

j‖2
1/τττ j

Eξt

[
xt+1

j

]
=

m
q

x̃ j +
q−m

q
xt

j

Eξt

[
f j(xt+1

j)
]
=

m
q

f j(x̃ j)+
q−m

q
f j(xt

j)

Appendix C. Convergence Proofs for SP-BCD 126

where Eξt [·] denotes the conditional expectation E[·|ξt] for simplicity.

With these equality relationships, we can substitute f j
(
x̃ j
)
, x̃ j, ‖x̃ j− xt

j‖2
1/τττ j

and

‖x̃ j−x j‖2
1/τττ j

into the inequality (C.8),

Eξt

[
f j(xt+1

j)
]
− f j(x j)

≤
(

q
m
· 1

2
‖xt

j−x j‖2
1/τττ j

+
q−m

m
f j(xt

j)

)
−
(

q
m
· 1

2
Eξt

[
‖xt+1

j −x j‖2
1/τττ j

]
+

q−m
m

f j(xt+1
j)

)
− q

m
· 1

2
Eξt

[
‖xt+1

j −xt
j‖2

1/τττ j

]
−Eξt

[〈
yt ,A j

(
q
m

xt+1
j −

q−m
m

xt
j−

m
q

x j

)〉]
.

Then summing the above inequality with all the indices i = 1, . . . ,q, we can obtain

Eξt

[
f (xt+1)

]
− f (x)

≤
(

q
m
· 1

2
‖xt−x‖2

1/τττ
+

q−m
m

f (xt)

)
−
(

q
m
· 1

2
Eξt

[
‖xt+1−x‖2

1/τττ

]
+

q−m
m

f (xt+1)

)
− q

m
· 1

2
Eξt

[
‖xt+1−xt‖2

1/τττ

]
−Eξt

[〈
yt ,A

(
q
m

xt+1− q−m
m

xt− m
q

x
)〉]

. (C.10)

Now, we consider dual update in Eq. (C.6),

g∗(y)−

〈
y,rt +

q
m ∑

j∈St

A j

(
xt+1

j −xt
j

)〉
+

1
2
‖y−yt‖2

σσσt

≥ g∗(yt+1)−

〈
yt+1,rt +

q
m ∑

j∈St

A j

(
xt+1

j −xt
j

)〉
+

1
2
‖yt+1−yt‖2

σσσt +
1
2
‖yt+1−y‖2

σσσt

(C.11)

Since in each iteration, we always keep rt = ∑
q
i=1 A jxt

j, thus we have

Eξt

[
rt +

q
m ∑

j∈St

A j

(
xt+1

j −xt
j

)]
= Eξt

[
rt +

q
m

q

∑
i=1

A j

(
xt+1

j −xt
j

)]

= Eξt

[
A
(

q
m

xt+1− q−m
m

xt
)]

(C.12)

Considering the intermediate variable xt+1
j in Eq.(C.5), we have

Eξt

[
xt+1

j

]
=

m
q

(
x̃t+1

j +θ

(
x̃t+1

j −xt
j

))
+

q−m
q

xt
j

=
m
q

(
q
m
Eξt

[
xt+1

j

]
− q−m

m
xt

j +θ

(
q
m
Eξt

[
xt+1

j

]
− q−m

m
xt

j−xt
j

))
+

q−m
q

xt
j

= Eξt

[
xt+1

j

]
+θ

(
Eξt

[
xt+1

j

]
−xt

j

)
+

q−m
q

(
xt

j−xt
j
)

Given the parameter θ = m
q , then

Eξt

[
xt+1]= (1+

m
q

)
Eξt

[
xt+1]+(1− 2m

q

)
xt +

(
1− m

q

)
xt

Appendix C. Convergence Proofs for SP-BCD 127

Plugging the above equality into the equality (C.12),

Eξt

[
rt +

q
m ∑

j∈St

A j

(
xt+1

j −xt
j

)]
= Eξt

[
A
(

q+m
m

xt+1− q
m

xt
)]

(C.13)

We assign expectation to both sides of the inequality (C.11) and plug in Eq. (C.13),

and after some manipulations,

Eξt

[
g∗(yt+1)

]
−g∗(y)≤1

2
‖yt−y‖2

σσσ−
1
2
Eξt

[
‖yt+1−y‖2

1/σσσt

]
− 1

2
Eξt

[
‖yt+1−yt‖2

1/σσσt

]
+Eξt

[〈
yt−y,A

(
q+m

m
xt+1− q

m
xt
)〉]

. (C.14)

Now we are ready to use the two key inequalities (C.10) and (C.14) to construct the

following gap

Eξt

[
L(xt+1,y)−L(x,yt+1)

]
= Eξt

[
f (xt+1)+

〈
y,Axt+1〉]−g∗(y)−

(
f (x)+Eξt

[〈
yt+1,Ax

〉
−g∗(yt+1)

])
= Eξt

[
f (xt+1)

]
− f (x)+Eξt

[
g∗(yt+1)

]
−g∗(y)+Eξt

[〈
y,Axt+1〉−〈yt+1,Ax

〉]
(C.15)

≤
(

q
m
· 1

2
‖xt−x‖2

1/τττ
+

1
2
‖yt−y‖2

1/σσσt +
q−m

m
f (xt)

)
−
(

q
m
· 1

2
Eξt

[
‖xt+1−x‖2

1/τττ

]
+

1
2
Eξt

[
‖yt+1−y‖2

1/σσσt

]
+

q−m
m

f (xt+1)

)
−
(

q
m
· 1

2
Eξt

[
‖xt+1−xt‖2

h
]
+

1
2
Eξt

[
‖yt+1−yt‖2

1/σσσt

])
−Eξt

[〈
yt ,A

(
q
m

xt+1− q−m
m

xt− m
q

x
)〉]

+Eξt

[〈
yt−y,A

(
q+m

m
xt+1− q

m
xt
)〉]

+Eξt

[〈
y,Axt+1〉−〈yt+1,Ax

〉]
. (C.16)

After some sophisticated manipulations and rearrangements of the R.H.S of the above

inequality, we can obtain

Eξt

[
L(xt+1,y)−L(x,yt+1)

]
≤M(t)−Eξt [M(t +1)]−Eξt [C(t, t +1)] , (C.17)

where

M(t) =
q
m
· 1

2
‖xt−x‖2

1/τττ
+

1
2
‖yt−y‖2

1/σσσt −
〈
yt−y,A

(
xt−x

)〉
+

q−m
m

(
f (xt)+

〈
y,Axt〉− (f (x)+ 〈y,Ax〉)

)
, (C.18)

Appendix C. Convergence Proofs for SP-BCD 128

and

Eξt [M(t +1)] =
q
m
· 1

2
Eξt

[
‖xt+1−x‖2

1/τττ

]
+

1
2
Eξt

[
‖yt+1−y‖2

1/σσσt

]
−Eξt

[〈
yt+1−y,A

(
xt+1−x

)〉]
+

q−m
m

Eξt

[(
f (xt+1)+

〈
y,Axt+1〉− (f (x)+ 〈y,Ax〉)

)]
,

(C.19)

and

Eξt [C(t, t +1)] =
q
m
· 1

2
Eξt

[
‖xt+1−xt‖2

1/τττ

]
+

1
2
Eξt

[
‖yt+1−yt‖2

1/σσσt

]
− q

m
Eξt

[〈
yt+1−yt ,A

(
xt+1−xt)〉] (C.20)

=
q
m
· 1

2
Eξt

[
∑
j∈St

‖xt+1
j −xt

j‖2
1/τττ

]
+

1
2
Eξt

[
‖yt+1−yt‖2

1/σσσt

]
− q

m
Eξt

[〈
yt+1−yt , ∑

j∈St

A j

(
xt+1

j −xt
j

)〉]
. (C.21)

Now we bound the term C(t, t +1) given the following parameter configuration,

τd =
1

∑
Dy
j=1 |A jd|

, d = 1,2, . . . ,Dx

σ
t
k =

m
q
· 1

∑ j∈St |Ak j|
, k = 1,2, . . . ,Dy.

We can easily observe that the above parameter configuration makes the following

symmetric matrix P diagonally dominant, which guarantees its positive semi-definiteness:

P =

[
diag(1/τττSt) −AT

St

−ASt
m
q diag(1/σσσt)

]
� 0. (C.22)

Therefore, this directly leads C(t, t+1)≥ 0, and we can further simplify the inequality

(C.17),

Eξt

[
L(xt+1,y)−L(x,yt+1)

]
≤M(t)−Eξt [M(t +1)] . (C.23)

We now apply above inequality recursively, take expectation with respect to all random

variables up to time T , and then sum together and we find

E

[
T

∑
t=1

L(xt ,y)−L(x,yt)

]
≤M(0)−E [M(T)] (C.24)

Since (x,y) is a saddle point, for any t we have

f (xt+1)+
〈
y,Axt+1〉− (f (x)+ 〈y,Ax〉)≥ 0 (C.25)

Appendix C. Convergence Proofs for SP-BCD 129

Thanks again to the positive semi-definiteness of the matrix P and the inequality

(C.25) when t = T −1, we have

M(T)≥ 0,

which further simplifies inequality (C.24)

E

[
T

∑
t=1

L(xt ,y)−L(x,yt)

]
≤M(0)

Finally, applying the convexity of the function (x′,y′) 7→ L(x′,y)− L(x,y′), we

have

E

[
L

(
T

∑
t=1

xt/T,y

)
−L

(
x,

T

∑
t=1

yt/T

)]
≤ 1

T
M(0), (C.26)

which completes the proof.

Bibliography

Abdulle, A., Vilmart, G., and Zygalakis, K. C. (2015). Long time accuracy of Lie-

Trotter splitting methods for Langevin dynamics. SIAM Journal on Numerical Anal-

ysis, 53(1):1–16.

Abernethy, J. and Frongillo, R. (2011). A collaborative mechanism for crowdsourcing

prediction problems. In Advances in Neural Information Processing Systems 24

(NIPS2011).

Ahn, S., Korattikara, A., and Welling, M. (2012). Bayesian posterior sampling via

stochastic gradient Fisher scoring. In Proceedings of the 29th International Confer-

ence on Machine Learning, pages 1591–1598.

Alder, B. J. and Wainwright, T. (1959). Studies in molecular dynamics. i. general

method. The Journal of Chemical Physics, 31(2):459–466.

Amari, S. (2007). Integration of stochastic models by minimizing α-divergence. Neu-

ral Computation, 19(10):2780–2796.

Bache, K. and Lichman, M. (2013). UCI machine learning repository.

Barbu, A. and Lay, N. (2011). An introduction to artificial prediction markets for

classification. arXiv:1102.1465v3.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends R© in

Machine Learning, 2(1):1–127.

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and distributed computation:

numerical methods. Prentice-Hall, Inc.

130

Bibliography 131

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed opti-

mization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends R© in Machine Learning, 3(1):1–122.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). Handbook of Markov

Chain Monte Carlo. CRC Press.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component

analysis? Journal of the ACM (JACM), 58(3):11.

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex

problems with applications to imaging. Journal of Mathematical Imaging and Vi-

sion, 40(1):120–145.

Chambolle, A. and Pock, T. (2014). On the ergodic convergence rates of a first-order

primal-dual algorithm. Optimization-online preprint.

Chandrasekaran, V.and Recht, B., Parrilo, P. A., and Willsky, A. S. (2012a). The

convex geometry of linear inverse problems. Foundations of Computational Mathe-

matics, 12(6):805–849.

Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. (2012b). Latent variable graph-

ical model selection via convex optimization. The Annals of Statistics, 40(4):1935–

1967.

Chen, C., D. N. and Carin, L. (2015). On the convergence of stochastic gradient

mcmc algorithms with high-order integrators. In Advances in Neural Information

Processing Systems.

Chen, S., Donoho, D., and Saunders, M. A. (2001). Atomic decomposition by basis

pursuit. SIAM review, 43(1):129–159.

Chen, T., Fox, E. B., and Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte

Carlo. In Proceedings of the 31st International Conference on Machine Learning,

pages 1683–1691.

Bibliography 132

Chen, Y. and Wortman Vaughan, J. (2010). A new understanding of prediction markets

via no-regret learning. In Proceedings of the 11th ACM conference on Electronic

commerce.

Cole, R. and Fleischer, L. (2007). Fast-converging tatonnement algorithms for the

market problem. Technical report, Dept. Computer Science. Dartmouth College.

Dani, V., Madani, O., Pennock, D., Sanghai, S., and Galebach, B. (2006). An empirical

comparison of algorithms for aggregating expert predictions. In Proceedings of the

Conference on Uncertainty in Artificial Intelligence (UAI).

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances in

Neural Information Processing Systems, pages 1646–1654.

Dietrich, F. (2010). Bayesian group belief. Social choice and welfare, 35(4):595–626.

Dietrich, F. and List, C. (2014). Probabilistic opinion pooling. Oxford Handbook of

Probability and Philosophy.

Dietterich, T. (2000). Ensemble methods in machine learning. In Lecture Notes in

Computer Science, volume 1857, pages 1–5. Springer Verlag.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. (2014).

Bayesian sampling using stochastic gradient thermostats. In Advances in Neural

Information Processing Systems 27, pages 3203–3211.

Domingos, P. (1997). Why does bagging work? a Bayesian account and its implica-

tions. In Proceedings KDD.

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo.

Physics Letters B, 195(2):216–222.

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward

backward splitting. The Journal of Machine Learning Research, 10:2899–2934.

Esser, E., Zhang, X., and Chan, T. (2010). A general framework for a class of first order

primal-dual algorithms for convex optimization in imaging science. SIAM Journal

on Imaging Sciences, 3(4):1015–1046.

Bibliography 133

Everingham, M. et al. (2006). The 2005 PASCAL visual object classes challenge.

In Selected Proceedings of the first PASCAL Challenges Workshop LNAI, number

3944, pages 117–176.

Frenkel, D. and Smit, B. (2001). Understanding Molecular Simulation: From Algo-

rithms to Applications, Second Edition. Academic Press.

Garg, A., Jayram, T., Vaithyanathan, S., and Zhu, H. (2004). Generalized opinion

pooling. AMAI.

Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamil-

tonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 73(2):123–214.

Goldbloom, A. (2010). Data prediction competitions – far more than just a bit of fun.

In IEEE International Conference on Data Mining Workshops.

Green, K. (2006). The $1 million Netflix challenge. Technology Review.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning,

volume 2. Springer.

Hateren, J. H. v. and Schaaf, A. v. d. (1998). Independent component filters of natural

images compared with simple cells in primary visual cortex. Proceedings: Biologi-

cal Sciences, 265(1394):359–366.

He, B. and Yuan, X. (2012). Convergence analysis of primal-dual algorithms for a

saddle-point problem: from contraction perspective. SIAM Journal on Imaging Sci-

ences, 5(1):119–149.

He, Y. and Monteiro, R. D. (2014). An accelerated HPE-type algorithm for a class of

composite convex-concave saddle-point problems. Optimization-online preprint.

Heskes, T. (1998). Selecting weighting factors in logarithmic opinion pools. In Ad-

vances in Neural Information Processing Systems 10.

Hiriart-Urruty, J. and Lemaréchal, C. (2001). Fundamentals of convex analysis.

Springer Science & Business Media.

Homan, M. D. and Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting

path lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning Re-

search, 15(1):1593–1623.

Bibliography 134

Hong, M. and Luo, Z. (2012). On the linear convergence of the alternating direction

method of multipliers. arXiv preprint arXiv:1208.3922.

Hoover, W. (1991). Computational Statistical Mechanics, Studies in Modern Thermo-

dynamics. Elsevier Science.

Horowitz, A. M. (1991). A generalized guided Monte Carlo algorithm. Physics Letters

B, 268(2):247–252.

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph

lasso. In Proceedings of the 26th annual international conference on machine learn-

ing, pages 433–440. ACM.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using pre-

dictive variance reduction. In Advances in Neural Information Processing Systems,

pages 315–323.

Jones, A. and Leimkuhler, B. (2011). Adaptive stochastic methods for sampling driven

molecular systems. The Journal of Chemical Physics, 135:084125.

Kahn, J. M. (2004). A generative Bayesian model for aggregating experts’ probabili-

ties. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence,

pages 301–308. AUAI Press.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In

International Conference on Learning Representations.

Konečnỳ, J. and Richtárik, P. (2013). Semi-stochastic gradient descent methods. arXiv

preprint arXiv:1312.1666.

Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted

Boltzmann machines. In Proceedings of the 25th International Conference on Ma-

chine Learning, pages 536–543.

Lay, N. and Barbu, A. (2010). Supervised aggregation of classifiers using artificial

prediction markets. In Proceedings of ICML.

LeCun, Y., B. Y. and Hinton, G. (2015). Deep learning. Nature, 521:436–444.

Leimkuhler, B. and Matthews, C. (2013). Rational construction of stochastic nu-

merical methods for molecular sampling. Applied Mathematics Research eXpress,

2013(1):34–56.

Bibliography 135

Leimkuhler, B. and Matthews, C. (2015). Molecular Dynamics: With Deterministic

and Stochastic Numerical Methods. Springer.

Leimkuhler, B., Matthews, C., and Stoltz, G. (2015). The computation of averages

from equilibrium and nonequilibrium Langevin molecular dynamics. IMA Journal

of Numerical Analysis.

Leimkuhler, B. and Reich, S. (2004). Simulating Hamiltonian dynamics, volume 14.

Cambridge University Press.

Leimkuhler, B. and Shang, X. (2015). Adaptive thermostats for noisy gradient systems.

arXiv preprint arXiv:1505.06889.

Ma, S., Xue, L., and Zou, H. (2013). Alternating direction methods for latent variable

gaussian graphical model selection. Neural computation, 25(8):2172–2198.

Maynard-Reid, P. and Chajewska, U. (2001). Aggregating learned probabilistic be-

liefs. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial

Intelligence, pages 354–361. Morgan Kaufmann Publishers Inc.

Meier, L., Van De Geer, S., and Bühlmann, P. (2008). The group lasso for logistic

regression. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 70(1):53–71.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Journal of the Ameri-

can statistical association, 44(247):335–341.

Minka, T. (2002). Bayesian model averaging is not model combination. Technical

report, MIT Media Lab Note.

Murphy, K. P. (2007). Conjugate Bayesian analysis of the Gaussian distribution. def,

1(2σ2):16.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods.

Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

144pp.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain

Monte Carlo, 2.

Bibliography 136

Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course,

volume 87. Springer.

Nesterov, Y. (2012a). Efficiency of coordinate descent methods on huge-scale opti-

mization problems. SIAM Journal on Optimization, 22(2):341–362.

Nesterov, Y. (2012b). Subgradient methods for huge-scale optimization problems.

Mathematical Programming, pages 1–23.

Neumaier, A. (2014). Osga: A fast subgradient algorithm with optimal complexity.

arXiv preprint arXiv:1402.1125.

Nosé, S. (1984). A unified formulation of the constant temperature molecular dynam-

ics methods. The Journal of Chemical Physics, 81:511.

Ottaviani, M. and Sørensen, P. (2007). Aggregation of information and beliefs in

prediction markets. FRU Working Papers.

Parikh, N. and Boyd, S. (2013). Proximal algorithms. Foundations and Trends in

Optimization, 1(3):123–231.

Parikh, N. and Boyd, S. (2014). Block splitting for distributed optimization. Mathe-

matical Programming Computation, 6(1):77–102.

Pennock, D. and Wellman, M. (1997). Representing aggregate belief through the com-

petitive equilibrium of a securities market. In Proceedings of the Thirteenth Confer-

ence on Uncertainty in Artificial Intelligence, pages 392–400.

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-

dual algorithms in convex optimization. In 2011 IEEE International Conference on

Computer Vision (ICCV), pages 1762–1769. IEEE.

Richtárik, P. and Takáč, M. (2012). Parallel coordinate descent methods for big data

optimization. arXiv preprint arXiv:1212.0873.

Richtárik, P. and Takáč, M. (2014). Iteration complexity of randomized block-

coordinate descent methods for minimizing a composite function. Mathematical

Programming, 144(1-2):1–38.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals

of Mathematical Statistics, pages 400–407.

Bibliography 137

Robert, C. and Casella, G. (2013). Monte Carlo Statistical Methods. Springer.

Robert M. Bell, Y. K. and Volinsky, C. (2010). All together now: A perspective on the

NETFLIX PRIZE. Chance, 24.

Roberts, G. and Rosenthal, J. (1998). Optimal scaling of discrete approximations to

Langevin diffusions. Journal of the Royal Statistical Society. Series B, Statistical

Methodology, pages 255–268.

Roth, V. and Fischer, B. (2008). The group-lasso for generalized linear models:

uniqueness of solutions and efficient algorithms. In Proceedings of the 25th in-

ternational conference on Machine learning, pages 848–855. ACM.

Rubinstein, M. (1974). An aggregation theorem for securities markets. Journal of

Financial Economics, 1(3):225–244.

Rubinstein, M. (1975). Securities market efficiency in an Arrow-Debreu economy.

American Economic Review, 65(5):812–824.

Rubinstein, M. (1976). The strong case for the generalised logarithmic utility model

as the premier model of financial markets. Journal of Finance, 31(2):551–571.

Schmidt, M., Roux, N. L., and Bach, F. (2013). Minimizing finite sums with the

stochastic average gradient. arXiv preprint arXiv:1309.2388.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods

for regularized loss. The Journal of Machine Learning Research, 14(1):567–599.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory.

Storkey, A. (2009). When training and test sets are different: Characterising learning

transfer. In Lawrence, C. S. S., editor, Dataset Shift in Machine Learning, chapter 1,

pages 3–28. MIT Press.

Storkey, A. (2011). Machine learning markets. In Proceedings of Artificial Intelligence

and Statistics, volume 15. Journal of Machine Learning Research W&CP.

Storkey, A., Millin, J., and Geras, K. (2012). Isoelastic agents and wealth updates in

machine learning markets. In Proceedings of ICML 2012.

Bibliography 138

Su, W., Boyd, S., and Candes, E. (2014). A differential equation for modeling nes-

terovs accelerated gradient method: Theory and insights. In Advances in Neural

Information Processing Systems, pages 2510–2518.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of ini-

tialization and momentum in deep learning. In Proceedings of the 30th international

conference on machine learning (ICML-13), pages 1139–1147.

Tseng, P. (2008). On accelerated proximal gradient methods for convex-concave opti-

mization. submitted to SIAM Journal on Optimization.

Wainwright, M. J. (2014). Structured regularizers for high-dimensional problems: Sta-

tistical and computational issues. Annual Review of Statistics and Its Application,

1:233–253.

Wang, C., Chen, X., Smola, A. J., and Xing, E. (2013). Variance reduction for stochas-

tic gradient optimization. In Advances in Neural Information Processing Systems,

pages 181–189.

Wang, H., Banerjee, A., and Luo, Z. (2014). Parallel direction method of multipliers.

In Advances in Neural Information Processing Systems 27, pages 181–189.

Wang, M. C. and Uhlenbeck, G. E. (1945). On the theory of the Brownian motion II.

Reviews of Modern Physics, 17(2-3):323.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin

dynamics. In Proceedings of the 28th International Conference on Machine Learn-

ing, pages 681–688.

West, M. (1984). Bayesian aggregation. Journal of the Royal Statistical Society,

147:600–607.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2):241 – 259.

Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y. (2009). Robust principal compo-

nent analysis: Exact recovery of corrupted low-rank matrices via convex optimiza-

tion. In Advances in neural information processing systems, pages 2080–2088.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming,

151(1):3–34.

Bibliography 139

Wu, D. (2009). Parameter estimation for α-GMM based on maximum likelihood cri-

terion. Neural computation, 21(6):1776–1795.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(1):49–67.

Zhang, Y. and Xiao, L. (2015). Stochastic primal-dual coordinate method for regular-

ized empirical risk minimization. In Proceedings of the 32nd International Confer-

ence on Machine Learning (ICML2015).

Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for

grouped and hierarchical variable selection. The Annals of Statistics, pages 3468–

3497.

Zhu, M. and Chan, T. (2008). An efficient primal-dual hybrid gradient algorithm for

total variation image restoration. UCLA CAM Report, pages 08–34.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320.

	cover sheet
	thesis_zhanxing_zhu
	Notation
	Introduction
	Aggregation of Probabilistic Predictions Under Bias
	Motivation
	Background
	Simple Aggregation Methods
	Learnt Aggregation Methods

	Problem Statement
	Weighted Divergence Aggregation
	Weighted Rényi Divergence Aggregation

	Maximum Entropy Arguments
	Optimization of Weighted Rényi Divergence Aggregators
	Experiments
	Task 1: Aggregation on simulated data
	Task 2: Aggregation on chords from Bach chorales
	Task 3: Aggregation on Kaggle competition

	Machine Learning Markets and Rényi Divergence Aggregation
	Model Details of Machine Learning Markets
	Connection between MLMs and Rényi Divergence Aggregation

	Discussion

	Stochastic Methods for Separable Saddle Point Problems
	CCSP and Sep-CCSP Problems
	Primal-Dual Framework for CCSP and Sep-CCSP
	Scalable Methods for Large-Scale Sep-CCSP

	Adaptive Stochastic Primal-Dual Coordinate Descent
	Convergence Analysis for AdaSPDC
	Further Comparison with SDPC
	Empirical Results

	SP-BCD for General Sep-CCSP Problems
	Convergence Analysis for SP-BCD
	Applications

	Discussion and Future Directions

	Dynamics-based Methods for Large-scale Bayesian Sampling
	Problem Settings
	MCMC Methods
	Dynamical MCMC
	Metropolis Adjusted Langevin Algorithm (MALA)
	Hamiltonian Monte Carlo (HMC)

	Stochastic Gradient Dynamical Sampling Methods
	Stochastic Gradient Langevin Dynamics (SGLD)
	Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
	Stochastic Gradient Nosé-Hoover Thermostat (SGNHT)

	Covariance-Controlled Adaptive Langevin Thermostat
	Covariance Estimation of Noisy Gradient

	Numerical Experiments
	Bayesian Inference for a Gaussian Distribution
	Large-scale Bayesian Logistic Regression
	Discriminative Restricted Boltzmann Machine (DRBM)

	Conclusions and Future Work

	Conclusions
	Contributions
	Future Directions
	Concluding Remarks

	Background on Fokker-Planck Equation for SDEs
	Convergence Proofs for AdaSPDC
	Convergence Proofs for SP-BCD
	Bibliography

