52 research outputs found

    ATP and Presentation Service for Mizar Formalizations

    Get PDF
    This paper describes the Automated Reasoning for Mizar (MizAR) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of MizAR services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles

    Gradual computerisation and verification of mathematics : MathLang's path into Mizar

    Get PDF
    There are many proof checking tools that allow capturing mathematical knowledge into formal representation. Those proof systems allow further automatic verifica- tion of the logical correctness of the captured knowledge. However, the process of encoding common mathematical documents in a chosen proof system is still labour- intensive and requires comprehensive knowledge of such system. This makes the use of proof checking tools inaccessible for ordinary mathematicians. This thesis provides a solution for the computerisation of mathematical documents via a num- ber of gradual steps using the MathLang framework. We express the full process of formalisation into the Mizar proof checker. The first levels of such gradual computerisation path have been developing well before the course of this PhD started. The whole project, called MathLang, dates back to 2000 when F. Kamareddine and J.B. Wells started expressing their ideas of novel approach for computerising mathematical texts. They mainly aimed at developing a mathematical framework which is flexible enough to connect existing, in many cases different, approaches of computerisation mathematics, which allows various degrees of formalisation (e.g., partial, full formalisation of chosen parts, or full formalisation of the entire doc- ument), which is compatible with different mathematical foundations (e.g., type theory, set theory, category theory, etc.) and proof systems (e.g., Mizar, Isar, Coq, HOL, Vampire). The first two steps in the gradual formalisation were developed by F. Kamareddine, J.B. Wells and M. Maarek with a small contribution of R. Lamar to the second step. In this thesis we develop the third level of the gradual path, which aims at capturing the rhetorical structure of mathematical documents. We have also integrated further steps of the gradual formalisation, whose final goal is the Mizar system. We present in this thesis a full path of computerisation and formalisation of math- ematical documents into the Mizar proof checker using the MathLang framework. The development of this method was driven by the experience of computerising a number of mathematical documents (covering different authoring styles)

    A User-friendly Interface for a Lightweight Verification System

    Full text link
    User-friendly interfaces can play an important role in bringing the benefits of a machine-readable representation of formal arguments to a wider audience. The "aartifact" system is an easy-to-use lightweight verifier for formal arguments that involve logical and algebraic manipulations of common mathematical concepts. The system provides validation capabilities by utilizing a database of propositions governing common mathematical concepts. The "aartifact" system's multi-faceted interactive user interface combines several approaches to user-friendly interface design: (1) a familiar and natural syntax based on existing conventions in mathematical practice, (2) a real-time keyword-based lookup mechanism for interactive, context-sensitive discovery of the syntactic idioms and semantic concepts found in the system's database of propositions, and (3) immediate validation feedback in the form of reformatted raw input. The system's natural syntax and database of propositions allow it to meet a user's expectations in the formal reasoning scenarios for which it is intended. The real-time keyword-based lookup mechanism and validation feedback allow the system to teach the user about its capabilities and limitations in an immediate, interactive, and context-aware manner

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    Improving the Accessibility of Lightweight Formal Verification Systems

    Full text link
    In research areas involving mathematical rigor, there are numerous benefits to adopting a formal representation of models and arguments: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, broad accessibility has not been a priority in the design of formal verification tools that can provide these benefits. We propose a few design criteria to address these issues: a simple, familiar, and conventional concrete syntax that is independent of any environment, application, or verification strategy, and the possibility of reducing workload and entry costs by employing features selectively. We demonstrate the feasibility of satisfying such criteria by presenting our own formal representation and verification system. Our system’s concrete syntax overlaps with English, LATEX and MediaWiki markup wherever possible, and its verifier relies on heuristic search techniques that make the formal authoring process more manageable and consistent with prevailing practices. We employ techniques and algorithms that ensure a simple, uniform, and flexible definition and design for the system, so that it easy to augment, extend, and improve

    A User-friendly Interface for a Lightweight Verification System

    Full text link
    User-friendly interfaces can play an important role in bringing the benefits of a machine-readable representation of formal arguments to a wider audience. The "aartifact" system is an easy-to-use lightweight verifier for formal arguments that involve logical and algebraic manipulations of common mathematical concepts. The system provides validation capabilities by utilizing a database of propositions governing common mathematical concepts. The "aartifact" system's multi-faceted interactive user interface combines several approaches to user-friendly interface design: (1) a familiar and natural syntax based on existing conventions in mathematical practice, (2) a real-time keyword-based lookup mechanism for interactive, context-sensitive discovery of the syntactic idioms and semantic concepts found in the system's database of propositions, and (3) immediate validation feedback in the form of reformatted raw input. The system's natural syntax and database of propositions allow it to meet a user's expectations in the formal reasoning scenarios for which it is intended. The real-time keyword-based lookup mechanism and validation feedback allow the system to teach the user about its capabilities and limitations in an immediate, interactive, and context-aware manner

    Case Studies in Proof Checking

    Get PDF
    The aim of computer proof checking is not to find proofs, but to verify them. This is different from automated deduction, which is the use of computers to find proofs that humans have not devised first. Currently, checking a proof by computer is done by taking a known mathematical proof and entering it into the special language recognized by a proof verifier program, and then running the verifier to hopefully obtain no errors. Of course, if the proof checker approves the proof, there are considerations of whether or not the proof checker is correct, and this has been complicated by the fact that so many systems have sprung into being. The two main challenges in using a proof checker today are the time needed to learn the syntax and general usage of the system and the time needed to formalize a proof in the system even when the user is already proficient with it. As mathematicians are not yet using proof checkers regularly, we wanted to evaluate the validity of this reluctance by analyzing these main obstacles. Judging by Dr. Wiedijk’s Formalizing 100 Theorems list, which gives an overview of the headway various proof systems have made in mathematics, Coq and Mizar are two of the most successful systems in use today (Wiedijk, 2007). I simultaneously formalized two fairly involved theorems in these two systems while I was at approximately the same level of familiarity with each. I kept track of my experiences with learning the systems and analyzed their comparative strengths and weaknesses. The analysis and summary of experiences should also give a general idea of the current state of computer-aided proof checking
    corecore