19,498 research outputs found

    Poster Abstract: Interconnecting Low-Power Wireless and Power-Line Communications using IPv6

    Get PDF
    Wireless sensor networks for building automation and energy management has made great progress in recent years, but the inherent indoor radio range limitations can make communication unpredictable and system deployments difficult. Low-power radio can be combined with low-power Power-Line Communication (PLC) to extend the range and predictability of indoor communication for building management and automation systems. We take the first steps towards exploring the system implications for integration of low-power wireless and PLC in the same network. We leverage IPv6, which allow networks to exist over multiple physical communication media as well as the RPL routing protocol for low-power lossy networks

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Development of Wearable Systems for Ubiquitous Healthcare Service Provisioning

    Get PDF
    This paper reports on the development of a wearable system using wireless biomedical sensors for ubiquitous healthcare service provisioning. The prototype system is developed to address current healthcare challenges such as increasing cost of services, inability to access diverse services, low quality services and increasing population of elderly as experienced globally. The biomedical sensors proactively collect physiological data of remote patients to recommend diagnostic services. The prototype system is designed to monitor oxygen saturation level (SpO2), Heart Rate (HR), activity and location of the elderly. Physiological data collected are uploaded to a Health Server (HS) via GPRS/Internet for analysis.Comment: 6 pages, 3 figures, APCBEE Procedia 7, 2013. arXiv admin note: substantial text overlap with arXiv:1309.154

    Autonomous service composition in symbiotic networks

    Get PDF
    Part 2: PhD Workshop: Autonomic Network and Service ManagementInternational audienceTo cope with the ever-growing number of wired and wireless networks, we introduce the notion of so-called symbiotic networks. These networks seamlessly operate across layers and over network boundaries, resulting in improved scalability, dependability, and energy efficiency. This particular Ph.D. research focuses on software services operating in such symbiotic networks. When two or more networks merge, the services provided on them may be combined into a service composition that is much more than the sum of its parts. Driven by two distinct use cases, we aim to enable fully autonomous service composition and resource provisioning. For the first use case, an in-building over-the-top service platform, we describe a software architecture and a set of generic resource provisioning algorithms. The second use case, which focuses on wireless body area networks, will allow us to expand our research domain into highly dynamic symbiotic network environments, where services appear and disappear more frequently
    • 

    corecore