258 research outputs found

    Toward personalised and dynamic cultural routing: a three-level approach

    Get PDF
    This paper introduces the concept of “smart routing” as a recommender system for tourists that takes into account the dynamics of their personal user profiles. The concept relies on three levels of support: 1) programming the tour, i.e. selecting a set of relevant points of interests (POIs) to be included into the tour, 2) scheduling the tour, i.e. arranging the selected POIs into a sequence based on the cultural, recreational and situational value of each, and 3) determining the tour’s travel route, i.e. generating a set of trips between the POIs that the tourist needs to perform in order to complete the tour. The “smart routing” approach intends to enhance the experience of tourists in a number of ways. The first advantage is the system’s ability to reflect on the tourists’ dynamic preferences, for which an understanding of the influence of a tourist’s affective state and dynamic needs on the preferred activities is required. Next, it arranges the POIs together in a way that creates a storyline that the tourist will be interested to follow, which adds to the tour’s cultural value. Finally, the POIs are connected by a chain of multimodal trips that the tourist will have to make, also in accordance with the tourist’s preferences and dynamic needs. As a result, each tour can be personalised in a “smart” way, from the perspective of both the cultural and the overall experience of taking it. We present the building blocks of the “smart routing” concept in detail and describe the data categories involved. We also report on the current status of our activities with respect to the inclusion of a tourist’s affective state and dynamic needs into the preference measurement phase, as well as discuss relevant practical concerns in this regard

    Quality of experience in affective pervasive environments

    Get PDF
    The confluence of miniaturised powerful devices, widespread communication networks and mass remote storage has caused a fundamental shift in the user interaction design paradigm. The distinction between system and user in pervasive environments is evolving into an increasingly integrated loop of interaction, raising a number of opportunities to provide enhanced and personalised experiences. We propose a platform, based on a smart architecture, to address the identified opportunities in pervasive computing. Smart systems aim at acting upon an environment for improving quality of experience: a subjective measure that has been defined as an emotional reaction to products or services. The inclusion of an emotional dimension allows us to measure individual user responses and deliver personalised services with the potential to influence experiences positively. The platform, Cloud2Bubble, leverages pervasive systems to aggregate user and environment data with the goal of addressing personal preferences and supra-functional requirements. This, combined with its societal implications, results in a set of design principles as a concrete fruition of design contractualism. In particular, this thesis describes: - a review of intelligent ubiquitous environments and relevant technologies, including a definition of user experience as a dynamic affective construct; - a specification of main components for personal data aggregation and service personalisation, without compromising privacy, security or usability; - the implementation of a software platform and a methodological procedure for its instantiation; - an evaluation of the developed platform and its benefits for urban mobility and public transport information systems; - a set of design principles for the design of ubiquitous systems, with an impact on individual experience and collective awareness. Cloud2Bubble contributes towards the development of affective intelligent ubiquitous systems with the potential to enhance user experience in pervasive environments. In addition, the platform aims at minimising the risk of user digital exposure while supporting collective action.Open Acces

    Physiological Signals based Day-Dependence Analysis with Metric Multidimensional Scaling for Sentiment Classification in Wearable Sensors

    Get PDF
    The interaction of the affective has emerged in implicit human-computer interaction. Given the physiological signals in the recognition process of the affective, the different positions by which the physiological signal sensors are installed in the body, along with the daily habits and moods of human beings, influence the affective physiological signals. The scalar product matrix was calculated in this study based on metric multidimensional scaling with dissimilarity matrix. Subsequently, the matrix of individual attribute reconstructs was obtained using the principal component factor. The method proposed in this study eliminates day dependence, reduces the effect of time in the physiological signals of the affective, and improves the accuracy of affection classification

    Combining Content with User Preferences for Non-Fiction Multimedia Recommendation: A Study on TED Lectures

    Get PDF
    This paper introduces a new dataset and compares several methods for the recommendation of non-fiction audio visual material, namely lectures from the TED website. The TED dataset contains 1,149 talks and 69,023 profiles of users, who have made more than 100,000 ratings and 200,000 comments. The corresponding metadata, which we make available, can be used for training and testing generic or personalized recommender systems. We define content-based, collaborative, and methods (LSI, LDA, RP, and ESA). We compare these methods on a personalized recommendation task in two settings, a cold-start and a non-cold-start one. In the cold-start setting, semantic vector spaces perform better than keywords. In the non-cold-start setting, where collaborative information can be exploited, content-based methods are outperformed by collaborative filtering ones, but the proposed combined method shows acceptable performances, and can be used in both settings. For the generic recommendation task, LSI and RP again outperform TF-IDF

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    An overview of video recommender systems: state-of-the-art and research issues

    Get PDF
    Video platforms have become indispensable components within a diverse range of applications, serving various purposes in entertainment, e-learning, corporate training, online documentation, and news provision. As the volume and complexity of video content continue to grow, the need for personalized access features becomes an inevitable requirement to ensure efficient content consumption. To address this need, recommender systems have emerged as helpful tools providing personalized video access. By leveraging past user-specific video consumption data and the preferences of similar users, these systems excel in recommending videos that are highly relevant to individual users. This article presents a comprehensive overview of the current state of video recommender systems (VRS), exploring the algorithms used, their applications, and related aspects. In addition to an in-depth analysis of existing approaches, this review also addresses unresolved research challenges within this domain. These unexplored areas offer exciting opportunities for advancements and innovations, aiming to enhance the accuracy and effectiveness of personalized video recommendations. Overall, this article serves as a valuable resource for researchers, practitioners, and stakeholders in the video domain. It offers insights into cutting-edge algorithms, successful applications, and areas that merit further exploration to advance the field of video recommendation

    Recent Trends in Deep Learning Based Personality Detection

    Full text link
    Recently, the automatic prediction of personality traits has received a lot of attention. Specifically, personality trait prediction from multimodal data has emerged as a hot topic within the field of affective computing. In this paper, we review significant machine learning models which have been employed for personality detection, with an emphasis on deep learning-based methods. This review paper provides an overview of the most popular approaches to automated personality detection, various computational datasets, its industrial applications, and state-of-the-art machine learning models for personality detection with specific focus on multimodal approaches. Personality detection is a very broad and diverse topic: this survey only focuses on computational approaches and leaves out psychological studies on personality detection
    • …
    corecore