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Abstract

A comprehensible computerisation of mathematical texts requires jointly to reflect

the mathematician’s phrasing and to put his thoughts in a formalised shape. The

MathLang project faces these antagonist goals by decomposing the computerisa-

tion/formalisation process by means of discerned aspects. This thesis is concerned

with two of these aspects which are, firstly the definition of a formal grammar for

informal mathematical argumentation and secondly the elaboration of an authoring

and encoding method linking the mathematician’s own phrasings with unequivo-

cal explanations. We have developed these two MathLang aspects to a prototype

stage where texts and symbols are related to checkable grammatical constructs.

We have experimented with our system the edition of texts from the mathematical

literature.
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Chapter 1

Introduction

Mathematics has always played a central role in the body of human knowledge;

used as a conceptualising medium and a computation tool in many sciences, it ap-

peals philosophical reflection on the insight of reasoning. Mathematics is perceived

as a pure and aesthetic expression of human thoughts. The mathematics we use

today is the result of millennia of refinements. The identification of mathematics,

as occurred in ancient times, was characterised by early steps into mathematical

abstraction and the use of rigorous discourse. The question of its dating is of minor

importance compared to its definiens. Mathematics is the use of a meta-language

for describing quantities and the arrangement of things. The early advancements

in mathematics were the result of, for example, the symbolisation of absence by

a symbol “0” of Hindu-Arabic origins [Ifr99], or the enunciation of a treatise by

Euclid [Hea56] establishing the general properties of geometrical figures. The de-

velopment of a language support for mental constructs is certainly a founding as-

pect of mathematics. As time has passed, so mathematicians and philosophers

have clarified the relationship between mathematical thoughts and their textual

and symbolic representations.

By analysis of the mechanism of proofs in suitably chosen mathe-

matical texts, it has been possible to discern the structure underlying

both vocabulary and syntax. This analysis has led to the conclusion

that a sufficiently explicit mathematical text could be expressed in a

conventional language containing only a small number of fixed “words”,

assembled according to a syntax consisting of a small number of un-

breakable rules: such a text is said to be formalized.

[Bou54, Bou68, Chapter I]
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Chapter 1. Introduction

The formalisation of mathematics was made possible by the definition of a rig-

orous and expressive communication medium. The isomorphism between written

mathematics and mathematical thinking is therefore a prerequisite as G. Frege

addressed.

For brevity I have called a sentence true or false though it would

certainly be more correct to say that the thought expressed in the sen-

tence is true or false. [Fre14]

Later, the development of modern mathematics celebrated the expressive power of

abstraction by defining new symbolic abstract representations.

More recently, mathematicians and scientists were granted new experimenta-

tion possibilities with the advent of powerful calculators. In the mean time, this

new computational capability was also applied to other domains such as editing

and publishing. In only a few decades, computers have changed the way we ap-

proach documents and, by extension, mathematical documents. The impact on the

understanding of formal mathematics is tremendous and not yet measurable. From

an endeavor half a century ago, formalisation has become today an assisted and

feasible task. Computer-based formalisation and theorem proving became manda-

tory skills in every logicians’ curriculum. But this formal approach of mathematics

by computers comes with a high price in work-time. Even if the result is of an

unquestionable truthfulness because it has been computer-checked, many mathe-

maticians are reluctant to exchange their traditional “we can see that” for lines of

proof scripts. Here is N.G. de Bruijn’s view.

Many people like to think that what really matters in mathematics

is a formal system (usually embodying predicate calculus and Zermelo-

Fraenkel set theory), and that everything else is loose informal talk

about that system. Yet the current formal systems do not adequately

describe how people actually think, and, moreover, do not quite match

the goals we have in mathematical education. Therefore it is attractive

to try to put a substantial part of mathematical vernacular into the for-

mal system. One can even try to discard the formal system altogether,

making the vernacular so precise that its linguistic rules are sufficiently

sound as a basis for mathematics. [dB87, §1.4]

This failure of the theorem-proving community to win the mathematicians to their

systems initiated a new era of computer-assisted mathematics in the mid 90s. The

2



Chapter 1. Introduction

QED manifesto [CAD94] once described this aspiration to “help mathematicians

cope with the explosion in mathematical knowledge”.

We discuss in this thesis the consequences of computer-based formalisation for

mathematical authoring habits and we present our approach, within the MathLang

project, for computerising mathematical texts. The MathLang project, initiated in

2000 by F. Kamareddine and J.B. Wells [KW00, KW01], is an ongoing project of

the ULTRA group1 with the aim of“computerising mathematics in a manner which

keeps computerization as close as possible to the mathematician’s text while at the

same time providing a formal structure supporting mathematical software systems”

using J.B. Wells’s own words. MathLang’s proposal to achieve this aim is to divide

the computerisation into aspects. This decomposition approach into levels was first

enunciated in 1987 by N.G. de Bruijn in his Mathematical Vernacular [dB87] and

is an inspiring work for the MathLang project.

This thesis is concerned with the definition, implementation and experimenta-

tion of two aspects of the MathLang framework. The first aspect, which we have

named the Core Grammatical aspect (CGa), involves a formal abstract syntax

and grammar for valid mathematical justifications. The second aspect, which we

have named the Text & Symbol aspect (TSa), involves an authoring method and

language for relating mathematical texts with their explicated semantic role.

1.1 Contributions

We summarise the contributions of this thesis in the following points.

• MathLang’s Core Grammatical aspect (CGa). A language that captures the

structure of mathematical reasonings without committing itself to any logic

or semantic foundation. This aspect consists of:

– A formal, concise object-oriented abstract syntax,

– A type system giving full benefits from encoding efforts,

– A software implementation based on well-known standards, and

– A set of encodings of literary texts as test cases for the language’s ex-

pressiveness.

1ULTRA is an acronym for Useful Logics, Types, Rewriting, and their Automation. ULTRA
(http://www.macs.hw.ac.uk/ultra/) is a research group in the School of Mathematical and
Computer Sciences (MACS) at Heriot-Watt University.

3
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Chapter 1. Introduction

• MathLang’s Text & Symbol aspect (TSa). This is our solution for restoring

natural language as a computerised input method for mathematics. It consists

of:

– An authoring method based on the annotation of raw natural language

mathematical texts,

– A set of generic annotations, which we call syntax souring in contrast

to the usual syntax sugaring , to explicate the morphology of typical

abbreviations and aggregations in mathematical texts,

– A set of rewriting rules formally defining the souring transformations,

– A mathematician-oriented implementation of this method within a user-

friendly scientific editor, and

– A set of annotated texts showing the extent to which this method is

applicable.

• An analysis of how the preponderant role MathLang’s aspect-oriented com-

puterisation of mathematical texts could play a role in winning the mathe-

matical community back to computer-based formalisation.

Publications and collaborators

Different elements of these contributions have been published in proceedings of

events organised by the Mathematical Knowledge Management (MKM) community.

Following is a summary of these publications related to this thesis, co-authored with

F. Kamareddine, J.B. Wells, K. Retel and R. Lamar. We list in this summary the

sections of this thesis related to each publication.

• [KMW04b] — In 2003, we presented at the MKM Symposium the initial

language of the CGa aspect of MathLang (i.e. called MWTT2 in this the-

sis) which we tested on a whole textbook chapter. Partially presented in

Sections 3.4.1 and 4.4.

• [KMW04a] — In 2004, we presented at the Third MKM Conference our initial

technique for associating meaning and representation aspects of mathematical

texts. Partly reflected in Sections 3.4.2 and 6.3.2

2MWTT is an acronym for MathLang-Weak Type Theory (WTT); MWTT is an extension of
WTT (see Section 2.2) towards what became MathLang-CGa.

4



Chapter 1. Introduction

• [KMW06] — In 2005, we presented at the Fourth MKM Conference our

object-oriented approach to describing the structure of mathematical texts.

An extended version is included in Sections 3.4.3, 4.1, 4.2 and 4.3.

• [KLMW07] — In 2007 we will be presenting at the Sixth MKM Conference

our genuine approach to restoring natural language as a computerised math-

ematics input method. An extended version is included in Sections 5.1, 5.2

and 6.4.

The work presented in this thesis has gained directly and indirectly from comments,

inputs and collaborations with members of the MathLang project (F. Kamareddine,

J.B. Wells, K. Retel, P. van Tilburg, R. Lamar), undergraduate and postgraduate

students at Heriot-Watt University (H.A. Ross, M.I. Lopez Fernandez, M. Petrie,

A. Retzepi, A. Tsaousis, J. He and A. Asimakopoulos) and a fruitful collabora-

tion3 with the Ωmega group at the Universität des Saarlandes (particularly with

S. Autexier, A. Fiedler, H. Lesourd and M. Wagner). Currently there are two fur-

ther PhD students working on the MathLang project (K. Retel who is currently

writing up his thesis and R. Lamar who has just completed his first year PhD

studies). The research of K. Retel and R. Lamar involves the design, development

and implementation of existing and new aspects of the MathLang framework.

In connection with these publications and collaborations, a number of pre-

sentations4 were given to disseminate the MathLang’s approach on computerising

mathematics.

1.2 Outline

In Chapter 2, we begin with a presentation of the background on which this thesis

is based including the related works in the field. In Chapter 3, we draw a picture

of the fundamental original insights to the MathLang project and to this work.

Chapter 4 contains the complete definition of MathLang-CGa and its type system.

The MathLang-TSa authoring method is explained in Chapter 5 along with several

examples. Finishing with the thesis’ achievements, Chapter 6 describes the cur-

rent CGa-TSa framework’s implemented software. In Chapter 7, we envision the

possible followup work based on this thesis.

3Funded by the British Council.
4Presentation materials available at http://www.macs.hw.ac.uk/~mm20/ and http://www.

macs.hw.ac.uk/~fairouz/
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Chapter 2

Background and Related Works

In this chapter we present the background of this thesis and the related work in

the field of Mathematical Knowledge Management (MKM). Sections 2.1 and 2.2

present two languages on which we based part of our research, namely the Mathe-

matical Vernacular (MV) and the Weak Type Theory (WTT). We then present in

Section 2.3 the MathLang project around which the thesis took place. Section 2.4

draws a picture of the current situation of mathematics on computers.

2.1 De Bruijn’s Mathematical Vernacular

The Mathematical Vernacular was presented by professor N.G. de Bruijn in [dB87]

in 1987. In this article he defines a language which represents what should be a

formal language for mathematics. Choosing the word vernacular was not innocuous

by the leader of the Automath project. He ardently defines what he believes to be

a formal definition of the mathematical lingua franca.

The word “vernacular” means the native language of the people, in

contrast to the official, or literary language (in older days in contrast to

the latin of the church). In combination with the word “mathematical”,

the vernacular is taken to mean the very precise mixture of words and

formulas used by mathematicians in their better moments, whereas the

“official”mathematical language is taken to be some formal system that

uses formulas only. [dB87, §1.2]

MV is both a summary of two decades of the Automath experience and a series of

freshly conceived, disinterested intuitions and ideas for a comprehensible language

6



Chapter 2. Background and Related Works

for mathematics. To understand how the idea of MV grew up, it is first necessary

to describe its background, the Automath project.

2.1.1 Automath

Automath is a language for formalising mathematical texts and for automating the

validation of such formalised mathematics. The language was developed within the

Automath project initiated by N.G. de Bruijn in the late sixties. The Automath

project was the first attempt to digitize and formally prove mathematics with the

assistance of a computer. The language Automath was developed by N.G. de Bruijn

and his collaborators and its correctness was empirically proved by the formalisation

of E. Landau’s Foundations of Analysis . This formalisation of the entire book in

Automath was performed by L.S. van Benthem Jutting in his PhD thesis [vBJ77a]

in 1977.

This section is a brief introduction to Automath. This introduction is partial

because it focuses on Automath’s representation of mathematical knowledge and

less on the formalisation of mathematics. Our main sources of references on Au-

tomath are [NGdV94, Kam03, Aut] from which we especially refer to [dB91a,

dB70, dB80, vBJ94].

2.1.1.1 Language

Automath is a formal language (or more precisely a family of languages) for encod-

ing mathematics on computers. A text encoded in any of the Automath languages

can be automatically checked by a computer program. Each Automath language

offers different extensions. Table 2.1 recalls these extensions and their implementa-

tions. A recent implementation of an Automath checker was based on the AUT-68

and AUT-QE languages. It has been implemented by F. Wiedijk1.

2.1.1.1.1 Book content An Automath text is represented in the form of books.

Each book is a sequence of lines. Each new line in a book could refer to elements

contained in previous lines. Each line comes in a context which is composed by a set

of assumptions and variable declarations from previous lines. These components

are called block openers. This name gives a clear meaning to context’s items which

open the availability of a variable or an assumption. Nested block openers form

1See F. Wiedijk’s web page dedicated to Automath: http://www.cs.ru.nl/~freek/aut/

(last visited 2007-04-21).

7
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Chapter 2. Background and Related Works

AUT-68 The initial Automath language. [vBJ94]
AUT-SL Also named λ-Automath, it is equivalent to AUT-

68 where book and lines are put into a single line
(SL). Each definition is an abstraction. The con-
text variables/arguments of a definition are trans-
formed into a sequence of abstractions. Each head-
expression (see Section 2.1.1.1.4) is transformed
into an sequence of applications. AUT-SL is a
curried normal formed of AUT-68.

[dB94b]

AUT-QE The theory is defined in D.T. van Daalen’s
PhD thesis [vD80]. The implementation is used
by L.S. van Benthem Jutting in his transla-
tion [vBJ77a] of E. Landau’s Foundations of Analy-
sis [Lan51]. AUT-QE is a sub-language of AUT-

Π.

[vD80]

AUT-QE-NTI NTI stands for “no type inclusion”. As a result it
is weaker than AUT-QE.

[dB94a]

AUT-Π Invented by J. Zucker, it is an extension of AUT-

QE with pairs, projections, injections and disjoint
union type. Used in the formalisation of classical
mathematics and to represent natural deduction.

[vD80]

AUT-4 The extension of AUT-QE with 4-expressions;
type is the only 1-expression (see Sec-
tion 2.1.1.2.1). Degrees of prop, propositions
and proof are increased by one.

[dB94c]

AUT-SYNT Extends AUT-QE with a variable synt and a set
of predefined meta-functions such as a mechanical
type-inferrer.

[vBJ77a]

AUT-∆Λ Is a more theoretical version of AUT-SL which
uses de Bruijn indices.

[dB78]

Table 2.1: List of Automath versions, their extensions and implementations

8



Chapter 2. Background and Related Works

a context. A line either defines a new notion in the book or extends the current

context.

Figure 2.1: An Automath context tree

2.1.1.1.2 Context In an Au-

tomath book, contexts have an

interesting chain-like structure.

Notions are defined one after

the other but in different con-

texts. The contexts constantly

get new links to create new no-

tions and some times unchain

some links to start over a new

fresh context. An overall pic-

ture of the chaining and un-

chaining of contexts in a book

could be seen as a tree of con-

texts, see Figure 2.1. This

chaining of context elements is

also called a telescope [dB91b].

2.1.1.1.3 Line content Syntactically each line and block opener is defined by

four distinct elements. Table 2.2 is an illustration of these four elements: indicator,

identifier, definition and category. We give here a short description of each element.

Indicator informs on the context of the current entity to be defined. This indi-

cator refers to a previously defined block opener b. If this indicated block

opener had itself a context c (reference to another block opener), the entity

we are currently concerned with will have as context c extended with the

block opener b. Figure 2.1 gives a diagrammatic view of this chaining of con-

text elements. If the indicator is set to 0 then the definition takes place in

an empty context.

Identifier is a name for the assertion, variable, notion, type, set or symbol being

defined. It should not be similar to any identifier already defined.

Definition is the actual value associated with the identifier. If the identifier to be

defined is a variable, the definition is represented by the empty symbol “—”

and the entity defined is a block opener. If the symbol to be defined does not

9
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ξ := — type (1)
ξ x := — ξ (2)
ξ, x y := — ξ (3)
ξ, x, y is := PN type (4)
ξ, x reflex := PN is(x, x) (5)
ξ, x, y asp1 := — is(x, y) (6)
ξ, x, y, asp1 symm := PN is(y, x) (7)
ξ, x, y, asp1 z := — ξ (8)
ξ, x, y, asp1 , z asp2 := — is(y, z) (9)
ξ, x, y, asp1 , z, asp2 trans := PN is(x, z) (10)

Example from [dB70] defining equality in an arbitrary category.

Table 2.2: Automath example of line elements

have a definition because it is part of the root of the theory enunciated in the

book, then PN or PRIM – which stands for primary notion – is provided as

definiens.

Category is the identifier’s type. It is either type (and prop in AUT-QE) or an

expression of category type (and prop in AUT-QE). This stratification of

types is in line with the tradition of hierarchy of types of Principia Math-

ematica [WR13], the Simple Type Theory [Ram26, HA28] and the simple

typed λ-calculus [Chu40].

This simple decomposition of a line into these four elements is impressively expres-

sive. All sorts of reasoning steps can be represented by combining the modes of each

element. For instance, a variable is an identifier without definition (the empty sym-

bol − stands for its definition). The scope of a variable is delimited. The variable

scopes between its declaration in a block opener (a line defining the variable) and

the first following line that un-chains the block opener from its context (the indi-

cator of this line refers to a block opener preceding the variable’s block opener). In

Figure 2.1 the block opener on line 6 un-chains the block opener of lines 3 and 4 and

therefore closes the scope of the two variables they were respectively introducing.

2.1.1.1.4 Expressions The expressions that could stand for an identifier’s def-

inition or category could have one of the following four forms.

Variable expression. Variables that are declared in the context or that are de-

clared by an abstraction are expressions.

10
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Head expression. An identifier defined in a previous line of the book forms an

expression if provided with the right number of parameters.

If a line of the form [x][y][z] a(x,y,z):=... is part of a book then the

head-expression a(A,B,C) is a valid expression in the following lines (A, B, C

being valid expressions). This example is taken from [vBJ94].

Abstraction expression. The abstraction of a variable in an expression where

this variable may occur freely is an expression. The Automath syntax for

abstraction is [x]A which is equivalent to the λ-calculus term (λx.A).

Remark 1 According to this definition, [x]x is a valid expression. On the

contrary, its sub-expression x is not. The definition in [vBJ94] states that if

A is an expression in a context formed by [x] then [x]A is a valid expression.

Application expression. The application of an expression to another is an ex-

pression. The Automath syntax for application is <B> A which is equivalent

to the λ-calculus term (A B).

An expression in Automath is therefore either a variable, an abstraction, an appli-

cation or an instantiation of a constant (head expression).

2.1.1.2 Typing: checking the books’ correctness

The Automath language and its extensions are defined with a type system that

describes how to systematically check the well-formation of Automath books and

the correctness of the demonstration in a book.

2.1.1.2.1 Degree of an expression The Automath type system associates to

any identifier in a valid book a unique type expression. This type expression is

itself a valid expression in the book. To avoid Russell’s Paradox, each identifier is

assigned a degree. A type expression should be of one degree less that the degree

of the expression it is the type of. Therefore it is impossible to state the antinomic

x is of type x.

There are three degrees of expressions:

• 3-expressions are objects.

• 2-expressions are types.

• 1-expression is the super-type expression type.

11
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Some Automath extensions (see table 2.1) adapt this hierarchy of expressions.

• AUT-QE adds a new super-type prop. Expressions of type prop are propo-

sitions and expressions with a proposition as type expression are proofs. This

is the Automath version of the propositions as type principle.

• AUT-4, as its name suggests, introduces a 4th degree of expressions. This

additional degree is actually a shifting of prop, propositions and proofs. In

AUT-4 prop is not a super-type anymore. Propositions are expressions of

degree 3 and proofs are the new 4-expressions. This new degree gives a dif-

ferent interpretation for proofs. In [dB94c] the definitional equality (see Sec-

tion 2.1.1.2.2) between 4-expressions is considered as irrelevant. Effectively

the fact that two proofs are or are not equal is irrelevant. The important

equality is between what they prove. The relevance of definitional equality

is therefore the main difference in the interpretations of 3- and 4-expressions.

AUT-4 gives satisfaction to a classical view of proofs for which the relevance

of a proof is in what it proves.

2.1.1.2.2 Reductions and definitional equality Automath has substitution

and reduction operations in its meta-theory. Two reductions are used to obtain the

normal form of an expression. This normal form is used to compare expressions

and find out if they have the same “meaning”. The definitional equality of two

expressions is based on these two reductions. The reductions are defined as follow

(see [vBJ94]):

δ-reduction This reduction expands or inlines a definition. If

[x1] . . . [xn] a(x1, . . . , xn) := E

is a line of the book and, on a certain context, A1, ..., An are expressions,

then we have

a(A1, . . . , An) →δ E[x1, . . . , xn := A1, . . . , An]

where E[x1, . . . , xn := A1, . . . , An] denotes the expression E where x1, ..., xn

are simultaneously replaced by A1, ..., An.

β-reduction This reduction is the traditional λ-calculus’ β-reduction which cal-
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culates the result of a function application.

< A > [x]B →β B[x := A]

if < A > [x]B is an expression.

The relation → is the compatible closure of →δ and →β. The relation ։, called

reduction, is the reflexive and transitive closure of →. The definitional equality is

the relation
D
=, the smallest equivalence relation which contains ։.

2.1.1.2.3 Typing rules In [vBJ77a] a small set of basic typing rules defines the

Automath type system. Automath typing is unique modulo definitional equality.

We refer to D.T. van Daalen’s rules from [KLN03] for the complete set of rules.

2.1.1.3 Perspectives offered by two decades of Automath

The Automath experience over two decades has played two important roles. One

in the history of mathematics, as the first attempt to create a formal language

for mathematics on the computer. And the other in computer science, as the

first computer-based language for automatic proof checking. N.G. de Bruijn pub-

lished in 1991 an article [dB91a] which is a mixture of a philosophical summary of

the Automath experience and a list of perspectives offered by this experience. In

this article, he presents what he calls justification systems (in which he includes

Automath). He introduced this notion of justification when putting face to face

automated checking and automated proving. The first one being the computer

task of systematic logical checking of proofs and the other one being the ability

to ask computers to invent a valid proof for a given theorem. He considered jus-

tification to be an automated checking that does not only deal with proofs but

with mathematics in general. Formalisation has two means: correctness of proofs

and better understanding of mathematics. N.G. de Bruijn proposed to clarify the

actions one is doing when formalising mathematics. One should distinguish a for-

malism for mathematics and a computer based language for checking mathematical

knowledge.

The main question that arises when one starts to distinguish proof checking

and formalisation of mathematics is the interrogation over the trust that could be

put on formalised mathematics. This interrogation existed also for proof checking

and was answered in many ways. One is to provide a systematic definition of the

logic and calculus implemented by such a system. Another consists in checking a
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proof generally considered difficult to be checked by a human (e.g. the proof of

the four-colour theorem in Coq [Gon] or the proof of the Jordan Curve Theorem

in Mizar [Kor05]).

One of the first questions people ask when hearing about a justi-

fication system is whether it would guarantee absolute dependability.

This can mean two things. In the first place there is the matter of abso-

lute dependability of mathematics, whatever the foundations may be.

I think there is little hope ever to get final answers to that question.

The second thing it can mean is this: once we have accepted a rigor-

ous formalization of some piece of mathematics, and we have accepted

the idea that “mechanical” verification gives a kind of absolute guaran-

tee of correctness, we ask whether this guarantee would be weakened

by leaving the mechanical verification to a machine. This is a very rea-

sonable, relevant and important question. It is related to proving the

correctness of fairly extensive computer programs, and checking the in-

terpretation of the specifications of those programs.[...] [dB91a]

This above quotation raises an interesting question. How should we consider for-

malised text? N.G. de Bruijn discards here the ideal of an absolute foundation for

mathematics. N. Bourbaki2 in the Elements of Mathematics [Bou39] proposed a

systematic approach to describing mathematics based on axiomatic set theory and

claimed that:

The verification of a formalized text is a more or less mechanical

process [...]. [Bou54, Bou68, Chapter I]

Nevertheless no tangible computer-based formalisation of the Elements of Mathe-

matics has been accomplished or even attempted. This could have two causes and

therefore two implications for computer-based foundations for mathematics:

Is N. Bourbaki’s formalism not computerisable? If no logical framework can

encode and check the Elements of Mathematics then how can we speak about

a foundation for mathematics that discards such a contribution?

2N. Bourbaki is the pseudonym chosen by a group of French mathematicians (André Weil,
Jean Dieudonné, Szolem Mandelbrot, Claude Chevalley, Henri Cartan were some of the founding
members) in the 1930’s. They wrote under this name a full treatise of modern mathematics:
Elements of Mathematics [Bou39].
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Is N. Bourbaki’s formalism valid after all? If the actual formalism on which

N. Bourbaki’s Elements of Mathematics is based is proved to be invalid for

any logical system then does it mean that the entire Elements of Mathemat-

ics should be banned from any incorporation in a formalised mathematical

library?

N.G. de Bruijn proposes an answer that disambiguates the situation and clari-

fies ones actions when formalising mathematics. One should distinguish a formal-

ism for mathematics from a computer based language for checking mathematical

knowledge.

The work may be subdivided. One can think of a first stage where

a person with some mathematical training inserts a number of interme-

diate steps whenever he feels that further workers along the belt might

have trouble, and a second stage where the logical inference rules are

supplied and the actual coding is carried out. For the latter piece of

work one might think of a person with just some elemenary mathemat-

ics training, or of a computer provided with some artificial intelligence.

But we should not be too optimistic about that: programming such

jobs is by no means trivial. [dB91a]

N.G. de Bruijn clearly differentiates two tasks in the work of formalising math-

ematics. The first one is close to traditional mathematical demonstration which

identifies the elements that compose a proof. The second one is a systematic jus-

tification of every single logical step in a proof. This subdivision assumes that the

foundation used in the formalisation and the chosen representation of mathematical

entities are adequate for both steps. In practice, the systematic verification requires

adaptation and, in the worst case, profound changes to a working proof to making

it suitable for a specific formalism. Herein lies the difficulty of choosing a suitable

logical foundation when formalising mathematics. N.G. de Bruijn takes the party

of the “mathematicians’ approach” which is to be keen on protecting liberties and

choices even if this would discard a full formalisation. This approach is opposed to

a “logicians’ approach” for which any mathematics could be and should be sooner

or later formalised in a universal logical framework.

The language of mathematics is not talking about a limited number

of things. If it were, a justification system might try to take a kind

of model-theoretical approach by testing every statement in that world
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of objects. The language of mathematics cannot be verified on the

objects: there are too many of them. The only thing we can do is

applying the rule that things are correct if they have been correctly said.

The notion of correctness is not formulated in terms of a mathematical

reality, but involves rules about how a statement should be related to

material that has been said before. Many non-mathematicians who hear

about verification systems get the idea that such systems can handle

only “constructive” situations like finite mathematics. This confusion

depends on that wrong idea of implementing mathematical reality.

[dB91a]

N.G. de Bruijn, being a mathematician inclined to make good use of computers,

aims to reconcile the working-mathematician with the working-logician by raising

the intrinsic question of the definition of a mathematical vernacular.

I think that in formalizing mathematics, and in particular in prepar-

ing mathematics for justification, it is usually elegant as well as efficient

to do everything in the natural way. That word of course does not mean

“like in nature”; it can at most mean “like normally in our culture”.

[...]

But of course, since the word“natural”means“cultural”, it is subject

to change. [dB91a]

The way mathematicians represent and therefore think of mathematical objects is

highly dependent on their unconscious social and cultural context. No formalisation

is fully suitable – unless your cultural background is logic. A mathematician is the

most likely to be able to computerise his own mathematical works. According

to de Bruijn, refinements could slowly move this computerised knowledge into a

formalised one.

Coming back to the idea of refinement, I must confess that it is

difficult to keep it pure on the long run. The Genius at the beginning

of the assembly line may look with one eye at what happens at the other

end of the line, and may adapt his ideas to the needs of the technology

displayed there. Technical realization can have influence on design.

Moreover I am not sure that the idea of systematic refinement has an

eternal value worth fighting for. After all, it is extremely conservative,

and there is nothing against a revolution now and then. [dB91a]
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In the last quotation, N.G. de Bruijn is right when he predicted that a revolution

was possible. When we look at the theorem-proving community we could definitely

characterise it as a revolution in the sense that it has invented a new way of

approaching formal mathematics thanks to computers. This revolution has its

singular language which is formal mathematics. It has its own community formed

by users of theorem provers. This community is homogeneous in its deep belief

that any mathematics needs to be formalised to reach a complete understanding.

At the same time, this community is heterogeneous in the way each of its groups

defends its turf as definite foundation for mathematics.

Many mathematicians dislike pushing formalization to the extreme.

The idea is that it kills intuitive thinking. I do not entirely agree. It

may be true that unnatural formalization replaces intuitive thinking by

an entirely different process of formula manipulation, but natural for-

malization supports intuition rather than destroying it. Formalization

and intuitition should be each other’s best friends rather than enemies.

But part of what we call intuitive thinking is not of the kind that can

be refined to proofs. That part cannot be formalized. Our brain pro-

cesses are not based on logic or any other foundation of mathematics,

and nevertheless they produce wonderful things. But all mathemati-

cians agree that the results of intuitive thinking have to be justified by

rigorous reasoning, even though there may be different opinions about

the level of formality. [dB91a]

When presenting and discussing these perspectives we mainly insisted on the

issue of the representation of mathematics. This should not lower in the reader’s

eyes the importance Automath played and still plays in the proof checking com-

munity. Automath is still a large source of inspiration for this community, see

R.L. Constable’s article [Con03] and other articles from the book Thirty five years

of Automating Mathematics [Kam03], published to celebrate the anniversary of

the Automath project. We also recommend readings of Selected Papers on Au-

tomath [NGdV94] and visits to the Automath archive web-site [Aut].

2.1.2 1987’s article on the Mathematical Vernacular

In this section we present the Mathematical Vernacular (MV) which is the funda-

mental base on which was started this PhD research. In his 1987’s article [dB87],

17



Chapter 2. Background and Related Works

N.G. de Bruijn describes MV as what should be a formal language for mathemat-

ics. He located MV as an encoding of mathematics in between full formalisation

an mathematical natural language:

The idea to develop MV arose from the wish to have an intermediate

stage between ordinary mathematical presentation on the one hand,

and fully coded presentation in Automath-like [hence fully automated/

computerized] systems on the other hand. [dB87, §1.6]

In N.G. de Bruijn’s vision, MV is a formally defined language which represents

informal mathematics (e.g. mathematics as we are used to seeing). MV does not

require the mathematics described to be fully-formalised with all derivation steps

logically justified. This language reproduces the traditional way mathematics is

written; that is to say, with holes in the demonstration assumed to be easy to

infer by the human reader. MV differs slightly from this traditional mathematical

vernacular by enforcing the well-declaration of every symbol or notion prior to any

use.

A proof written in MV may be restricted to showing a sequence of

resting points only. The derivation from point to point may be sup-

pressed, or at least be treated quite informally. This seems to come

close to the current ideal of mathematical presentation: impeccable

statements, connected by suggestive remarks. [dB87, §1.9]

In the first place MV allows us to omit parts of the proofs, at least

as no definitions are suppressed. [dB87, §1.13]

In this section we present and discuss the key components of MV and what

makes it an original approach for computerising mathematics. We first present in

three steps the language constructions: lines and books in Section 2.1.2.1, contexts

and flags in Section 2.1.2.2 and atomic expressions of the language in Section 2.1.2.3.

The next two sections present MV’s typing (Sections 2.1.2.5 and 2.1.2.6).

2.1.2.1 Lines and books

Line. As we mentioned earlier, Automath inspired MV. Similarly to Automath,

MV has a line-by-line structure and each line is stated with a specific context.

Book. A book is formed by adding a new line to an existing book [dB87, §10.3].

A book is a finite partially ordered set of lines [dB87, §4.1, §8.5].
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Context and line body. Each line is composed by a context (see Section 2.1.2.2),

and the actual knowledge the line introduces, is called the line body. There

are four kinds of line bodies: definitional, to introduce new symbols, primitive,

to introduce primitive mathematical symbols, assertional, to make statements

from preceding lines and axiomatic, to introduce a founding statement.

Valid line. A line is considered as valid if it is a correct continuation of the book

formed by its preceding lines. By correct continuation we mean that all

identifiers in the line are used in a suitable way according to the book.

Valid book. A valid book remains a valid book (in the sense of syntactic struc-

ture) if we omit the last line [dB87, §4.2]. The empty book (book without

any line) is considered as valid.

2.1.2.2 Contexts and flags

A line has its own context . This context is a finite sequence of context items.

These context items are either assumptional and declarational. Even if two con-

secutive lines share the same context, the context items are repeated for each line.

N.G. de Bruijn introduced a notation to represent these context items with less

repetition. Because such items are commonly shared from line to line, this nota-

tion is essential for human reading of MV books. The sharing of context items

is represented in Automath by a pointer (indicator) to the last context item from

which it is easy to chain-back every context items (we described this chaining of

context items in Section 2.1.1.1.2). For MV, N.G. de Bruijn uses a more “natu-

ral” representation of contexts. This representation uses the flag notation3. A flag

is composed by two parts: a head and a flagstaff. The flag’s head contains the

context item in question. The flagstaff covers all the consecutive lines for which

this item occurs in the context. The flagstaff is a representation of the scoping

of the context item. A flag illustrates the multiple occurrences of the same item

in contexts of consecutive lines. A flag and its included lines are called a block .

Flags are only a syntax sugaring in MV because they are not properly part of the

language’s definition. There exists an automatic conversion from normal notation

to flag notation and vice-versa. This reverse conversion is not complete, because

two consecutive flags holding the same information in their heads would be merged

into a single flag if converted back and forth. Flags are only an implicit grouping

of lines. The effective meaning of flags is the occurrence of similar context items in

3As N.G. de Bruijn mentioned, flags were firstly introduced by F. Fitch in 1950.
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item1

item2

item3

item4

line body5

item6

item7

line body8

line body9

Figure 2.2: MV context with flag notation. Similar content as presented to illustrate

Automath contexts in Figure 2.1

a similar order in consecutive lines. See Figure 2.2 for an example of uses of flags,

this figure presents the same content as in Figure 2.1.

The rules of MV do not just explain how mathematical sentences

have to be formed, but also how they have to be manipulated in order

to build new correct material. In particular they will help us to disclose

the rules of the game of axioms, definitions, theorems and proofs.

[dB87, §1.7]

2.1.2.3 Grammatical categories

The main specificity of MV is to propose a grammar for natural language math-

ematical text that differs from traditional grammars of natural languages. Gram-

mars of natural languages are sets of rules governing the use of a language. MV

is a grammar for mathematical language which dictates the way mathematical

reasoning is to be constructed.

In contrast to what one might expect at first sight, the grammar

of the mathematical vernacular is not harder, but very much easier

than the one of natural language. We can get away with only three

grammatical categories (the sentence, the substantive and the name),

because mathematicians can take a point of view that is very different
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from the one of linguists. The main thing is that mathematical language

allows mathematical notions to be defined ; it can even define words and

sentences. In choosing these new words and sentences we have almost

absolute freedom, just like in mathematical notation. We hardly need

linguistic rules for the formation of new words and new sentences. It

usually pleases us to form them in accordance with natural language

traditions, but it is neither necessary nor adequate to set linguistic rules

for them. [dB87, §1.10]

There are three grammatical categories in MV [dB87, §1.10, §3], usually extended

to four with adjectives.

Statement. MV’s statements are fact averred or not. They can play the role of

either a sentence or a sub-sentence. A statement corresponds to a predicate

in logic [KN02] and to the duet subject + predicate in traditional linguistic

grammar [Cho57]. MV is only concerned with the grammatical role state-

ments play in mathematical discourse and not with their veracity.

Example 1 “p ∈ R” and “if AB meets d then AB is not parallel to CD” are

examples of statements.

Substantive. A class, a kind, a type or a family of mathematical objects is called

substantive in MV. A substantive is a generic characterisation that has no

equivalent in linguistic of natural languages. Substantives could be seen as

types in type theory [KLN04] and concepts or classes in the ontology data-

model [W3C04].

Example 2 “natural number”and“continuous function”are examples of sub-

stantives.

Additionally, it is possible in MV to form sub-substantives to a given sub-

stantive. This relation is denoted ≪. By some means this relation implies the

existence of an adjective (see below) which, when combined with the given

substantive, would be equivalent to the sub-substantive.

Example 3 Once we have the substantive “rectangular” we can form

“square” as a sub-substantive of “rectangular”: “square ≪ rectangular”. This

example is taken from [dB87, §1.14]. Here, square could be also defined as

shortcut for “equilateral rectangular”.
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Name. In MV, mathematical objects are names. If an identifier stands for an

object, then this identifier is a name. A name can also be an entire phrase

describing a mathematical object. Names correspond to individuals or in-

stances in the ontology data-model.

Example 4 “π”, “the isosceles triangle ABC”, “x” and “a+b
n

” are examples

of names.

Adjective. Mathematicians commonly use adjectives to characterise an object or

to restrict a class of objects to a sub-class that shares common characteristics.

Example 5 Adjectives can either be used to form a new substantive: “con-

tinuous function”, or to form a statement with a name “f is continuous”.

N.G. de Bruijn considers this set of four grammatical categories to be enough for

a language for mathematics. To complete this descriptions of MV’s grammatical

categories we should mention the way sets are treated in MV. Substantives and

sets are both represented by substantives since the difference between them lies in

a level not covered by MV.

It is customary to make the distinction between sets and classes.

Roughly speaking, sets are classes over which we allow quantification.

Usually we think of the classes which are no sets as those which are just

too big to be sets, like the class of all sets. [dB87, §1.18]

A hierarchy of sets and substantives could be therefore constructed with adjectives

and the sub-substantive relation. This is why N.G. de Bruijn described MV as a

kind of typed set theory [dB87, §1.14].

2.1.2.4 Identifiers and parameters

Identifier. In MV, identifiers [dB87, §5] are the main material of texts. An iden-

tifier is an atomic piece of text and could either be a variable, a constant or

a binder [dB87, §20].

An identifier usually gets its meaning from the line context or the binder

introducing it in the case of variables, from a definition line or primitive line

in the case of constants and from the MV grammar in the case of binders.
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A primitive is a constant defined “without explanations in terms of known

things” [dB87, §7.3]. Primitives are equivalent to Automath’s primary notions

(see Section 2.1.1.1.3).

Example 6 “p”, “AB”, “not parallel”, “continuous”, “function” and “rectan-

gular” are among the identifiers used in the examples of Section 2.1.2.3.

It is essential to differentiate MV words (identifiers) and the words used to

form mathematical natural language texts. MV is interested with expressing

mathematical discourse in a formal symbolic manner. MV words therefore

represent atomic discourse entities. An MV word corresponds to one or more

natural language words. It might happen that an MV word does not corre-

spond to any word in its mathematical natural language equivalent.

As an example we quote a definition: “We say that the vectors

p and q are locally independent in the sense of Prlwtzkowsky if...”.

[...] The fact that the words “in the sense of” have been taken just

in this order, does not play a role we consider to be essential for

MV. It plays a role in readability, memorizability and possibly in

parsability. [dB87, §3.4]

Parameter. In MV, parameters are a special case of variables. They are used

when defining a parametrized constant. The set of variables contained in

the context of a definitional line is the set of parameters for the constant

being defined. This feature follows from an Automath tradition (see Sec-

tion 2.1.1.1.4).

It is essential that each one of the context variables occurs at

least once in the parametrized constant. [dB87, §5.5]

2.1.2.5 Typings and clauses

Two levels of typing are defined for MV [dB87, §1.17, 3.6]. The first one named

low typing – present at the language level – expresses the belonging of an object in

a set or a kind of objects. The second one named high typing – also present at the

language level – indicates whether an expression is a statement or a substantive.

Both kinds of typing are part of the language itself in the same way Automath had

different levels of expressions. MV’s low-typing is equivalent to Automath’s typing
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of 3-expressions (by means of 2-expressions) and MV’s high typing is equivalent to

Automath’s typing of 2-expressions (by means of 1-expressions).

[...] the rules of MV will not contain all of what is usually called the

foundation of mathematics. Once we have reached a certain level, the

language is strong enough to allow us to write the rest of the foundation

of mathematics in an MV book. [dB87, §8.1]

When describing MV, N.G. de Bruijn presented an important notion called

clause. A clause of a line body symbolises the information that could be highlighted

from the MV text. For the axiomatic and assertional lines the clause is a high typing

which indicates that the line body is a statement. For primitive and definitional

lines the clause is the high typing of the symbol introduced. There is a second

clause for definitional lines which is the high typing of the definition body.

2.1.2.6 Validation and automation

In the article [dB87], N.G. de Bruijn gives his opinion on automating the validation

of MV books.

One might think of a direct machine verification of books written in

MV, but this will be by no means so “trivial”as in Automath. Checking

books in MV may require quite some amount of artificial intelligence.

[dB87, §1.13]

Some sets of rules are defined to check the well formation of an MV text. They are

expressed in a way which indicates how a valid MV content can be extended.

The rules of [MV’s] grammar will be production rules, in the sense

that they all describe ways to extend a valid book by adding a new

line. [dB87, §8.3]

The rules are organised in several groups. The first one groups the basic rules

to validate contexts, clauses [dB87, §9], books [dB87, §10] and common struc-

tures [dB87, §11]. The rules T1–T13 [dB87, §12] specify how the well formation of

the substantives’ hierarchy is verified. The further groups deal with equality [dB87,

§13], sets [dB87, §14], pairs [dB87, §15], functions [dB87, §16] and logic [dB87, §17].

We see that an important part of these rules actually deals with validation of the

mathematical or logical content of MV texts. This intention of validation means

that the MV checker is not restricted to the grammatical formation of text. The

basic rules are the only ones entirely focused on grammatical correctness.
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These rules BR1 to BR9 are hardly of a logical or mathematical

nature. Or, rather, they describe how to handle logic and mathematics.

[dB87, §9.1]

By restricting high and low typing to a small set of simple types and by re-

stricting the checking to grammatical matters, R. Nederpelt updated MV to the

so-called Weak Type Theory (WTT) [Ned02]. Concurrently, F. Kamareddine gave

the meta-theory of WTT which was eventually published in [KN04].

2.2 The Weak Type Theory

The Weak Type Theory (WTT) was originally designed by R. Nederpelt as a re-

finement of MV [Ned02]. Concurrently, F. Kamareddine gave WTT’s meta-theory

which was eventually published in [KN04], see Section 2.2.4. WTT is an abstract

language and a type system which could be used to express mathematical reason-

ing in a formal way, see Sections 2.2.1, 2.2.3 and 2.2.5. To each element of the

language, the system attributes a weak type, see Section 2.2.2.

2.2.1 Linguistic categories

WTT defines an abstract syntax for a formal language of mathematics. The el-

ements of this syntax are classified according to four language levels. Variables,

constants and binders belong to the atomic level. Terms, sets , nouns and adjec-

tives belong to the phrase level. Statements and definitions belong to the sentence

level. Finally, contexts , lines and books belong to the discourse level. Statements

are also sometimes listed in both phrase and sentence levels.

WTT makes explicit the grammatical role of each linguistic piece of text. There-

fore, the linguistic categories of the atomic level are split into disjoint subsets de-

pending on the grammatical category of the identifier. This grammatical category

is indicated by upper indices adjoint to the symbol representing the linguistic cate-

gory (see Section 4.4). Variables (respectively constants and binders) are split into

term and set variables (respectively term, set, noun, adjective and statement con-

stant, and term, set, noun, adjective and statement binders). Statement constants

are sometimes divided into relational constants, such as ≥, and logical constants,

such as ∧. The sets of variables, constants and binders are given beforehand and

are infinite. Variables have to be declared in a context prior to being instantiated
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to form a phrase. Constants have to be defined by a definition prior to forming a

phrase or a sentence.

Similarly to MV, a context is a sequence of assumptions and declarations. A

line is the context plus sentence tuple. And a book is an ordered sequence of lines.

WTT inherits MV flags described in Section 2.1.2.2.

2.2.2 Weak types

The use of the adjective weak as an attribute for a type system would indicate

that WTT is a small type system. But weak should be seen as an attribute to the

word type. A weak type is by definition not prevalent nor potent. By extension,

weak typing is a light or generic judgment. WTT defines eight weak types. These

types – book, cont, term, set, noun, adj, stat and def – correspond directly to

the grammatical categories of the the abstract syntax. This list of weak types is

highly related to the way the WTT typing rules are written. Some weak types

could have been added to this list for completeness but were not essential in the

type system. For instance, line, dec and phrase could well be weak types as in

MWTT Section 4.4 (see Section 4.2.1.1 where a homogeneous set of weak types is

defined for MathLang-CGa).

2.2.3 Type system

WTT defines a set of well formation criteria to validate WTT mathematical texts.

WTT implements N.G. de Bruijn’s idea of a line-by-line language where validity is

defined according to the relation between a line and the book formed by the previous

lines. A typing judgment for a book B is stated in the empty environment.

⊢ B • •

• • book

A typing judgment for a context C is stated in the environment formed by a well-

typed book B.

B ⊢ C • •

• • cont

A typing judgment for a term t (respectively a set s, a noun n, an adjective a, a

statement p and a definition d) is stated in the environment formed by a well-typed
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book B and a well-typed context C (C being well-typed in B).

B; C ⊢ t • •

• • term

B; C ⊢ s • •

• • set

B; C ⊢ n • •

• • noun

B; C ⊢ a • •

• • adj

B; C ⊢ p • •

• • stat

B; C ⊢ d • •

• • def

WTT rules are equivalent to MV’s basic rules (BR1–BR9 of [dB87, §9]). See

Section 4.4.2 for the set of typing rules of MWTT which is an extension of WTT.

2.2.4 Meta-theory

In [KN04], one finds the followings:

Corollary 1 (Decidability of weak type checking) Weak type checking is de-

cidable: there is a decision procedure for the question B; C ⊢ E • •

• • t?.

[KN04, Corollary 4.21]

Corollary 2 (Weak typability) Weak typability is computable: there is a proce-

dure deciding whether an answer exists for B; C ⊢ E • •

• • ? and if so, delivering the

answer. [KN04, Corollary 4.21]

They show that WTT has subject reduction with respect to the unfolding of

definitions in a book. The unfolding of definitions is equivalent to δ-reduction

(see 2.1.1.2.2), we note it →δ.

Theorem 1 (Subject reduction) If B; C ⊢ E • •

• • t and B ⊢ E →δ E ′, then

B; C ⊢ E ′ • •

• • t. [KN04, Theorem 4.28]

And finally, they prove that WTT’s unfolding of definitions is strongly normalising.

Theorem 2 (Strong normalisation) Let ⊢ B • •

• • book. For all subformulas E

occurring in B, relation →δ is strongly normalising (i.e., definition unfolding inside

a well-typed book is a well-founded procedure). [KN04, Theorem 4.40]
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2.2.5 Expressiveness

Make grammatical roles explicit. From a computer scientist point of view,

WTT’s abstract syntax may sound highly redundant. The identifiers are

to be given and their grammatical category fixed before any WTT text can

be written. This makes WTT somehow more explicit than strongly typed

programming language. From a mathematician point of view this set-based

definition of WTT uses familiar jargon. This follows N.G. de Bruijn’s idea of

a language for mathematics with typed sets.

Weak-validation. WTT does not make any analysis on the mathematical mean-

ing of a text but because each identifier is part of a grammatical category,

the grammatical correctness is validated. For example, it is possible to write

in WTT that a variable x is equal to 1 and to 0:

x : N

x = 1 and x = 0

This is grammatically correct even if semantically incorrect. But WTT

derivation rules will lead to an error with the following example:

x : N

x = 1 ⇒ 1

This example would correspond to the sentence “let x be a natural number,

we have that x implies 1” which could not mean anything if 1 is a number

and not a particular statement.

2.2.6 Perspectives

WTT inspired some researches at Technische Universiteit Eindhoven which are

concerned with moving from WTT to Type Theory. G. Jojgov and R. Nederpelt

describe in [JN04, Joj06] ways to extend the analysis of a WTT document by

recording assumptions in a context as future proof obligation for a full formalisation.

Ultimately, the goal is to reach a robust formalisation similar to those performed

by theorem provers (see Section 2.4.3).

Later, in Section 4.4, we describe our early work MWTT which is a refinement
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of WTT. We do not give the set of typing rules of WTT since the typing rules of

MWTT (see Section 4.4.2) are based on those of WTT. Hence the reader can get

the feel of the WTT rules from those of MWTT.

2.3 The MathLang Project

MathLang is a framework for mathematics on computers.

1. MathLang is a framework. It is meant to be used for communication and

as a concrete support for human mind formulation. MathLang is a well struc-

tured framework aimed to synthesize the common mathematical language.

2. MathLang is for mathematics. It is meant to be open to any branch of

mathematics and to any topic that uses mathematics as a base language.

MathLang mimics mathematics in its incremental construction of a body of

knowledge.

3. MathLang is for computerisation. MathLang is meant to be a medium

for a human-system, human-human via a digital support, and system-system

communication. MathLang is a computer-based framework and therefore

offers automation facilities.

2.3.1 MathLang’s Philosophy

The language used by mathematicians to express, show and explain mathematics

has been refined by millennia of discoveries and advancement in abstract reasoning.

We inherited from this Common Mathematical Language (CML) which is perceived

as the most rigorous of the natural languages (see Section 2.4.1.1). A number of

mathematicians and philosophers have advocated the use of a formal language (in-

stead of CML) in order to exclude any ambiguity from the reader. The philosophical

discussions over the essence of mathematical deductions and demonstrations led to

the elaboration of logics. The search for a foundation of mathematics where proofs

could be expressed in a formal language is ongoing and has already led to accepted

and time-honored foundations.

A number of mathematicians and philosophers have advocated the use of a

formal language (instead of CML) in order to exclude any ambiguity from the

reader. The philosophical discussions over the essence of mathematical deductions

and demonstrations led to the elaboration of logics. The search for a foundation of
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mathematics where proofs could be expressed in a formal language is ongoing and

has already led to accepted and time-honored foundations. Nevertheless, despite

these influential efforts, CML remained the communication medium for mathe-

maticians. To accommodate the use of this informal but expressive language it is

common to assume the feasibility of consistently transcribing “formal” CML text

into a formal foundation.

In general he [the mathematician] is content to bring the exposition

to a point where his experience and mathematical flair tell him that

translation into formal language would be no more than an exercise of

patience (though doubtless a very tedious one).

[Bou54, Bou68, Chapter I]

With their computational capabilities, computers offer the possibility to put

formalisation into practice. Many systems (see a comprehensive comparison in

F. Wiedijk’s work [Wie03, Wie06]) offer computational tools to automatically check

the correctness of formal proofs. These systematic validations are time-wise im-

practical by humans. Automath (see Section 2.1.1) and Mizar (see Section 2.4.3.2)

are among these precursor computer-based languages and theory checking systems.

Computers can also in a way “invent” mathematical knowledge. The research field

of automatic deduction aims at assisting the mathematician or even replacing the

mathematician by searching for a valid proof of a given property. But this revo-

lutionary approach to mathematics (as we presented in Section 2.1.1.3, page 17,

using N.G. de Bruijn’s own words) has its skeptics. Some people regard formal

logic as being of philosophical interest but consider that mathematics should not

be restricted only to formal proofs. They have not found any interest in using

formal computer-based systems. This opposition between computer-based formal

mathematics and more intuition-based mathematics raises the following question:

Does all mathematics need to be formalised?

• If the answer to this question is positive then we end up with other practi-

cal questions. How should we consider branches of mathematics that have

not been formalised? What is the role in the universal body of mathemat-

ics for non-formalised materials? And materials known to contain logical or

foundational mistakes (therefore non-fully-formalisable)? How do we treat

draft mathematics and unaccomplished theories that can not yet fit into a

formal system? We are at a period of mathematics where computer-checked

proofs are gaining respect and importance in the mathematical community –
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the Four-Colour Theorem is the first major theorem computer-proved [Gon]

(using the Coq proof assistant, see Section 2.4.3.1), and the Mizar formal-

isation of the Jordan Curve Theorem [Kor05] in the Mizar Mathematical

Library [MML]. Nevertheless, the dreams of a comprehensive library for for-

mal mathematics has not come true [BW05], and it is not clear if it will ever

come true.

• If the answer to the above question is negative then we need to question

the usability of proof assistant software by mathematicians. For most such

software, the only possible outcome for a document, is to be a logically valid

one. This orientation creates early choices for the authors. In such framework,

the design of a theory and the elaboration of proofs are oriented towards

achieving full-formalisation. Mathematicians can only think of using a formal

system if they are sure a formalisation will be carried out to its final close

and obviously if they need such validations.

MathLang’s philosophy is to bridge the gap between common mathematical

writings and full-formalisation. Our starting point is to propose a solution for

putting mathematics on the computer that:

• Leaves the author free to edit any mathematical texts (in terms of a branch

of mathematics and also in terms of a level of correctness).

• Gives a framework in which CML is the medium for the human reader but

where the reasoning, expressed in CML, is computerised in a comprehensive

manner for computer-based analysis,

• Opens the possibility of semantical and logical refinements and even formal-

isation if achievable or needed.

In the MathLang project and in this thesis we pursue the idea of providing

a medium for handling mathematical knowledge on computers. We believe this

goal could only be achieved by merging in one framework both the traditional-

mathematical-vernacular distinctive aspects and the advanced computer-based tech-

nologies for managing formal mathematics. In Section 2.3.2 we explain why the

MathLang project seeks the computerisation of mathematics in opposition to its

formalisation. Considering computerisation as an authoring trend, we prolong this

reflection by comparing, in Section 2.3.3, the act of encoding and the act of trans-

lating. In Section 2.3.4 we explain the MathLang project choice to decompose
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the computerisation/formalisation of mathematics into meaningful aspects. These

discussions continue in Chapter 3 concerning the particular aspects defined in this

thesis.

2.3.2 Computerisation vs. formalisation

Prior to any discussion we shall first define the two notions of computerisation and

formalisation as they could mean different things in different contexts.

By computerisation we mean the process of putting a document in a computer

format. This could mean a wide variety of processes because the variety of computer

languages is vast (see Section 2.4). We consider here mathematical documents in

their printed form as found in mathematical textbooks or scientific journals. This

preemptive consideration puts a constraint on computerisation. A computerised

document is no more than a computerised version of such a traditional document.

In this sense, computerisation is concerned with both (1) providing the knowledge

contained in a mathematical document and (2) reflecting the original style in which

the document existed (or by extension would have existed in the case of fresh

authoring).

By formalisation we mean the process of extracting the essence of the knowledge

contained in a mathematical document and providing it, in a formal document, in a

complete, correct and unambiguous format. A formalised document should clarify

all notions contained in a document as well as making explicit all the details of any

logical deductions it contains. Again, this process could be done in a vast variety

of manners depending on the foundation and the framework used (see Section 2.4).

Formalisation is therefore concerned only with the first point of the previous para-

graph (i.e. providing the document’s mathematical knowledge). The second point

(i.e. reflecting the document’s original style) is more or less tackled in formalisa-

tion frameworks (see Section 3.2.1). It is usually an artifact in the sense that it

attempts to recreate a seemingly natural document out of a formal one.

Our choice for MathLang is to provide a language for the computerisation of

mathematics. We root this choice in N.G. de Bruijn’s vision (see Section 2.1.1.3).

We indicate here the major characteristics of computerisation.

Accessibility. In Section 2.1.1.3, we discussed the difficulty of choosing a suitable

foundation when formalising mathematics. Formalisation effectively requires

some expertise because it forces one to make choices: the choice of a termi-

nology for representing concepts, the choice of the underlying logic for repre-
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senting the deduction steps, the choice of a formal system between Zermelo-

Frankel set theory [HK68], type theory [KLN04], category theory [Lan71] and

others, and the choice of a proof checker, see Section 2.4.3 and [Wie06]. These

choices are not easy to make and require a certain amount of knowledge in

the theoretical and implementation aspects of formalisation. MathLang chose

to offer a framework accessible for non-experts in formalisation where these

choices are not required until being really needed.

Inclusion. As mentioned above MathLang’s goal is not to restrict the mathema-

tician-user to a particular logic, foundation or system. For a language to

computerise mathematics, it is important to embrace all authoring habits.

By authoring habits we mean the author’s formalisation choices as well as

the author’s writing style. The language should be adaptive enough so that

the user does not have to adapt his own way of doing things. This inclusion

is even more important when we consider the encoding of existing libraries of

mathematics such as mathematical textbooks and journal articles. A com-

puterisation of such documents has to adapt to their style otherwise we shift

from computerisation to translation (see Section 2.3.3).

Reusability. An important aspect of the computerisation of mathematical docu-

ments is the dissemination. After the process of computerisation, a normal

continuation is to consider moving towards semantic refinement and more

precision in the logic implemented. This might not be done or feasible for

every document (we discuss this issue in Section 2.1.1.3) but this possibility

should be taken into consideration when designing a language for computer-

ising mathematics.

The MathLang project aims at computerising mathematics and considers comput-

erisation as a process that should not be constrained and should capture the natural

language parts of mathematical texts as well as making its content explicit.

2.3.3 Encoding vs. translation

The way we treat mathematical authoring has strong implications on the way we

incorporate existing mathematical documents in a computer-based corpus of math-

ematics. The formalisation of major treatise of mathematics is often effectively a

translation from its natural language form to a formal proof. A formalisation offers

several advantages. Firstly, it makes the original document’s theory and results

33



Chapter 2. Background and Related Works

accessible and reusable inside the formal framework in which the formalisation was

done. Secondly, it permits to formally prove the content of the document which

was to a certain extent only proof-read by the editorial-board and the readers.

A number of research teams around the world have been and still are working on

creating a digitised library out of these formalised documents. Among others we cite

here: L.S. van Benthem Jutting [vBJ77b] of the Automath project who formalised

E. Landau’s Foundations of Analysis [Lan30] in Automath, and the project4 lead

by G. Bancerek [BR02] who formalised in Mizar with 15 other authors most parts of

A Compendium of Continuous Lattices [GHK+80] and included this formalisation

in Mizar Mathematical Library (MML).

In the MathLang project our primary goal is to accommodate computerised

mathematics with mathematicians’ needs. We base our effort on computerising

existing mathematical documents (see Section 5.3). We are therefore interested in

encoding mathematical texts more than translating them into a formalised form.

The current aspects of MathLang do not aim at providing yet another foundation

for mathematics and its digital library but to provide a suitable authoring method

(see Sections 5.1 and 5.2) for the working mathematician.

2.3.4 Decomposition into Aspects

Back in 2000, F. Kamareddine and J.B. Wells started the project MathLang. One

of the initial characteristic of the language and framework they were willing to

develop was their decomposition in terms of levels of computerisation. MathLang’s

proposals [KW00, KW01] included libraries of computerised mathematical texts,

bridging with a number of proof checkers (Mizar, Ωmega, Isabelle, etc) and different

levels of formalisation and computerisation of mathematics. According to these

proposals, the computerisation or formalisation should be facilitated by a step-

by-step approach where a CML text is first translated into language similar to

WTT (reaching the first level) and then refined level after level with more logics

and semantics. This method should be more accessible than a direct formalisation

because the first level do not require any particular expertise in formalisation.

As a result of the research and experiments carried out on the various com-

puterisation in MathLang by undergraduate and postgraduate research since 2000

(including this thesis), J.B. Wells proposed in 2005 replacing the levels of formal-

isations by the so-called aspects. The notion of aspect permits a greater focus

4http://megrez.mizar.org/ccl/ (last visited 2007–04–20)
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on knowledge capture by each decomposition elements contrast to the notion of

level which implies a stratification and therefore an obligation to meet one level

before another. Figure 2.3 depicts the current aspect-oriented MathLang method

for authoring mathematics. The computerisation/formalisation path goes from the

top-left to the bottom-right corner of the figure. CGa (see Chapter 3) and Doc-

ument Rhetorical aspect (DRa) [KMRW07b] (see Section 7.1.1.2 for current and

future works) inputs could be done sequentially, simultaneously or independently.

The interfacing with CML is managed by TSa (see Chapter 5).

2.4 Mathematics on Computer, a State of the

Art

In this section we draw the picture of the situation of mathematics on computer

today. This state of the art is not exhaustive but is the result of a thought

search over available techniques for encoding mathematics. We try to present a

wide overview of the activities of the Mathematical Knowledge Management com-

munity whose flourishing activities are presented at the MKM conferences and

events [MKM01, MKM03, MKM04a, MKM04b, MKM06a, MKM06b, MKM07].

We organised the summary of these activities into three categories of system.

All the languages and systems from each category share the same end-goal. Sec-

tion 2.4.1 is interested in typesetting systems and their support languages. Sec-

tion 2.4.2 investigates the available languages for semantical encoding of mathe-

matics. Finally, in Sections 2.4.3 and 2.4.4 we present well-advanced systems and

languages for the formalisation of mathematics on computer.

All along this section we make an effort to illustrate the use, capability and

expressiveness of these languages. We would like this census not to simply be a

basic enumeration of what exists but also a help in comparing these languages. For

this reason we use one main example as a connecting link throughout this section.

We use a proof of the irrationality of square root of two due to G.H. Hardy and

E.M. Wright [HW80]. Figure 2.4 shows this proof as presented by F. Wiedijk in

[Wie06]. In [Wie06], F. Wiedijk juxtaposes versions of this proof as encoded and

validated by each prover participating in this experiment. In [Wie03], F. Wiedijk

presents the result of the comparison of these formalised and computerised proofs

and likewise compares the provers themselves. We extend this comparison in Sec-

tion 3.2.1 to a different level (i.e. different from pure formalisation).
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Figure 2.3: MathLang project

This diagram illustrates both the MathLang decomposition by means of knowledge
aspects and the MathLang authoring process. The central piece represents a
MathLang document while the corner pieces are elements of the authoring process.

CML (top-left corner) is the starting
point of any MathLang authoring. TSa
(see Chapter 5) offers facilities to asso-
ciate portions of text with their meaning
in terms of computerised data.

CGa (top-right corner) makes explicit
the grammatical role played by the ele-
ments of the texts. An automatic check-
ing validates this grammatical aspect
(see Chapter 4).

DRa (bottom-left corner) gives the nar-
rative structure of a text which includes
the relationships (pictured as arrows) be-
tween labeled text entities (pictured as
polygons) and GoLP is an interpreta-
tion of these relationships in terms of
logical precedence [KMRW07b] (see Sec-
tion 7.1.1.2).

Starting from a MathLang document we
experimented with further computer-
isations/formalisations. We illustrate
this point (bottom-right corner) with a
proof-tree-like interpretation which is a
possible starting point for building a
formalised proof [KMRW07a] (see Sec-
tion 7.1).

Thick arrows draw the MathLang authoring process which starts with CML and con-
tinues to further formalisations. CGa and DRa steps could be made simultaneously
or separately. See Figure 3.1 for more a description of the shapes meaning.
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Theorem 43 (Pythagoras’ Theorem)
√

2 is irrational.

Proof If
√

2 is rational, then the equation

a2 = 2b2

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a, b) = 1.

Figure 2.4: Pythagoras’ proof of irrationality of
√

2 by G.H. Hardy and
E.M. Wright [HW80] as presented by F. Wiedijk in [Wie06]

2.4.1 Mathematical Typesetting Systems and Languages

2.4.1.1 The Common Mathematical Language

The mathematics we are taught from primary school to university level is almost

always written in a distinctive language style. This style differs from other natural

languages by its extensive use of abstraction and its rigor. This very same language

can designate first order equations, geometric problems or demonstrations in gen-

eral topology. Of course the background requested to understand what is expressed

depends on the knowledge of the reader, but what remains is a certain uniformity

of the language. This linguistic style has been called the Common Mathematical

Language (CML) in [KN04]. Its ingredients are symbols composed into formulas

and natural language chunks. Recognisable text constructions, familiar labels and

fonts constitute the visible substance of CML texts. However, an important part

of what makes the consistences of a text – such as the connections between pieces

of text, a justification of an obvious deduction or the origin of a variable – is left

to the reader’s understanding.

Mathematical typesetting systems are familiar to mathematicians but also to

anyone wanting to print texts with mathematical formulas on paper or screen.

The users of these systems could be as different as students, scientists or pub-

lishers. Most of the traditional typewriting systems could be combined with an

equation editor for inserting mathematical formula. Modern commercial and Free

office software suites include such editors. The open office-suites such as KOffice

(http://www.koffice.org/), OpenOffice (http://www.openoffice.org/) or

Gnome Office (http://www.gnome.org/gnome-office/) have their own open-

formats that follow the XML recommendations. They have built-in or plugin facil-

ities for editing mathematical formulas. In this section we mainly focus on formats
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specifically dedicated to scientific and mathematical editing.

2.4.1.2 LATEX

The most commonly used language for authoring mathematics is LATEX. It is widely

accepted by publishers of mathematical journals and textbooks due to its typeset-

ting quality. LATEX is a system and a programming language for publishing with

the TEX typesetting program created by D.E. Knuth [Knu84a]. LATEX, designed by

L. Lamport [Lam94], provides programming features for automating most aspects

of typesetting and offers extensive facilities for specialising its use.

\begin{theorem}[Pythagoras ’ Theorem]

$\sqrt{2}$ is irrational.

\end{theorem}

\begin{proof}

If $\sqrt{2}$ is rational , then the equation

$$a^2 = 2b^2$$

is soluble in integers $a$, $b$ with $(a,b)=1$. Hence

$a^2$ is even , and therefore $a$ is even. If $a=2c$, then

$4c^2=2b^2$, $2c^2=b^2$, and $b$ is also even , contrary to

the hypothesis that $(a,b)=1$.

\end{proof}

Listing 2.1: LATEX’s code of corresponding Figure 2.4’s example

Listing 2.1 presents the LATEX code we used to input our example in Figure 2.4.

This LATEX code is a succession of:

• letters forming natural language words,

• LATEX commands (starting with the backslash sign \) and arguments (delim-

ited by the curly brackets { and } or square brackets [ and ]),

• LATEX mathematical mode (delimited by single $ or double $$ dollar sign) for

formulas.

A computer program, such as the LATEX compiler, can interpret this code to produce

a visual output similar to the one shown in Figure 2.4.

LATEX is a one-dimensional encoding (sequence of characters) of a two-dimen-

sional CML text (on-paper or on-screen output) and is therefore a computerised

version of CML. Would the fact that LATEX is a computerised language help any
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semantical analysis? The environments theorem and proof hold some semantics as

they delimit a piece of text and their name indicates the role this piece of text plays

in the text. Formulas could also be recognised if they are composed of standard

symbols. When having a careful look at the formulas of our example we note that

some may cause difficulties to an automatic analyser. A human reader could easily

understand, in the context of arithmetic, that (a, b) refers to the greatest common

divisor (gcd) but this recognition is not straightforward for a computer software.

The background context might help to differentiate between a simple tuple (a, b)

(representing coordinates for example) and the gcd ((a, b) should be interpreted as

gcd(a, b)). Furthermore, formulas remain ambiguous in LATEX, as explained in de-

tails in [Pad03], due to the fact that the precedence of symbols is not explained and

that many operations such as the multiplication or, as we saw here, the gcd are not

associated with specific LATEX commands. Even if we consider the environments

and the formulas to be identifiable, the task of inferring the role played by formulas

within the natural language text remains tremendous as natural language recogni-

tion techniques are still under development. M. Kohlhase proposed in [Koh04] to

carefully choose TEX macros and LATEX commands to help such recognition. Even

in the best case, LATEX can not be expected to capture the semantic content of

natural language text any better than OMDoc (see Section 2.4.2.2).

2.4.1.3 MathML

MathML [W3C03], which was the first language implementing the XML recom-

mendations [Worb], describes a method to encode both the appearance and the

semantics of mathematical formulas. MathML deals with the rendering aspect of

mathematical formulas with MathML-Presentation and with the encoding of the

meaning of formulas with the MathML-Content. Many mathematical software of-

fer MathML input/output capabilities. Its expressiveness is restricted by the fixed

set of symbols it defines and the absence of a macro system (at the time of writ-

ing this thesis, a macro system for MathML is part of the future extensions listed

in [W3C03, Ch. 7]). Even if MathML is widely used and has important software

support it is too closely associated to its presentational aspect. MathML is similar

to the LATEX mathematical mode in its way of encoding in an XML tree the appear-

ance structure of a formula [Pad03]. MathML permits to adjoin to the encoding

of the visual representation of a formula its semantical interpretation. MathML is

restricted to formulas and relies on XHTML [W3C06], for example, for shaping the

formulas inside a document.
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Figure 2.5: TEXmacs user interface

2.4.1.4 TEXmacs

TEXmacs [vdH01, vdH04] is a free scientific text editor. It offers the same typeset-

ting quality as LATEX but integrated in a What You See Is What You Get (WYSI-

WYG) editor. Figure 2.5 is a screenshot of the TEXmacs Graphical User Inter-

face (GUI). This figure shows the edition of Figure 2.4’s text within TEXmacs.

TEXmacs internal representation is a markup language which is an disrelated mix-

ture of XML-like tree structure and LATEX-like commands, see Listing 2.2 for an

illustration with the source code of the document shown in Figure 2.5.

TEXmacs is used as an interface for many external systems such as computer

algebra systems or theorem provers, thanks to its plugin system. The TEXmacs plu-

gins for Coq TmCoq and tmEgg are respectively presented in [AR03] and [MG06].

In [ABFL05, WAB06, ABFL06, AFNW07], the Ωmega group at the Universität

des Saarlandes presents its recent work in using TEXmacs as an interface for their

proof assistant [BCF+97]. We discuss in details our use of TEXmacs as an interface

for MathLang in Section 6.3.

<TeXmacs |1.0.6.7 >

<style |generic >

<\body >

<\theorem >

[Pythagoras ’ Theorem ] <with|mode|math|<sqrt|2>> is irrational .

</theorem >

<\proof >
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If <with|mode|math|<sqrt|2>> is rational , then the equation

<\equation *>

a<rsup |2>=2b<rsup|2>

</equation *>

is soluble in integers <with|mode|math|a>, <with|mode|math|b> with

<with|mode|math|(a,b)=1>. Hence <with|mode|math|a<rsup|2>> is even , and

therefore <with|mode|math|a> is even. If <with|mode|math|a=2c>, then

<with|mode|math|4c<rsup |2>=2b<rsup|2>>,

<with|mode|math|2c<rsup |2>=b<rsup|2>>, and <with|mode|math|b> is also

even , contrary to the hypothesis that <with|mode|math|(a,b)=1>.

</proof >

</body >

<\initial >

<\collection >

<associate |font -base -size|12>

</collection >

</initial >

Listing 2.2: TEXmacs sources of the document shown in Figure 2.5

2.4.2 Semantic Markup Languages

Following the advance in the standardisation of data models, several project were

started in the past decades to propose generic semantical encodings of mathemat-

ics. These efforts lead to the creation of document markup languages such as

OpenMath5, MathML6 and OMDoc7.

These markup languages were originally aimed at offering a standardised and

open format for encoding mathematical formulas. The first project, OpenMath

was started in 1993 by mainly European research groups. The resulting markup

language OpenMath followed the XML recommendations in its later versions. The

World Wide Web Consortium (W3C) is developing MathML, see Section 2.4.1.3

dedicated to MathML.

2.4.2.1 OpenMath

OpenMath (due to the fact that it was initiated by research groups) focuses on

a more semantical encodings of formulas in comparison with MathML. Open-

Math [AvLS96, BCC+04] is a language for encoding mathematical formulas. Math-

ematical symbols are defined in OpenMath Content Dictionaries (OMCD) (symbol

5http://www.openmath.org/
6http://www.w3.org/Math/
7http://www.omdoc.org/

41

http://www.openmath.org/
http://www.w3.org/Math/
http://www.omdoc.org/


Chapter 2. Background and Related Works

definitions and definitional properties). The OpenMath standard library provides

numerous OMCD including an impressive number of symbols. Users are also free

to write their own OMCDs. Developers of computational systems can define in

an OMCD the set of symbols recognised by their system. The communication

of OpenMath formulas between two systems is made possible after both systems

have been taught how to read each others OMCD. However, OpenMath lacks suf-

ficient theoretic and software support for checking the well-formation of formulas.

In [Str03, Str04], A. Strotmann gives a clearer understanding of the OpenMath

language itself. He used categorial semantics to analyse the OpenMath markup

language. Nevertheless his work was not aimed at analysing the semantics of Open-

Math objects. There exists currently one implemented validation tool for Open-

Math objects. This is simply a syntactical analysis of the structure of the XML

encoding of the OpenMath object. A semantical validation process for OpenMath

objects is described in [CC99] by O. Caprotti and A. Cohen. For each symbol

definition (<CDDefinition>), a type signature (<Signature>) could be provided.

It uses the Extended Calculus of Constructions (ECC) to validate OpenMath con-

tents. This analysis is based on some type annotation given by the OpenMath

user in OMCDs. In [Dav99], a more complex system, the Simple Type System

(SST) [Dav00], has been used for the same purpose. But unfortunately, no imple-

mentation of these validation processes are currently available. See Section 7.2 for

envisioned outcome of this thesis on the particular subject of checking OpenMath

objects. The issue of the rendering of OpenMath formulas is yet to be solved.

There is ongoing work on tackling this issue, see [MLUM06].

2.4.2.2 OMDoc

In the semantic markup languages MathML-Content, symbolic formulas are en-

coded using a library of predefined symbols. In OpenMath, the symbols are defined

in some OMCDs. OMDoc [Koh06] was created by M. Kohlhase to add a theory/

document level to OpenMath. There are many ways to write our examples from

Figure 2.4 in OpenMath/OMDoc. We sketch one possible encoding in Listing 2.3.

<assertion id="th" type=" theorem">

<commonname> Pythagoras ’ Theorem

<FMP> <OMOBJ>
√

2 6∈ Q

<CMP> <OMOBJ>
√

2 is irrational.

<proof id="pr-th" for="th">

<CMP> If <OMOBJ>
√

2 is rational , then the equation
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<OMOBJ> a2 = 2b2 is soluble in integers <OMOBJ> a,

<OMOBJ> b with <OMOBJ> (a, b) = 1. Hence <OMOBJ> a2 is

even , and therefore <OMOBJ> a is even. If

<OMOBJ> a = 2c, then <OMOBJ> 4c2 = 2b2, <OMOBJ> 2c2 = b2,

and <OMOBJ> b is also even , contrary to the

hypothesis that <OMOBJ> (a, b) = 1.

Listing 2.3: An OMDoc/OpenMath encoding of Figure 2.4’s example.

For readability and brevity, we show only the opening tag of each XML element; instead we

use indentation to express nesting. We also use traditional mathematical output prefixed

with the OMOBJ tag for OpenMath formulas instead of showing the XML tree.

OMDoc provides a wide variety of elements. An OMDoc document is organised

into theories (theory elements). Theories are related to OMCDs as they both

group a set of symbols. The notion of theory supplants the one of dictionary

by including altogether, theorems, lemmas and other assertional elements, proofs

and their components, examples, exercises and other textbook ingredients, and, a

powerful inheritance system (which nevertheless has expressiveness restriction due

to the wish to keep a simple morphism from theories to OMCD, see [Maa02, MP03]).

Definitions of symbols and assertions make use of two (possibly combined) ele-

ments: the FMP elements (Formal Mathematical Properties) which is expressed in

term of a symbolic formal expression, and the CMP elements (Commented Math-

ematical Properties) which is expressed using a mixture of natural language text

and OpenMath or MathML formulas. Thus, for natural language mathematics, one

must choose between retaining knowledge of the precise phrasing and presentation

chosen by the mathematician, or capturing more of the structure via conversion to

symbolic formula. Of course, one could do both like in our example above, keeping

the uninterpreted natural language while adding a symbolic formula, but then the

format does not support verifying the mutual consistency. Generally, one does not

expect the formal checking of mathematics encoded in OMDoc.

The structure of an OMDoc document is more rigid than with the mainstream

mathematical typesetting systems. This is due to the fact that the semanti-

cal aspect of the language leads the structure of the document. Formating a

proof with OMDoc is equivalent to following the proof structuring as proposed

in [Ler83, Lam95]. This issue was tackled in the latest version (version 1.2) of

OMDoc presented in [Koh06].
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2.4.3 Theorem Provers

Mathematical discourse is interested in describing knowledge and demonstrating

the truthfulness of what it describes. This notion of truth is central in formal

mathematics where the aim of any proof is to be convincing enough to bring a

claim to a level of an admitted fact. To meet this goal for truth one obviously

needs to avoid falsity and, by extent, inaccuracy in the logical construction. The

search for truth can then be replaced by a search for exactitude in all details

so that, from primarily agreed facts, one can demonstrate, without any doubt

(and without any language subversion) and with precise and conform rules, the

truthfulness of a claim. A wide variety of foundations for mathematics has been

achieved since the the ancient Greek mathematicians. Since the rise of computers,

some of these old and new foundations have been refined or invented to benefit

from the computational capabilities of machines [Bar04, BW05].

In 1993, the QED project was initiated by R.S. Boyer with the goal of provid-

ing an accessible, comprehensible and formalised computer-based encyclopedia of

mathematics. The QED manifesto [CAD94] describes the reasons, the objectives

and the steps for the realisation of this system. Seemingly, the project vanished

due to failure to concretise but its objectives ares still in the minds of the theorem

prover community.

In [Wie03] and its continuation [Wie06], F. Wiedijk lists and compares most

of the available theorem provers8. In [Har96b], J. Harrison sorts theorem provers

into two categories: declarative and procedural according to their proof style. In

[Wie01], F. Wiedijk reuses this classification.

2.4.3.1 Procedural approach

In the procedural proof style, one firstly defines a property to prove. This prop-

erty is the only element of the starting proof state which consists of the set of

proof obligations to fulfill. The proving process consists in applying tactics to the

remaining proof obligations. These tactics either provide the proof of a proof obli-

gation or decomposes this one according to its construction. The initial property

is considered proved when no proof obligations are left. Listing 2.4 shows a Coq

proof of Figure 2.4’s theorem. In this listing, line 82 states the theorem to prove,

and lines 83–96 contain the sequence of tactics to reach a complete proof.

8Visit http://www.cs.ru.nl/~freek/digimath/ (last visited 2007-04-23) for an ongoing at-
tempt to draw an exhaustive list of systems implementing “mathematics in the computer”.
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Theorem irrationalRsqrt2: (irrational (sqrt (S (S O)))).

Red .

84 Intros p q H; Red ; Intros H0; Case H.

Apply (main_thm p).

Replace (Div2.double (mult q q)) with (mult (S (S O)) (mult q q));

[Idtac | Unfold Div2.double ; Ring].

Case ( Peano_dec .eq_nat_dec (mult p p) (mult (S (S O)) (mult q q))); Auto;

89 Intros H1.

Case ( not_nm_INR ? ? H1); Repeat Rewrite mult_INR .

Rewrite <- (sqrt_def (INR (S (S O)))); Auto with real.

Rewrite Rabsolu_right in H0; Auto with real.

Rewrite H0; Auto with real.

94 Cut ~ <R> q == R0; [Intros H2; Field | Idtac ]; Auto with real.

Apply Rle_ge ; Apply Rlt_le ; Apply sqrt_lt_R0 ; Auto with real.

Qed .

Listing 2.4: A part of a Coq proof of Figure 2.4’s example

Part of Laurent Théry’s Coq proof from F. Wiedijk’s [Wie06].

There exists numerous procedural proof systems. Among others we mention: Coq9

[Log06, BC04] based on the calculus of inductive constructions [CH88],

PVS10 [ORS92] based on classical typed higher-order logic, Isabelle11 [NPW02]

which does not hard-wire logics into the system, but offers a meta logic (Isa-

belle/Pure) to formulate them, Ωmega12 [BCF+97] based on the CORE calcu-

lus [Aut03, Aut05], and Theorema13 [BCJ+06] based on high order predicate logic.

2.4.3.2 Declarative approach

In the declarative proof style, a proof is a succession of statements (and not tac-

tics). The main declarative proof systems are: Automath (that we presented in

Section 2.1.1) and Mizar14 [Try80, Rud92, RT99] based on Tarski-Grothendieck set

theory [Tar39, HK68, Try89]. Mizar is being developed by the Mizar project lead

by A. Trybulec since 1973. Listing 2.5 shows a Mizar proof of Figure 2.4’s theorem.

The syntax of Mizar mimicks natural language mathematics which makes it quite

readable by non experts.

9http://coq.inria.fr/
10http://pvs.csl.sri.com/
11http://www.cl.cam.ac.uk/research/hvg/Isabelle/, http://isabelle.in.tum.de/ and

http://mirror.cse.unsw.edu.au/pub/isabelle/
12http://www.ags.uni-sb.de/~omega/
13http://www.risc.uni-linz.ac.at/research/theorema/software/
14http://mizar.org/
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theorem :: Phytagoras ’ theorem

sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a,b being Integer such that

A1: b <> 0 and

A2: sqrt 2 = a/b and

A3: a gcd b = 1 by Local_TH2;

A4: b^2 <> 0 by A1 ,SQUARE_1:73;

0 <= 2 by NAT_1 :18; then

2 = (a/b)^2 by A2,SQUARE_1:def 4

.= a^2/b^2 by SQUARE_1:69;

then A6: a^2 = 2*b^2 by A4 ,XCMPLX_1:88;

then a^2 is even by ABIAN:def 1;

then a is even by PYTHTRIP:2;

then consider c being Integer such that

A8: a = 2*c by ABIAN:def 1;

A9: 4*c^2 = (2*2)*c^2

.= 2^2*c^2 by SQUARE_1:def 3

.= 2*b^2 by A8,SQUARE_1:68,A6;

2*(2*c^2) = (2*2)*c^2

.= 2*b^2 by A9;

then 2*c^2 = b^2 by XCMPLX_1:5;

then b^2 is even by ABIAN:def 1;

then b is even by PYTHTRIP:2;

then ex j being Integer st b = 2*j by ABIAN:def 1;

then 2 divides a & 2 divides b by A8,INT_1:def 9;

then A11: 2 divides a gcd b by INT_2 :33;

a gcd b = 1 by A3,INT_2:def 4;

hence contradiction by A11 ,INT_2 :17;

end;

Listing 2.5: A part of a Mizar proof of Figure 2.4’s example

Part of K. Retel’s Mizar version of the proof, inspired by F. Wiedijk’s one from [Wie06].

In [Har96a], J. Harrison proposes to use Mizar’s declarative proof style as

an alternative input for the HOL system (which is based on a procedural lan-

guage). This idea was later followed in the development of the Isar formal proof

language [Wen02, Wen99, WW02] as an alternative interface for the Isabelle sys-

tem [NPW02]. In [Wie01], F. Wiedijk provides an interesting description of at-

tempts to interface procedural TPs with a declarative style of writing proofs. An

application of this idea has involved the development of a declarative proof language
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for Coq [GW03, Cor07].

2.4.3.3 Formal Proof Sketch

As a matter of fact, theorem provers have been designed to target verified proofs. To

reach this target they check every single logical step needed for any assertion. But

this key-feature of theorem provers does not suit partial proving or proof planning.

How can theorem provers be used for these tasks? Lighter TPs have been proposed

as a solution by F. Wiedijk in [Wie04]. He defines Formal Proof Sketch (FPS)

a proof language whose validation is attenuated to permit proof sketching. This

notion could be defined for any proof language. He defines a Mizar FPS document

to be a Mizar document with holes (corresponding to Mizar checker *4 error).

Listing 2.6 shows a Mizar FPS proof of Figure 2.4’s theorem.

environ

vocabulary SQUARE_1 , IRRAT_1 , ARYTM , RAT_1 , INT_1 ,

ARYTM_3 , MATRIX_2 ,ORDINAL2;

notations ORDINAL2 , ORDINAL1 , XREAL_0 , XCMPLX_0 , INT_1 ,

INT_2 , SQUARE_1 , RAT_1 , IRRAT_1 , ABIAN;

constructors SQUARE_1 , RAT_1 , INT_2 , POWER , ABIAN , XCMPLX_0;

registrations REAL_1, XREAL_0 , NAT_1 , INT_1 , SQUARE_1;

requirements SUBSET , NUMERALS;

begin

theorem :: Phytagoras ’ theorem

sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b being Integer such that

a^2 = 2 * b^2 and

a,b are_relative_prime;

a^2 is even;

a is even;

consider c being natural number such that

a = 2*c;

4*c^2 = 2*b^2;

2*c^2 = b^2;

b is even;

thus contradiction;

end;

Listing 2.6: A Mizar FPS proof sketch of Figure 2.4’s example
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Mizar FPS version reproduced from [Wie06]; environment due to K. Retel.

We notice the relative similitude between the identifiable reasoning steps in Fig-

ure 2.4’s proof and in Mizar FPS’ code. This approach reduces the expense of

computerization via formalization (and also loses the certainty of full formaliza-

tion), but does not appear to greatly improve control over presentation, phrasing

and support for semantics-based manipulation.

2.4.4 Other systems

There exists many other systems for mathematics on computer. Computer alge-

bra systems have been for decades widely used by the mathematical community.

Axiom15 and Maxima16 are among the open-source computer algebra systems.

Maple17, Mathematica18 and Matlab19 are among the most popular proprietary

ones. We mention particularly the FoCal system20 [PDH02, PD02, Pre03] developed

by the FoCal project lead by T. Hardin. FoCal combines specification, algorithm

and proofs for performing verified computations. In 2002, together with V. Pre-

vosto and R. Rioboo, we designed FoCal’s documentation system [Maa02, MP03].

Another manner to computerise mathematics involves scanning images of text-

books using optical character recognition. Systems specialised in mathematical

texts recognition have gained more accuracy and precision by tackling semantic

and contextual recognition [NS06, KSSS06, RRSS06].

15http://www.axiom-developer.org/
16http://maxima.sourceforge.net/
17http://www.maplesoft.com/products/Maple11/
18http://www.wolfram.com/products/mathematica/
19http://www.mathworks.com/products/matlab/
20http://focal.inria.fr/
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Chapter 3

Faithful Computerisation of

Mathematics

In this chapter we introduce the founding ideas which, we believe, offers an encoding

for mathematics which pertain formulas and natural language as well as pertain

unambiguous grammatical constructions.

3.1 A Flavor of MathLang’s CGa and TSa

The easiest way to get the intuition of what is a TSa-CGa computerisation is to see

its principles in action on some examples. In this section, we show how common

mathematical constructions are identified in TSa. We then show some concrete

examples taken from existing mathematical documents. Here, we only show which

texts elements are to be identified in CGa but not precisely how CGa and TSa are

defined nor how they are encoded. See Chapter 4 for the definition CGa, Chapter 5

for the definition of TSa and Chapter 6 for their implementation.

When considering only the justification and argumentation aspect, a mathemat-

ical text is typically a succession of deductions derived from facts. These deductions

are brought forward by rational arguments which are composed by some assumed

facts or standing results from earlier parts of the text. The material of such de-

ductions are concrete or abstract notions and objects, that could often be defined

within the mathematical text. This manner of understanding the composition of

mathematical discourse, CGa inherits it from and shares it with N.G. de Bruijn’s

MV (see Section 2.1) and WTT (see Section 2.2).

Example 7 Let us consider the following formula. “A ⊂ B” Which information
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is it hosting? Let us investigate it in details.

In the sentence “A ⊂ B”, A and B are two identifiers. They have surely been

introduced before the sentence was stated. If we assume that A and B are sets,

the sentence introduces a new fact: one set is the subset of the other. Here ⊂ is a

subset relation between sets. In CGa, we denote these three sub-expressions (A, B

and A ⊂ B) with their grammatical role (respectively set, set and statement). Here

is a view of this sentence with one coloured box per identified piece. See Table 3.1

for the colour coding we use. A�B
The grammatical role is extended with the denotation of the boxed chunk. An at-

tribute is input by the user. This attribute provides an unambiguous identifier used

to explain the expression contained in the box. Here is a version of this sentence

with these attributes printed on the top left corner of each box in between the angle

brackets < and >. <subset> <A>A� <B>B
This sentence could therefore be interpreted as a subset statement on the two sets A

and B. This text with TSa boxes shows the way CGa is to be input by mathematicians

(see Chapter 5). A checker analyses the well-grammatical formation of the text. In

the case of our example, the checker makes sure that the three identifiers A, B and

subset have been properly introduced and are used in accordance to their definition.

See Chapter 4.2 for a complete description of the CGa type system.

Example 8 Let us see now an example with natural language test. We consider

here the sentence: “For every natural number n, n + 1 is also a natural number”.

This sentence is an expression which states that the result of adding one to a

natural number is a natural number. The implicit meaning of “For every” is the

universal quantification ∀. It introduces the variable n. This variable represents

any natural number. The operator + is applied to n and 1. The result is said to

belong to the same type of objects as n . The abstract object a natural number refers

to one notion (natural number) or two notions (natural and number) presumably

defined earlier or simply assumed to be known by the reader. If we understand

number as a type of object (we call them nouns in CGa), then natural could be seen

as a refiner for this type (that we call adjectives). It is important to notice the two

slight different uses of “being a natural number”. In the first part of the sentence
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Chapter 3. Faithful Computerisation of MathematicsTerms Sets Nouns Adjectives StatementsDeclarations De�nitions Contexts Steps
Table 3.1: Colour coding for CGa’s grammatical categories

A description of the grammatical categories could be found in Table 5.1.

it states that n belongs to the type “natural number” but also participates into the

declaration of n. As in the second part of the sentence, n + 1 is an object stated to

be of the same type “natural number” but with no declaration of identifier here. A

symbolic version of this sentence would look like:

∀n : natural number , n + 1 : natural number

Here is a CGa version of this sentence.For every natural number n ; n+1 is also a natural number
And the version printed with attributes.<forall>For every <n> <#refinement> <natural>natural <number>number <n>n ; <is> <+><n>n+ <1>1 isalso a <#refinement> <natural>natural <number>number
These two sentences cause no difficulty for a human reader with basic mathematical

knowledge. Even taken out of their contexts, their meaning is easily inferred. It

is exactly this inference (i.e. the mind action to extract the implicit meaning from

such sentences) that we would like to conduct in CGa. Such sentences left as

they were (i.e. without explicit grammatical interpretation) are meaningless for

a computer software. The extra information we added in our explanation about

variables’ scoping, belonging of objects to a kind or a set, arity of symbols, and

actions – new fact or object introduction – performed by a piece of text, are relevant

for a comprehensible encoding of mathematical text.

We shall make it clear here that this extra information is not meant to be pur-

poseful in the sense that they do not make explicit a calculation or a deduction,

they simply express some knowledge already contained in the CML version of the

text. The difference lies in the fact that they are expressed in a computerised way

and therefore in an explicit manner. This extra information is simply grammatical

and does not have for now a purpose for a specific computation or proof validation.
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Nevertheless, as we already mentioned, this grammatical information could be val-

idated by our checker (see Section 5.1.5 for an example). What we are interested

in is the tangible grammatical information we could make explicit when encoding

mathematics.

3.2 Needs and Alternatives for Computerising

Mathematics

3.2.1 In search for a suitable language for computerising

mathematics

In this section we discuss the reasons for which the major languages for mathematics

on computer did not fulfill our needs. See Figure 3.1 for a diagrammatic comparison

of these languages and systems with MathLang-CGa-TSa.

3.2.1.1 Why not using CML?

The first question to ask is, Why do we need something else than CML? There

are probably good reasons for CML to be widely used. The main answer to this

question is that CML, due to the fact that it is based on natural language, makes

any automatic reasoning difficult. What we call CML is the linguistic machinery

that mathematicians use to communicate mathematical content. N.G. de Bruijn

defined it in [dB87] as a “very precise mixture of words and formulas”. Let us see

what makes CML be so valuable. Here is a non-exhaustive list of advantages of

CML.

• Expressive. CML is expressive because it is a rhetoric for mind thoughts

which combines abstract and concrete notions.

• Time-honored. CML is rooted in long lasting traditions.

• Universal. CML is approved and used by mathematicians.

• Diversified. CML accommodates many branches of mathematics.

• Adaptive. CML is not standardised and could be featured with the authors

own style.
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Some disadvantages of CML in regard to computation are shared with natural

language. Even though CML is known as a precise natural language, this is not

enough to make it easy to compute. Here is a non-exhaustive list of disadvantages

of CML.

• Ambiguous. CML is based on natural language, thus informal and ambiguous.

• Imprecise. CML is incomplete and appealing on the reader’s intuition.

• Automation-unfriendly. CML makes any computation highly dependent to

artificial intelligence..

3.2.1.2 Why is MV not enough?

MV was given its name because its author, N.G. de Bruijn put himself in the

situation of defining the formal layout of the mathematical vernacular. We insisted

in our presentation of MV (see Section 2.1) that its design by N.G. de Bruijn was

highly influenced by two decades of proof checking in the Automath project at

Technische Universiteit Eindhoven.

This filiation gave to MV a notion of typing which allows grammatical valida-

tion with its statements, substantives, names and adjectives (see Section 2.1.2.3).

Nevertheless, MV imposes with the rules in [dB87, §12] a hierarchy of substantives

(see Section 2.1.2.6) which is a too strong correctness requirement at this level.

Similarly, MV inherited from Automath an explicit notion of context. Con-

texts in MV are important because they make explicit the scoping of identifiers.

Nevertheless, the direct correlation between variables presented in a context and

the parameters for a constant being defined (see Section 2.2.1) constrains the user

to a level of precision he did not choose. In a formal system this requirement is

reasonable because the value held by the instance of a constant is calculated with

δ-reduction (inlining of the definiens, see Sections 2.1.1.2.2 and 4.3.3). When a

calculation towards proof is not yet an issue, this requirement is misplaced. The

parameters listed by the mathematician in the definition of a symbol is important

for the representation that this mathematician wants to give to his new symbol.

In [vBJ77a], AUT-SYNT is presented as a solution for shortening the number of

parameters using type inference to guess some of them. If both an identifier and its

type are among a parameters list, one can omit the identifier’s type because this

information could be inferred by the system. Nevertheless, this solution does not

give full liberty to the user to decide which parameter is or is not of a sufficient
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importance to appear as such. Some hidden parameters may well exist but they

should remain as such.

Summarising, MV has some roughness in the definition of its substantives and

also has some rigidity in the formation of contexts. MV is close to the usual way

mathematicians organise knowledge but does not give the possibility to remain

close to informal mathematics in natural language form.

3.2.1.3 Why is WTT not enough?

WTT (see Section 2.2) solves the problem of the logical constraints on substantives

by defining its nouns (WTT’s descendant of MV’s substantives) with weaker rules

(see Section 4.4). However the correlation between variables in the context at the

time of a definition and sets of parameters of the constant being defined remains.

Another restriction appeared to us with WTT binders. The first grammatical

meaning of a binder is to abstract on a variable in an expression. A binder is

a constructor that makes use of abstraction to give a particular meaning to an

expression. There are different kinds of binders. The most commonly used are the

quantifiers. They introduce an abstract object that is either known to exist (∃) or

known to have the property of any existing object from a collection of objects (∀).

Another widely used kind of binder is the one that ranges the value of the variable is

introduces (e.g. Σ, lim, ∪,
∫

are examples of such binders). See Section 2.2.1 for an

extended discussion over binders. WTT has a category of identifiers named binders.

In contrast to other identifiers (variables and constants), they are predefined in the

language and the set of binders is fixed. We consider it to be a too restrictive

approach which makes some mathematical assumptions on which binders should

be used and how. There is a need for a more generic approach to binders, where

the author can define freely his own binders.

Both MV and WTT also lack some structural construction to decompose a

document into comprehensive parts and to organise the contexts. In MV, the

notion of block and flag (see Section 2.1.2.2 and [dB87, §4.3–4.5]) were introduced

but were not part of the language. Flags in MV and WTT are only a syntactic

sugaring for context representation.

The points that we discuss in depth in Section 3.3.1.3 relate to the inability

of WTT to express the relation between an object and its components (if it has

some). For instance, the fact that a circle has a center is semantically important

but this fact has also some grammatical incidences in the way the notion of circle

could be used.
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Last but not least, WTT is suitable for a symbolic description of the mathe-

matical reasoning but it implies to express this reasoning in a form difficult to read.

In this sense, WTT fails as a communication medium.

3.2.1.4 Why is LATEX inappropriate?

LATEX (see Section 2.4.1.2) is a typewriting language dedicated to print views of

mathematical and scientific texts on paper or on computer screen. LATEX is a ver-

sion of CML where some structural aspects have been made precise (for instance

with the use of LATEX environments) and where formulas have been flattened into

a one-dimension syntax. Even if some work has been done to analyse the semanti-

cal content of LATEX formula and texts [Pad03, Koh04], LATEX remains imprecise,

permissive and owns every CML disadvantage.

Summarising, LATEX is undoubtedly a wonderful typesetting system for process-

ing and editing mathematics. It is flexible and has an international community that

extended it with numerous packages for language-specific domain-specific uses.

As automatic semantical recognition is concerned, LATEX is intrinsically based

on natural language and therefore shares the disadvantages of CML (see Sec-

tion 3.2.1.1).

3.2.1.5 Why is OMDoc not suitable?

OMDoc, as we explained in Section 2.4.2.2, offers a format to construct theories

by defining their components and their semantic relations. It uses either MathML

or OpenMath for the encoding of formula. It also opens the doors to external

formal representation by using the extensibility of XML. Nevertheless we believe

that this middle ground language misses features needed to capture some important

aspects of mathematical texts, especially the portion written with natural language.

A systematic encoding of natural language into OMDoc objects is not possible,

in particular there are no specialized representatives for nouns or adjectives in

OMDoc. Natural language makes most of OMDoc content automation-unfriendly

for dealing with reasoning expressed in natural language.

OMDoc offers wide possibilities to incorporate additional content in OMDoc

documents but the overall structure of a document has to follow the decomposi-

tion into OMDoc theories (one of the reason was originally to support morphism

from OMDoc to OMCD). CML follows such well organised theory structure only

occasionally which makes the encoding of CML into OMDoc a partial translation

instead of a computerisation.
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Maybe the main feature missing in OpenMath and OMDoc is user-support au-

tomatic tools to validate documents and formulas encoded using these languages.

As we already discuss in Section 2.4.2.1 some systems were early designed for val-

idating OpenMath encodings but, to our knowledge, no implementation has been

developed. Such feature is also missing for OMDoc. The only validation available

for OpenMath and OMDoc are XML Schema validations which are purely syntac-

tic. When OpenMath/OMDoc is used as format by mathematical systems (such

as Ωmega1 [BCF+97], ActiveMath2 [MBG+03], MathWeb Software Bus3 [ZK02],

MBase4 [KF01] or Numerical Algorithms Group5 products [CD03]), a generic vali-

dation is not essential as these systems perform their own verifications of the data

they treat, but the lack of generic automation rewarding such costly encoding makes

the extensive use of OpenMath/OMDoc by working mathematicians unlikely.

3.2.1.6 Why is full formalisation casted aside?

TPs (see Section 2.4.3) have made a tremendous contribution to computerizing

mathematics, providing frameworks in which a full formalization can be written

and verified automatically. However, they do not support important issues of math-

ematical text, such as control over presentation and phrasing and processing of the

semantic structure. Furthermore, because full formalization is very expensive in

human time, most mathematical texts are unlikely to be fully formalized, but might

still benefit from some form of computerization.

Full formalisation requires choices that we do not want to make prior to any

authoring work. When formalising, some choices have to be made before any

encoding could be done because the encoding or formalisation depends on these

choices.

• The choice of a logical framework implies models for representation and de-

ductions. There is no such thing as “the best formalism”. Depending on

the complexity of the system, one might consider the need to work in in-

tuitionistic logic where others are satisfied with classical logic. The level of

expressiveness and complexity is often decisive to choose between first or high

order and to choose between propositional or predicative logic. The choice

1http://www.ags.uni-sb.de/~omega/
2http://www.activemath.org/
3http://www.ags.uni-sb.de/~jzimmer/mathweb-sb/
4http://www.mathweb.org/mbase/
5http://www.nag.co.uk/
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of an underlying logic also goes with the choice of a foundation: set theory,

type theory, category theory.

• The choice of an implementation is highly dependant on the logical frame-

work. Choosing or combining induction, equivalence and classes, equational

reasoning, also depends on the orientation of the formalisation, i.e. towards

a proof only or a proof together with computational algorithms.

• Finally (or quite often firstly as people tend to have their favorite system and

to accept its choices) the choice of a proof checker accordingly. Systems like

Coq, Mizar, Isabelle, HOL, PVS, Nuprl are among the notorious theorem

provers (see Section 2.4.3). They have made a tremendous contribution to

computerizing mathematics, providing frameworks in which a full formaliza-

tion can be written and verified automatically. However, they do not support

important issues of mathematical text, such as control over presentation and

phrasing and processing of the semantic structure.

3.2.1.7 Why are FPS and Mizar FPS a partial solution only?

The Mizar language (see Section 2.4.3.2) is a theorem prover with a syntax designed

to mimic natural language. A mathematician non-expert in Mizar is likely to make

his way into a Mizar article or at least to follow some of its reasoning structure.

In that sense, Mizar shares our goal to offer a computerized alternative to CML.

Nevertheless being able to write a Mizar article is another matter. The Mizar

syntax is strict and needs to be learned properly to envision any Mizar writing.

We refer to two articles describing the Mizar syntax and how to parse it [CG04].

In order to use the full power of Mizar, one also needs to have a good knowledge

about the Mizar Mathematical Library (MML)[MML].

The Mizar system is aimed at fully formalising mathematics. In that regard

Mizar falls into the previous category of Section 3.2.1.6 titled “full formalisation”.

But F. Wiedijk introduced FPS (see Section 2.4.3.3) as a lighter version for TPs.

This approach reduces the expense of computerization via formalization (and also

loses the certainty of full formalization), but does not appear to greatly improve

control over presentation and phrasing and support for semantics-based manipula-

tion.
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CML offers a smooth
and malleable language
but is a too impre-
cise and informal to be
an efficient encoding on
computers.

LATEX is very similar to
CML even if some au-
tomation and recogni-
tion are made feasible
by LATEX environments.
CML plays a major role
in LATEX.

For Theorem
Provers, the for-
mal context comes
first. It is common to
have in TPs’ toolkit
the possibility to adjoin
CML documentation to formal ex-
pressions. This CML documentation
is only partial and often detached
from formal content.

Mizar is a theorem
prover with the par-
ticularity to follow the
traditional CML proof
unfolding. Its syntax
mimics CML and nev-
ertheless it remains rigid and con-
straining to non-expert.

OMDoc offers a for-
mal wrapper for in-
formal data. CML
paragraphs are mate-
rial of OMDoc docu-
ments. The frame of
an OMDoc document is not fully-
formal and nevertheless imposes a
rigid structure.

MWTT extends WTT
with more adequate
language construc-
tion. It also offers a
template system to ac-
commodate any visual
representation. Nevertheless it forces
CML to be organised according to
MWTT structure. CML is not the
primary input format.

MV and WTT’s for-
mal representations are
imprecise enough to ac-
commodate well struc-
tured CML. But a
WTT text looses con-
nection to its CML counterpart.

MathLang’s CGa
and TSa accom-
modate CML while
offering the opportu-
nities to disambiguate
its content. It does it
by offering a semi-formal annotation
system to input a symbolic attribute
for any CML expression. CML is the
primary input format.

Figure 3.1: Approaches for computerising/formalising mathematics
Informal data is represented by blobby shapes ( ). Computerized and
more formal data is represented by triangles ( ). By curves we represent
the“aesthetic”and expressive but ambiguous aspect of human language.
By straight lines we represent the precision but roughness of formal
languages
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3.3 The approach of MathLang’s TSa and CGa

3.3.1 Grammatical representation

The computerisation of mathematical texts requires capturing the knowledge con-

tained in the text, in a form as close as possible to the way the text is constructed.

As we explained in Section 2.3.2, the representation of mathematical knowledge

should not be a complete formalisation to accommodate the mathematicians’ needs.

We need to capture in a computerisation the intrinsic role that each text piece plays

in the building of the text’s mathematical knowledge. For this purpose we define a

grammar for mathematical justification. This grammar is not a grammar for natu-

ral language. It represents how justification elements are combined. In comparison

to natural language grammars, this one is rigid because it represent a core-language

for mathematical justification. We see in Sections 3.3.2, 3.3.2 and 5.2 how we make

the bridge between this justification grammar and natural language texts. We

follow here N.G. de Bruijn’s idea of defining a generic grammar for justification.

Putting some kind of order in such complex set of habits as the

mathematical vernacular really is, will necessarily involve a number of

quite arbitrary decisions. The first question is whether one should fell

free to start afresh, rather than adopting all pieces of organization that

have become more or less customary in the description of mathematics.

We have not chosen for a system that is based on what many people

seem to have learned to be the only reasonable basis of mathematics,

viz. classical logic and Zermelo-Fraenkel set theory, with the doctrine

that “everything is a set”. Instead, we shall develop a system of typed

set theory, and we postpone the decision to take or not to take the line

of classical logic to a rather late stage. [dB87, §1.5]

This grammar for mathematical argumentation and justification is a distin-

guished aspect of the MathLang project. We named it Core Grammatical aspect

(CGa). We discuss in the following the components of this aspect. See Chapter 4

for its complete definition.

3.3.1.1 Mathematical texts ingredients

Let us attempt to characterise the components of mathematical texts that par-

ticipate into the construction of its justification knowledge. We do not consider
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this characterisation as fixed. This characterisation is an offspring of research and

reflection carried out by N.G. de Bruijn (see Section 2.1), R. Nederpelt and F. Ka-

mareddine (see Section 2.2), the MathLang project (see Section 2.3) and in this

thesis. We extended their views on the grammar of a computerised mathematical

vernacular with our reflections following some translation and encoding experi-

ments, see Section 3.4 for more details on our experience driven methodology and

Chapter 5 for more details on our encoding experiments.

3.3.1.1.1 A succession of facts If we focus on the justification aspect, a

mathematical texts is a sequence of facts brought one after the other. A justification

is a linear succession of facts leading to one main fact such as the proof a theorem.

These lines of justifications are combined to form a bigger justification usually

with a certain global coherence. The smallest justification element is an expression

representing a proposition such as sentences like “n is odd” or “the function f

converges”.

⇒ Successions of justifications are expressed in terms of steps (atomic or block

of steps)6.

3.3.1.1.2 A dynamic vocabulary A specificity of mathematical discourse in

comparison with other natural languages is the propensity to define new notions,

symbols or shortcuts for complex expressions. The lexicon of the mathematical

vernacular is dynamically extended. Sentences like “let n be a natural number”,

“f(x) = x2” or “we call enumeration functions for a set S the functions from N to

S” declare or define n, f and enumeration functions, respectively, for the rest of

the document in which they are contained.

⇒ The dynamic introduction of identifiers is represented in terms of declarations

and definitions6.

3.3.1.1.3 Explicit Boundaries The dynamic extension of the vocabulary of

mathematical text is done with some limits. Each identifier, symbol or notion has

a well-known coverage in the text. Some identifiers are introduced locally inside an

expression such as i in Σi=1
n xi. Some others are declared in a specific paragraph or

section, for example in the sentence “let us take y such that y = x2” it is certain that

the variable y introduced has only a local importance. A y in another section of

6See section 4.1 for a formal definition of our grammar.

60



Chapter 3. Faithful Computerisation of Mathematics

the document would probably be completely unrelated to the previous y. Another

kind of identifier is produced in a manner that increments the body of mathematical

knowledge. These identifiers have no real boundaries restricting their use. Usually

an identifier labelled as “theorem” is considered as fait accompli for the author.

⇒ Boundaries of identifiers are represented in terms of local scopings and bind-

ings6,7.

3.3.1.1.4 An extensive use of abstraction An important aspect of mathe-

matical thinking and by extension mathematical authoring is the use of abstraction.

Mathematicians have based their reasonings on abstract objects such as numbers or

abstraction such as quantification or the representation of all mathematical objects

in term of sets.

⇒ The different forms of abstraction are represented in terms of terms, nouns

and sets6,8.

3.3.1.1.5 Ways of characterisations In mathematics it is customary to de-

fine notions and operations in a way that permits an easy reuse. Parametrisation

is a common characterisations such as in “f(x) = x2” or in “limit of f in a”. Mathe-

maticians make also an extensive use of adjectives to refine meanings. For example

the word “isosceles” could be combined with a concrete triangle in “ABC is isosce-

les” or with the word triangle itself in “isosceles triangle” or with another adjective

such as in “isosceles rectangular triangle”. Another manner of characterisation is

to describe something in terms of its features and characters as in the sentence “A

is the centre of circle C”.

⇒ We represent the different forms of characterisation in terms of parameters,

adjectives and characters6,9.

3.3.1.2 On nouns and sets

N.G. de Bruijn with MV (see Section 2.1) followed by F. Kamareddine and R. Ned-

erpelt with WTT (see Section 2.2) introduced two fundamental grammatical cat-

egories in their systems for computerising mathematical texts. These grammat-

ical categories are the substantive later called noun and set, see Sections 2.1.2.3

7See Section 4.3.1.4 for an extended notion of environment and scoping.
8See Section 3.3.1.2 for a discussion over the roles of nouns and sets.
9See the discussion on the object oriented structure of mathematical texts in Section 3.3.1.3.
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and 2.2.1. According to N.G. de Bruijn, nouns (i.e. substantives) are the tradi-

tional manner mathematicians have been used to speak about mathematical ob-

jects. Nouns therefore play a key role in the grammar of MV.

[...] MV does not take sets as the primitive vehicle for describing

elementhood, but substantives [...]. [dB87, §1.12]

In his view, sets entered the language of mathematics after being conceived as an

abstract universal representation for mathematical objects.

[...] Substantives (like point, number, function) seem to be the things

we handle in our natural language, and sets are the things we have

learned, more or less artificially, to use instead of substantives.

[dB87, §1.15]

Nouns in comparison to sets are more intuitive. Both nouns and sets, as grammat-

ical categories, are closely related to two fundamental notions in modern mathe-

matics that are the notion of type and the notion of set.

3.3.1.2.1 Sets In a set theoretical approach, everything is considered as a set.

Mathematical objects are primarily defined by their set-membership: x ∈ y. This

approach which originates from G. Cantor’s works [Can32], has been a paradigm

shift in mathematical thinking. For D. Hilbert, sets are catchall and therefore

he considered that there was no need for properties because properties could be

expressed in terms of set membership [HB34, HB39]. For G. Cantor x ∈ x should

be possible and B. Russell discovered that accepting such a statement leads to an

antinomy called Russell’s Paradox. In an attempt to avoid the Russell’s Paradox,

type theory was invented.

3.3.1.2.2 Types In a type theoretical approach, mathematical elements are

characterised by their properties. An element is said to belong to a type or a

kind: x : y. The first extensive application of type theory to mathematics can be

found in A.N. Whitehead and B. Russell’s Principia Mathematica [WR13], creates

a hierarchy of types. This hierarchy avoids Russell’s Paradox.

3.3.1.2.3 Grammatical point of view In a grammatical point of view, a set

is an expression of whom a mathematical object can be an element. A set could

be defined by enumerating its elements or simply be an abstract construct. A type
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or a kind is an expression to whom a mathematical object can belong. A type

correspond directly to generic names of mathematical objects such as “triangle” or

“number”. The meaning of a noun holds some criterion for elements to belong to

it. These criterion define the noun and could be expressed in term of mathematical

statements such as “a triangle is a polygon with three sides”.

3.3.1.2.4 Sets of sets We would like to emphasise the difference between sets

in CGa and sets in set theory. In CGa an element of the mathematical discourse is

a set at a certain point of a document because some other elements are known to

be its member. The notion of a set is closely related to the use, in the text, of set

membership. The difference with set theory lies in the fact that a CGa set cannot

belong to another CGa set (which is fundamentally possible in set theory). MV

and WTT share the same notion of sets.

Coming to a situation like a ∈ b ∈ c ∈ d, the Automath style does

not allow to write this as a chain of typings like a : b : c : d. If b is a

set, then let us write ↓ b for the substantive “element of b”. The chain

becomes a :↓b, b :↓c, c :↓d. [dB87, §1.12]

In CGa we currently propose a similar solution which is the use of an operator that

could be called element_of which transforms a given set into a term.

3.3.1.3 Object-oriented structure for mathematical elements

In this section we introduce the object-oriented features of CGa. We first presented

this work in [KMW06]. When experiencing the encoding of the first book of Euclid’s

Elements [Hea56] into MWTT (see Section 4.4), we noticed that the language

was inadequate to express simple object characteristics (see Section 5.3.2). This

experiment was the starting point for defining CGa grammar, see Chapter 4.

3.3.1.3.1 Object-oriented concepts Some programming language research

has focused on allowing organizing programs in a way that seems most natural to

the programmers. Classes [AC96, Cas97, Bru02] are a way of packaging definitions

so that it is easy to obtain not only instances (objects) but also multiple distinctly

modified and extended variants (subclasses) via inheritance. Mixins [BL92, FKF98]

are abstract subclass generators that allow reusing modifications and extensions.
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Classes and objects In object-oriented programming, a class is usually de-

fined by a set of fields and methods. An object is an encapsulated sub-program

with an internal state that is an instance of a particular class. Classes define the

common behavior of a group of objects. Fields are named values associated with

each instance, while methods are named operations on the instances.

Inheritance Class inheritance avoids repeating the definition of fields and

methods shared by several classes. A new class can be defined by inheriting from

an existing parent class, and the child’s set of fields and methods will by default

contain those of the parent.

Mixins With simple class inheritance, to make two classes share a common

set of new methods without duplicating the method definitions, the classes must

inherit from an ancestor class containing the new methods. This may require radical

rearrangement of an existing class hierarchy. To alleviate this problem, mixins are

subclass definitions that are parameterized on their superclass, and thus act as

functions from classes to classes. When a mixin is applied to a class, this makes a

new subclass that adds or redefines fields and methods.

3.3.1.3.2 Object-oriented structure for mathematical text We give here

a description of the notions that gain expressiveness when moved to an object-

oriented conceptualisation.

Nouns are a description of a family of mathematical objects. A noun would

usually refer to a generic description. This description characterises a math-

ematical object by defining its common specificities and behaviours. This

generic description would later be brought into life by taking such object.

This newly created object would have all the characteristics that its family

shares. A noun therefore characterises a family of objects which corresponds

exactly to classes in object-oriented programming languages. A noun differs

from a set in its way to bring together elements with some specificities. A set

has a more liberal way of considering belonging.

Terms are realisations of nouns. A term being of the kind of a noun has all its

characteristics. For example, if we say that“ABC is a triangle”, it means that

the term ABC is a realisation of a triangle. The notion of a term corresponds

to object in object-oriented programming languages.
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Adjectives are refiners for nouns and objects. It is commonly understood that

an “isosceles triangle” is a triangle with two of its sides equal in length. The

adjective “isosceles” extends the characterisation of a “triangle”. An “isosceles

triangle” is still a “triangle” but a “triangle” is not an “isosceles triangle”. Ad-

jectives are equivalent to mixins in object-oriented programming languages.

3.3.2 Document annotations and authoring methodology

As a matter of fact, computerised mathematics have been based either on formali-

sation or on textual digitalisation. The fact that mathematical knowledge has been

supported and communicated with a distinguish version of natural language played

an ambiguous/minor role in computerised mathematics.

3.3.3 Ways of integrating natural language

It seems that no theorem prover or mathematical computer-language currently

has an infrastructure to provide a direct mapping from a typical natural language

mathematical text to its own language but they all have methodologies to offer

natural language integration. We group these methodologies into four categories.

Proof code with embedded natural language In a typical formal proof lan-

guage (see Section 2.4.3) there are facilities to incorporate natural language

alongside formal definitions and proofs. Natural language text parts are

treated as commentaries in a literate proof document and omitted by the

verification. This method uses structured comments, similarly to program-

ming languages, for generating a documentation out of a programming code.

Among others, Coqdoc and FoCDoc [MP03] are the documentation systems

for the theorem prover Coq and the computer algebra system FoCal [PDH02,

PD02] respectively.

In a similar fashion, recent developments of intuitive text editors have permit-

ted the arising of plugin-interfacing with theorem provers [AR03, ABFL05,

MG06].

Inspired by the well-known notion of literate programming [Knu84b], literate

proving [CG06] is at its starting point.

Syntax à la natural language Formal languages often suffer from rough syn-

tax and strict grammar. To soften the use of formal languages some efforts
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have been made to adapt these syntaxes and grammars to suit mathemati-

cians’ habits. Some developments have gone far in this direction to obtain

formal proof documents that look like natural language texts. The main

examples are Mizar [Rud92] and Isar [Wen99], but more recently some cal-

culi [AS06, Bro06] were developed in pursuit of the idea of a formal represen-

tation for pseudo-natural language.

Semantic Web data model Mathematical natural language is a vague and im-

precise language which is unfriendly to computation. Web technologies offer

a compromise in the way they encapsulate natural language and extend it

with semantic tagging and hyper-linking. OMDoc (see Section 2.4.2.2) is a

precursor in this domain.

Natural language generator If the starting point is a formally defined language

then a natural language representation of the formal content can be pro-

duced. The proof assistant HEΛM [APSS01] has this capability. Further-

more, [KMW04a] and [PZ06] provide facilities to personalise the natural lan-

guage generated.

3.3.3.1 Natural language as computerised mathematics input

The solution we develop differs from the one listed in Section 3.3.3. We propose to

restore natural language as a computerised mathematics input method. For doing

so we designed a system to decorate the natural language with formal knowledge.

This new approach to authoring natural language texts is presented in Section 5.1.

As the natural language text is composed, each word or phrase is placed into a

certain grammatical category. This is achieved by annotating the original natural

language text either during or after its composition, see a short illustration in

Figure 3.2.

3.3.3.2 Accommodating natural language complexity: syntax souring

Natural language is quite liberal with only one rule being that a reader should

be able to understand the explanation of the author. It is therefore important to

accommodate different authoring styles. Instead of forcing the mathematician to

use a strict and fixed language we offered him some tools to explicate the morphol-

ogy of his own natural language style. We developed the notion of syntax souring

(as “dual” of syntax sugaring). See Section 5.2 for a description of authoring with

syntax souring, and Section 6.4.2 for the formal definition of this notion.
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① Theorem.
√

2 is irrational.

② Theorem.
√

2 is irrational .

③ th := irrational ( sqrt ( 2 ) )

TSa-CGa authoring process:

①→② CML typesetting and TSa wrapping with grammatical
and souring coloured boxes.

②→③ TSa souring rewriting to generate a CGa document.

③ Automatic checking of the generated CGa document.

③→② Feedback of this validation is shown at the TSa level.

Figure 3.2: TSa-CGa autoring process

To illustrate the decomposition of mathematical knowledge with Math-
Lang’s aspects, we use the example in ①: the definition of a Theorem which
states the irrationality of

√
2. We identify in this sentence the grammatical

role of each element of the text: definition for the entire sentence, term
for“

√
2”and“2”, and statement for“

√
2 is irrational”. The mathematician

attributes to each element its CGa grammatical role by wrapping it into a
coloured box following our colour coding system of Table 3.1. The formal
interpretation of this sentence is automatically generated from TSa’s ②

and is printed in ③ using CGa’s abstract syntax as defined in Section 4.1.
The identifiers th, irrational, sqrt and 2 are provided by the user as
arguments for each coloured box of ②. Note that the CGa syntax used in ③

is not meant to be used by the end-user of MathLang, it is only designed
for computerisation purposes. The end-user edits his document using the
view offered by TSa, as shown by ② (TSa plays the role of a user interface
for MathLang). The internal syntax used in our implementations follows
XML recommendations (see Section 6.1.1).
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3.3.3.3 Separating grammatical and style aspects

As a result we clearly identified two aspects of mathematical writing. Firstly the

grammatical aspect CGa (see Section 3.3.1) for expressing the justification and

argumentation knowledge contained in a mathematical document. Secondly the

text and symbol aspect (TSa) which makes the bridge between natural language

expressions and their interpretation expressed in a less ambiguous form.

3.4 Experience-driven Development

One of the founding principles of the MathLang project, as enunciated in [KW00,

KW01] by its initiators F. Kamareddine and J.B. Wells, is the willingness to base

its development on experiment on real mathematical documents. In this section

we tell the story of the experiments that lead to the design and development of the

first two aspects of MathLang (CGa and TSa). At each milestone we refer to the

relevant sections and chapters of this thesis.

3.4.1 Refinements of WTT based on Foundations of Anal-

ysis’s translation

This thesis work therefore started with the translation of a mathematical text into

WTT (see Section 2.2). We chose E. Landau’s Foundations of Analysis [Lan51]

because we could expect to make some comparison with L.S. van Benthem Jutting’s

translation in Automath [vBJ77a]. Our objectives for this translation were to:

• test the expressiveness of WTT,

• to check the feasibility of expressing an entire book in WTT,

• to evaluate the degree of difficulty of such translation

• and to see in effect what such translation brings (in terms of validation and

accessibility of the data translated).

During this translation we made some significant changes to the language (see

Section 4.4 and [KMW04b]) and we implemented a checker. This language and its

implementation shared the name of the whole project MathLang (we now refer to

it as MWTT).
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Theorem 2

x′ 6= x.

Proof Let M be the set of all x for
which this holds true.

I) By Axiom 1 and Axiom 3,

1′ 6= 1;

therefore 1 belongs to M.

II) If x belongs to M, then

x′ 6= x,

and hence by Theorem 1,

(x′)′ 6= x′,

so that x′ belongs to M.

By Axiom 5, M therefore contains
all the natural numbers, i.e. we
have for each x that

x′ 6= x.

[Lan51, Ch. 1]

x : N ⊲Th2(x) := x 6= x′ (24)
Proof Theorem 2 {2.2}

M : SET

∀x:MTh2(x)

Ax1, Ax3(1) ⊲1′ 6= 1 (25)
(25), (Def Th2) ⊲1 : M (26)

x : M

⊲x′ 6= x (27)
(27), Th1(x′, x) ⊲x′′ 6= x′ (28)
(28), (Def Th2) ⊲x′ : M (29)

Ax5(M, (26), (29)) ⊲N ⊂ M (30)
(30) ⊲∀x:NTh2(x) (31)
x : N, x 6= 1 ⊲Th3(x) := ∃u:Nx = u′ (32)

Figure 3.3: Example of a MWTT translation

The MWTT encoding of the whole first chapter of E. Landau’Foundations of
Analysis [Lan51] is presented in an appendix to [KMW04b] which is available
at http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:

mkm_symposium-entcs-appendix-2004.ps.gz (last visited 2007–04–22).

3.4.2 Towards an encoding faithful to original texts

After this experiment of translating in MWTT the entire first chapter of Foun-

dations of Analysis , we were able to draw some conclusions. The translation of

this chapter into MWTT, as we presented in [KMW04b], and the translation of

the same chapter in WTT, as G. Jojgov, R. Nederpelt and M. Scheffer presented

in [Sch03] (see also [JNS04, Gel04]), may well be faithful to the original text but this

translation is hardly readable by a non-WTT/MWTT-expert and hard for anyone

to connect each pieces of the translation with its original form (see Figure 3.3).

The newly introduced flags and blocks help the reading but the entire document

remain very bitter for mathematicians.
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Figure 3.4: Transformation procedure

Figure 3.5: Translation process

In [KMW04a] we presented a system to allocate local presentation templates

which are used to automatically generate, out of a MWTT document, an output

view similar to the original natural language text. Figure 3.4 illustrates the trans-

formation procedure that first isolates the local templates to reapply them to the

whole document. It results from this application of these templates in a CML doc-

ument. Figure 3.6 shows three views of the same MWTT encoding of Pythagoras’

proof of the irrationality of
√

2 by G.H. Hardy and E.M. Wright [HW80, Ch. IV].

This work highlighted the fact that our encoding was flexible in regard to the struc-

ture of mathematical texts. If one decorates correctly a MWTT code with natural

language templates, it is possible to generate back the original text. Figure 3.5 is

an illustration of the MWTT translation process.
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Customised views of the
MWTT encoding of
Pythagoras’ proof of the
irrationality of

√
2 by

G.H. Hardy and
E.M. Wright [HW80,
Ch. IV] (the example was
used by F. Wiedijk
in [Wie06] to compare
theorem provers):

① Symbolic view

② CML view of symbols

③ CML view

① Th() := irrational (
√

2 ) 1

{1}

rational (
√

2 ) , a : integer , b : integer , ( a , b ) = 1

solvable( a 2 = 2 ∗ b
2

) . 2

even( a 2 ) . 3 even( a ) . 4

c : integer , a = 2 ∗ c

4 ∗ c 2 = 2 ∗ b
2

. 5 2 ∗ c 2 = b
2

. 6

even( b ) . 7 ( a , b ) = 2 . 8

contradiction( ( a , b ) = 1 , Line 8 ) 9

Th 10

② Th() :=
√

2 is irrational 1

{1}
√

2 is rational , a : integer , b : integer , ( a , b ) = 1

the equation a
2

= 2 b
2

is soluble . 2

a
2
is even . 3 a is even . 4

c : integer , a = 2 c

4 c
2

= 2 b
2

. 5 2 c
2

= b
2

. 6

b is also even . 7 ( a , b ) = 2 . 8

contrary to the hypothesis that ( a , b ) = 1 9

Th 10

③ Theorem (Pythagoras’ Theorem).
√

2 is irrational . 1

Proof.

If
√

2 is rational , then the equation a
2

= 2 b
2

is soluble 2 in

integers a , b with ( a , b ) = 1 .

Hence a
2
is even , 3 and therefore a is even . 4

If a = 2 c , then

4 c
2

= 2 b
2

, 5 2 c
2

= b
2

, 6

and b is also even , 7 8

contrary to the hypothesis that ( a , b ) = 1 . 9

10

Figure 3.6: MWTT customised views
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3.4.3 Extending the language’s expressiveness

Later, when experiencing the translation of the first book of Euclid’s Elements

[Hea56], we faced critical lack of expressiveness from MWTT, and redesigned the

language to create MathLang with object oriented features. We explain this move

in see Section 3.3.1.3 and we reported this work in [KMW06].

3.4.4 Restoring natural language as a computerised math-

ematics input method

Following the conclusion (in Section 3.4.2 and 3.4.3) that our encoding was flexible

in regard to the structure of mathematical texts, we started to develop a MathLang

plugin for the TEXmacs
10 scientific editor. Both our experience gained in develop-

ing our template system (see Section 3.4.2) and our experience in building this

plugin (see the description of this plugin in Section 6.3.1) opened the possibility

to define a system-independent authoring method for computerised mathematics.

See Section 3.3.2 for an overview of this method and Sections 5.1, 5.2 and 6.4 for

a complete definition of this method.

Conclusion

We presented in this chapter the founding motivations for this thesis’ research. We

gave an overview of the progress we made throughout this PhD studies’ period.

We also presented the approach we followed when developing MathLang’s CGa

and TSa aspects and compared this approach with other existing ones.

10http://www.texmacs.org/
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Chapter 4

MathLang-CGa, Language

Definition

In this chapter we define MathLang’s Core Grammatical aspect (CGa). CGa is a

formal language derived from MV and WTT which aims at expressing mathematical

justification and argumentation. We present its abstract syntax in Section 4.1. In

Section 4.2, we provide a type system to check the grammatical well-formation of

CGa documents. We recall in Section 4.4 the definition of MWTT’s abstract syntax

and type system. MWTT is the ancestor of CGa and is a refinement of WTT.

Remark 2 Throughout this chapter we present and discuss CGa abstract syntax,

grammar and type system. It is important to notice that this abstract syntax is

not aimed to be used as such by the mathematicians nor software and applications.

We discuss in Chapter 5 the interface between the mathematician and the CGa

language. We present in Chapter 6 the implementation details and, in particular

in Section 6.1 the XML concrete syntax of CGa. We nevertheless implemented a

parser for this syntax for experiment purposes and we present its implementation

in Section 6.1.2.

4.1 CGa’s Abstract Syntax

In this section we define the abstract syntax of MathLang-CGa. Appendix A.1 con-

tains a summary of the abstract syntax defined here. We are using the typewriter

font for printing CGa examples. These examples are written in a format that fol-

lows the notational conventions described in Section 4.1.1.2. Most material in this

section were published in [KMW06].
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4.1.1 Notations

4.1.1.1 Metasyntax notational conventions

We list here the key elements of the metasyntax we use to describe the abstract

syntax of CGa. This metasyntax is inspired from the Backus-Naur Form notation.

In our metasyntax, an arrow on top of a meta-variable represents a sequence of 0

or more meta-variables. For example “−→exp” is a sequence of “exp”. The elements

of the sequence are separated with a comma “,” in the cases of ident-, category-

and exp-sequences. The step-sequences elements are separated by semi-colons “;”.

The alternatives are separated by the vertical line “ | ”. We use “::=” as the rule

symbol. The elements appearing on the right hand side of this symbol are either

non-terminal meta-variables (printed in an italic font) or the terminal reserved

keywords and symbols. The list of these terminals is as follow: “term”, “set”,

“noun”, “adj”, “stat”, “dec”, “(”, “)”, “.”, “label”, “⊲”, “{”, “}”, “:=”, “≪”, “:”,

“Adj”, “Noun”, “self”, “ref”, “,” and “;” (using the CGa example font, they are

printed as “term”, “set”, “noun”, “adj”, “stat”, “dec”, “(”, “)”, “.”, “label”, “|>”,

“{”, “}”, “:=”, “<<”, “:”, “Adj”, “Noun”, “self”, “ref”, “,” and “;” respectively). We

use the back quote sign “‘” to distinguish category variables from other identifiers

(see Section 4.1.2.1).

4.1.1.2 Notational conventions

We use the following notational conventions when writing abstract syntax expres-

sions.

1. When an identifier has no parameters we omit the parentheses ( and ). For

example, for the instance of an identifier x we write x in place of x() and

x:term in place of x():term.

2. We do not leave double braces in noun and adjective descriptions defined with

a block. For example, we write Noun { a:term; b:term } and

Adj (n) { c:term; d:term } instead of Noun {{ a:term; b:term }} and

Adj (n) {{ c:term; d:term }} respectively.

3. We abbreviate category expressions to shorten the syntax of some term,

noun and set categories. For example, we write noun (respectively set

and term) in place of noun(Noun{{}}) (respectively set(Noun{{}}) and

term(Noun{{}})).

74



Chapter 4. MathLang-CGa, Language Definition

which describes a category expression,

Remark 3 Note the existence of a category constructor noun on one hand and of

a noun constructor Noun on the other hand. Category expressions could be build

with noun while noun expressions could be constructed with Noun. In the following

example, three identifiers with one character a are defined: p1 is a noun, p2 is a

term instance of a noun, and p3 is defined as a noun.

{

p1 : noun ( Noun { a:term } );

p2 : Noun { a:term };

p3 := Noun { a:term }

}

4.1.2 Language levels

4.1.2.1 Vocabulary level

We firstly define three sets composing the language’s vocabulary. These three

sets are the set of identifiers, labels and category variables. They are disjoint

denumerable infinite sets. We use the meta variables ident, label and cvar. The

variables i , l and v range over identifiers, labels and category variables respectively.

ident, i ∈ I
(I is the denumerably infinite set of identifiers)

label, l ∈ L
(L is the denumerably infinite set of labels)

cvar, v ∈ V
(V is the denumerably infinite set of category variables)

An element of the set of identifiers on its own is an identifier in CGa. An identifier

attached to an expression expresses the character of this expression. This expression

is traditionally a term expression.

cident, ci ::= ident Identifier

| exp.ident Character

4.1.2.1.1 Identifier An identifier is simply the name given to something. It is

generally (and it is case in the concrete syntaxes we implemented, see Section 6.1)

a string composed by alpha-numerical characters plus other non-blank and non-

reserved symbols. triangle, N, Theorem_24, x and + are examples of identifiers.
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4.1.2.1.2 Character A character is a marked feature of a term. Characters

are defined by nouns and adjectives. If a term is identified by a noun it inherits

everything of this noun. A character corresponds to fields or methods in an object-

oriented language jargon. Considering that the noun circle has a character center

representing the center of a circle then it is the case that for every circle-term C,

we have that C.center stands for the center of C.

4.1.2.2 Category level

The category level describes the way to construct category expressions. These

special expressions are used when declaring an identifier and the category of its

parameters. The category level does not cover all the possible grammatical cate-

gories of CGa because it is only concerned with those applicable to the identifier’s

parameters. The category syntax entry uses grammatical categories’ names with

lowercase letters.

category, c ::= term(exp) Term category

| set(exp) Set category

| noun(exp) Noun category

| adj(exp, exp) Adjective category

| stat Statement category

| dec(category) Declaration category

| cvar Category variable

4.1.2.3 Expression level

At the expression level we define the way to construct standard expressions of the

language.

exp, e ::= cident(−→exp) Instance

| ident(
−−−−−−−−−−→
category | expr) : exp Elementhood declaration

| ident(
−−−−−−−−−−→
category | expr) : category Declaration

| Noun {step} Noun description

| Adj(exp) {step} Adjective description

| exp exp Refinement

| self Self

| ref label Step reference

4.1.2.3.1 Instance The instance of an identifier or of a character is obtained

by adjoining this identifier or character to a list of arguments. These arguments
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correspond to the parameters an identifier of a character may have. For example,

+(sq(x),1) recalls the definition of plus with the expressions sq(x) and 1 as argu-

ments. Similarly, the notion of group is defined as a noun group with a character

op for its a binary operation and if G is a group, then G.op(a,b) is an instance of

the binary operator of G applied to a and b.

4.1.2.3.2 Declaration The declaration of an identifier is a valid CGa expres-

sion. Declaring an identifier results in providing the number of its parameters,

the grammatical category to which they belong respectively and the grammatical

category of the identifier itself. There are two ways to express the belonging of an

identifier or a parameter to a grammatical category which are either by providing

explicitly the grammatical category expressed in term of a category expression (see

Section 4.1.2.2), or by providing either a set- or a noun-expression. We named the

latter elementhood declaration. A declaration is therefore composed by the identi-

fier to be declared, followed by one category or set-/noun-expression per parameter,

and finally a category or set-/noun-expression describing the new identifier’s gram-

matical category. The expression surface(triangle):term declares a new term-

identifier with one argument. This argument is a term of the kind triangle. An-

other example is the declaration of the subset operator: subset(set,set):stat,

this time we used category expressions only.

4.1.2.3.3 Description As aforementioned, a noun is a denomination for a

group of characters. The description of a set of characters is an expression which

is built by adjoining to the keyword Noun (with an uppercase first later) a step

(see Section 4.1.2.5). The resulting expression is a noun whom characters are the

identifiers declared or defined in the step in question. For example, the expression

Noun { center:term } is a description fitting the noun circle we used in an

earlier example.

Adjectives form a category in the CGa grammar. They could cause a noun

to be extended and to be more specific. An adjective expression extends a noun

expression to form a new noun expression. In that sense, an adjective is a function

from noun to noun. An adjective description starts from a noun expression (domain

of such function) and describes the additives (in a step) needed to obtain this new

noun.

4.1.2.3.4 Refinement The combination of an adjective with a noun is called

a refinement . For example, the expression isosceles triangle is a refinement
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of triangle using the adjective isosceles. The result is a well formed noun-

expression

isosceles triangle.

4.1.2.3.5 Step reference The last expression alternative is the step reference

to a previously labeled step. For example, assuming that section_9 is defined as

label, the expression ref section_9 is a statement-expression.

4.1.2.4 Phrase level

The phrase level describes the atomic elements of the discourse. In CGa these

elements could be either a statement-expression, a definition or a sub refinement.

phrase, p ::= exp Statement phrase

| cident(
−−−→
ident) := exp Definition

| cident(−→exp) := exp Case definition

| ident ≪ exp Sub refinement

4.1.2.4.1 Statement phrase A statement brought forward is a phrase in CGa.

For example, the expressions such as subset(A,B) or x:A are phrases.

4.1.2.4.2 Definition A definition assigns to a particular expression a short-

hand name. Such definition could be parameterised which therefore means that

each instance of the identifier to be defined will need to come with arguments

implementing the parameters. The parameterisation of a definition can take two

forms in CGa. In the first form, each parameter is represented by a single iden-

tifier and these identifiers could occur in the definition’s body expression. In the

second form, one describes the identifier’s behavior depending on the argument

input. The full definition of the identifier therefore takes one or more phrases to

be completed. Each phrase corresponds to one matching case. Each parameter

is therefore represented as an expression taking the role of a pattern. See Sec-

tion 4.3.1.2 for an additional discussion of definition by matching cases. Piecewise

functions are among the mathematical objects whose definitions are simplified by

the use of definitions by matching cases. Here is a CGa encoding of the definition

of the identity function defined on R = R ∪ {−∞, +∞}.

{

x:R |> Id(x) := x;

Id(neg(infinity)) := neg(infinity);
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Id(infinity) := infinity

}

4.1.2.4.3 Sub refinement Sub refinements compose the third kind of CGa

phrases. A sub refinement is similar to a refinement in the sense that it combines de-

scriptors but a sub refinement also alters the definition of an identifier. A sub refine-

ment refines, for the rest of the document, the definition of an already defined noun,

adjective, term or set. The refinement is derived from either a noun-expression or

an adjective-expression. The notion of sub refinement is inspired by the MV notion

of sub-substantives [dB87, §1.14] (we used the same symbol <<). The expression

square << rectangular used as an example in [dB87, §1.14] is also a CGa ex-

ample assuming that both square and rectangular are predefined. This phrase-

expression means that, from this phrase onward, square is given all the characters

that rectangular holds, rectangular being unchanged. Another example that

does not use a named noun is the phrase: triangle << Noun { angles:set }

extends the definition of a triangle (which may for instance contain a set-character

sides) with the set-character angles. Sub refinements permit to spread the defi-

nition of a noun inside the document according to needs.

4.1.2.5 Discourse level

The discourse level describes the manner in which argumentation elements can be

combined. In CGa, a justification or argumentation or discourse is depicted as a

step. There are three step constructions: the basic step, the local scoping and the

block. Additionally, one can assign a label to step.

step, s ::= phrase Basic step

| step ⊲ step Local scoping

| {−−→step} Block

| label label step Step label

4.1.2.5.1 Basic step A phrase is an atomic or basic step in CGa. For example,

Th:=irrational(sqrt(2)), subset(A,B), x:A and square << rectangular are

basic steps.

4.1.2.5.2 Local scoping A local scoping puts a step as a context for the devel-

opment of another step. This contextualisation has some incidence on the scoping

of identifiers, see Section 4.3.1.4 for a detailed description of scoping. The notion of
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local scoping unifies the notions of context and flags from MV, WTT and MWTT

and the notion of local definition from MWTT.

A local scoping could imply an atomic step be put as a context for a phrase, for

example in a:R |> =(+(a,0),a), the local scoping is used restrict the declaration

of the variable a.

In other cases, a bigger step could be involved in a local scoping. For example,

in a proof by induction, the induction hypothesis is to be in a local scoping.

{ [A proof of P by induction]

{ [Proof of the base]

[. . . ] P(0);

};

{ [Proof of the induction]

{ n:N; P(n) } |> { [. . . ] P(n+1) }

}

}

An entire proof (e.g., a proof by contradiction) can be put in context in a local

scoping.

{ [Proof of the contradiction] [. . . ] }

|> { [Statement proved by contradiction] [. . . ] }

4.1.2.5.3 Block A block is a sequence of steps in CGa. Sequences of statements

in a proof are represented by a block. Here is for example a block composed by

basic steps.

{

x.(y+1) = x.y’;

x.y’ = x.y+x;

x.y+x = x.y+x.1

}

4.1.2.5.4 Step label The last alternative is the step label which labels a step

for later recall with a step reference.

80



Chapter 4. MathLang-CGa, Language Definition

4.2 CGa’s Type System

In this section we define the type system of MathLang-CGa. Appendix A.2 contains

a summary of the typing rules defined here. Most material in this section were

published in [KMW06].

4.2.1 Types and notations

We assume the following conventions. We denote by ℘(S) the power set of the

set S. An ordered pair is denoted (a, b) and functions are taken to be sets ϕ of

ordered pairs with a domain dom(ϕ) = {a | ∃b, (a, b) ∈ ϕ}. By #S we denote the

cardinality of the set S. And N denotes the set of natural numbers.

4.2.1.1 Types

CGa’s type system attributes a type to each valid identifier and an atomic type

to each valid construction of the language. We define the set A of atomic type

signatures, the set T of types and the set M of type mappings as follows.

A ::= Term(M) | Set(M) | Noun(M) | Adj (M,M)

| Stat | cvar | Dec(T ) | Def (T ) | Sub(T ) | Step | Categ(A)

T ::= (
−→A) → A

M ::=
−−−→
(I, T )

The variables a, t and m range over A, T and M respectively. A T element

associates a sequence of atomic input types to one output type. We denote by

(a1, . . . , an) → a a typical T element. And M is the set of mappings from I to T .

We denote by m(i) the element t such that (i , t) ∈ m. We use Categ as A elements

to disambiguate the types of category expressions from the types of expressions (see

Section 4.2.3.1.2).

4.2.1.2 Typing judgments

In Section 4.2.3 we define the set of rules of our type system. Each typing rule has

the following form.

typing context ⊢ construction •

• type judgement
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A typing context is a well formed step of the language. It represents the preceding

steps of reasoning in which the construction is typed. We have made an effort to

keep this major feature of Automath and WTT of typing under a context formed

by a concrete expression (in contrast with building a typing environment). Con-

struction could be any abstract expression constructed by following CGa’s abstract

syntax of Section 4.1. A type judgement is either a type signature or an atomic

type.

We occasionally use the symbol / to group similar rules

4.2.2 Functions, operations and relations

4.2.2.1 Functions

We list here the functions used in the derivation rules of our type system. These

functions are I , dI , DI , L and enum. In the following, ce ranges over both category

expressions and expressions. These functions are defined as follows.

Function I : step 7→ ℘(I) gives the set of identifiers declared, defined or sub refined

within a step.

I (s1 ⊲ s2) = I (s2)

I ({s1; . . . ; sn}) =
⋃

i∈{1...n}

I (si)

I (label l s) = I (s)

I (i(i1, . . . , in) := e) = {i}
I (i(e1, . . . , en) := e) = {i}

I (i(ce1, . . . , cen) : ce) = {i}
I (i ≪ e) = {i}

I (p) = ∅, otherwise
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Function dI : step 7→ ℘(I) gives the set of identifiers declared within a step.

dI (s1 ⊲ s2) = dI (s2)

dI ({s1; . . . ; sn}) =
⋃

i∈{1...n}

dI (si)

dI (label l s) = dI (s)

dI (i(ce1, . . . , cen) : ce) = {i}
dI (p) = ∅, otherwise

Function DI : step 7→ ℘(I) gives the set of identifiers defined within a step.

DI (s1 ⊲ s2) = DI (s2)

DI ({s1; . . . ; sn}) =
⋃

i∈{1...n}

DI (si)

DI (label l s) = DI (s)

DI (i(i1, . . . , in) := e) = {i}
DI (i(e1, . . . , en) := e) = {i}

DI (p) = ∅, otherwise

Function L : step 7→ ℘(L) gives the set of labels defined within a step.

L(s1 ⊲ s2) = L(s2)

L({s1; . . . ; sn}) =
⋃

i∈{1...n}

L(si)

L(label l s) = {l}
L(p) = ∅

And function enum : ℘(N) 7→ ℘(N × N) gives an inorder-enumeration function for

a set of natural numbers.

enum(S) = {(a, b) | b ∈ S and a = #{c|c ≤ b}}
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4.2.2.2 Operations

We define a binary operation on type mappings. In what follows, dom(f) stands

for the domain of the function f .

m ⊎ m ′ = m ∪ { (i,m ′(i)) | i ∈ dom(m ′) and i 6∈ dom(m)}

4.2.2.3 Subtyping relations

We need first to define the substitution operation for category variables. A substi-

tution σ is a set of mappings from V to A. We denote by σ(a) the application of

a substitution σ to an atomic type a. The substitution application is defined as

follows.

σ(Categ(a)) = Categ(σ(a))

σ(Dec(() → a)) = Dec(() → σ(a))

σ(v) = a if (v , a) ∈ σ

σ(a) = a otherwise

We define the subtyping relations 4̇, 4̄ and 4 between atomic types, types and

type mappings respectively.

Term(m) 4̇ Term(m ′) if m 4 m ′

Set(m) 4̇ Set(m ′) if m 4 m ′

Noun(m) 4̇ Noun(m ′) if m 4 m ′

Adj (m1,m2) 4̇ Adj (m ′
1,m

′
2) if m2 4 m ′

2 and m ′
1 4 m1

Stat 4̇ Stat

Dec(t) 4̇ Dec(t ′) if t 4̄ t ′

Def (t) 4̇ Def (t ′) if t 4̄ t ′

Sub(t) 4̇ Sub(t ′) if t 4̄ t ′

Step 4̇ Step

v 4̇ v

Categ(a) 4̇ Categ(a ′) if a 4̇ a ′

t 4̄ t ′ if t = (a1, . . . , an) → a, t ′ = (a ′
1, . . . , a

′
n) → a ′,

∃ σ such that σ(a) 4̇ σ(a ′),

and ∀j ∈ {1 . . . n}, σ(aj)4̇σ(a ′
j)

m 4 m ′ if ∀i ∈ dom(m),m(i) 4̄ m ′(i)
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4.2.3 Typing rules

4.2.3.1 Rules for the vocabulary level

This section contains the typing rules for the vocabulary level of Section 4.1.2.1.

4.2.3.1.1 Typing of identifiers We define here a set of rules to express the

role of the context in the typing of identifiers.

The first three rules ident-dec, ident-def and ident-sub indicate that if one

adjoins a phrase p to a well formed step {−→s } and if this phrase p is a valid (in

the context formed by s) declaration, definition or sub refinement of an identifier

i , then i gets a type corresponding to this declaration, definition or sub refinement

in the context composed by the step {−→s } and the phrase p.

{−→s } ⊢ p •

• Dec(t) dI (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-dec

{−→s } ⊢ p •

• Def (t) DI (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-def

{−→s } ⊢ p •

• Sub(t) I (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-sub

In the rule character, the typing of a term-expression e with a specific char-

acter i indicates how to get the type of this character’s instance.

s ⊢ e •

• Term(m) i ∈ dom(m)

s ⊢ e.i •

• m(i)
character

As for the rules ident-basic, ident-local-scoping, ident-block and

ident-label, they repercuss the typing of an identifier through a phrase, a block
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element, a local scoping and a step labelling respectively.

{−→s } ⊢ i •

• t i 6∈ I (p)

{−→s ; p} ⊢ i •

• t
ident-basic

{−→s ; s′; s′′} ⊢ i •

• t i ∈ I (s′′)

{−→s ; s′ ⊲ s′′} ⊢ i •

• t
ident-local-scoping

{−→s1 ; −→s2} ⊢ i •

• t

{−→s1 ; {−→s2}} ⊢ i •

• t
ident-block

{−→s ; s′} ⊢ i •

• t

{−→s ; label l s′} ⊢ i •

• t
ident-label

With this set of rules for the vocabulary level, we retrieve the type of an identifier

from the context. Combined, they decompose the step context to retrieve the

declaration, definition or sub refinement informing on the type of an identifier i .

4.2.3.1.2 Typing of category expressions Category expressions are used

in declarations. They permit to set the categories of an identifier’ parameters

and output. The constructors term, noun, adj and set are parameterised with a

noun expression. This noun expression gives the set of characters of the described

category.

⊢ s •

• Step s ⊢ e •

• Noun(m)

s ⊢ term(e)/set(e)/noun(e) •

• Categ(Term(m)/Set(m)/Noun(m))
categ-

term/

set/

noun

⊢ s •

• Step s ⊢ e •

• Noun(m) s ⊢ e′ •

• Noun(m ′) m 4 m ′

s ⊢ adj(e, e′) •

• Categ(Adj (m,m ′))
categ-adj

⊢ s •

• Step

s ⊢ stat •

• Categ(Stat)
categ-stat

⊢ s •

• Step s ⊢ c •

• Categ(a)

s ⊢ dec(c) •

• Categ(Dec(() → a))
categ-dec

⊢ s •

• Step

s ⊢ v •

• Categ(v)
categ-var

These rules make the bridge between category expressions and A elements. Note

that all the rules categ-* attributes a Categ atomic type to every category expres-

sion. This is not to confuse with types of expressions.
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4.2.3.2 Rules for the expression level

This section contains the typing rules for the expression level of Section 4.1.2.3.

4.2.3.2.1 Typing of instances The typing of instances of rule instance is

mainly concerned with the possible instantiation of parameters. Each argument

expression should satisfy the type of the corresponding parameter. Note that each

argument is typed in a context which includes the potential declarations of what the

preceding arguments might be. It is important also to notice the constraint a ′ 6∈ V
which enforces any instance to have a concrete atomic type. See Section 4.3.2.2 for

a discussion on this language feature.

⊢ s •

• Step s ⊢ ci •

• (a1, . . . , an) → a

∀j ∈ {1 . . . n}, f = enum({q | 1 < q < j and dI (eq) 6= ∅})

and {s; ef(1); . . . ; ef(j−1)} ⊢ ej
•

• a ′
j

a ′ 6∈ V (a1, . . . , an) → a4̄(a ′
1, . . . , a

′
n) → a ′

s ⊢ ci(e1, . . . , en) •

• a ′
instance

4.2.3.2.2 Typing of declarations Declarations introduce new identifiers. The

categories of the declared identifier and its parameters could be either explicitly

expressed with a category expression or stated in the identifier’s elementhood via a

noun- or a set- expression. Both cases are handled by the rule dec with the ce = c

and ce = e conditions respectively.

⊢ s •

• Step i 6∈ I (s) ∀j ∈ {1 . . . n}, if cej = cj then s ⊢ cj
•

• Categ(aj)

∀j ∈ {1 . . . n}, if cej = ej then s ⊢ ej
•

• Noun(mj)/Set(mj) and aj = Term(mj)

if ce = c then s ⊢ c •

• Categ(a)

if ce = e then s ⊢ e •

• Noun(m)/Set(m) and a = Term(m)

s ⊢ i(c1, . . . , cn) : e •

• Dec((a1, . . . , an) → a)
dec

4.2.3.2.3 Typing of descriptions The Noun constructor takes a step as argu-

ment and the Adj takes an expression and a step as arguments. Their step argument

describes the characteristics and behavior of the terms that could inhabit them.

The adjective description extra expression indicates the domain of applicability of

the adjective described. The noun rule specifies that each identifier declared or

defined within the noun description becomes a character for this noun. Similarly,
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the adj rule specifies that each identifier declared, defined or refined within the

adjective description becomes an output character for this adjective. In addition

the adj rule indicates that the expression argument of Adj is the input noun of this

adjective.

⊢ s •

• Step {s; self : term} ⊢ s′ •

• Step

∀i ∈ dI (s′) ∪ DI (s′), {s; self : term; s′} ⊢ i •

• m(i)

s ⊢ Noun {s′} •

• Noun(m)
noun

⊢ s •

• Step s ⊢ e •

• Noun(m)

{s; self : e} ⊢ s′ •

• Step ∀i ∈ I (s′), {s; self : e; s′} ⊢ i •

• m ′(i)

s ⊢ Adj (e) {s′} •

• Adj (m,m ′)
adj

In both cases the special keyword self could be used inside the descriptive step to

stand for the generic term characterised. A self marker is introduce indicating the

type of this keyword. See Section 4.2.3.2.5 for the rules typing self.

Remark 4 (Self marker) It is important to notice that the self markers self :

term and self : e can not be constructed according to the abstract syntax of Sec-

tion 4.1, self being a keyword and not an identifier of I. Therefore the rules of

Section 4.2.3.1.1 are not applicable to retrieve the type of self inside the context.

4.2.3.2.4 Typing of refinements A refinement is the application of an adjec-

tive to either a term, a set, a noun or another adjective. The rules

term-refinement, set-refinement and noun-refinement restrict such refine-

ment to a term, a set or a noun with sufficient characters accordingly to the ad-

jectives input (condition m1 4 m2). The condition ∀i ∈ (dom(m ′
1) \ dom(m1)) ∩

dom(m2), m2(i)4̄m ′
1(i) makes sure that no character clash occurs if some adjective

characters were already present. Note the use of m ′
1 ⊎ m2 (instead of m2 ⊎ m ′

1) to

give priority to the adjective characters.

The rule adj-refinement enforces the fact that the output of the adjective to

be refined is acceptable by the refiner-adjective input (condition m1 4 m ′
2).
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⊢ s •

• Step s ⊢ e1
•

• Adj (m1,m
′
1)

s ⊢ e2
•

• Noun(m2)/Set(m2)/Term(m2) m1 4 m2

∀i ∈ (dom(m ′
1) \ dom(m1)) ∩ dom(m2), m2(i)4̄m ′

1(i)

s ⊢ e1 e2
•

• Noun(m ′
1 ⊎ m2)/Set(m ′

1 ⊎ m2)/Term(m ′
1 ⊎ m2)

term/

set/

noun

-refinement

⊢ s •

• Step

s ⊢ e1
•

• Adj (m1,m
′
1) s ⊢ e2

•

• Adj (m2,m
′
2) m1 4 m ′

2

∀i ∈ (dom(m ′
1) \ dom(m1)) ∩ (dom(m ′

2) \ dom(m2)), m ′
2(i)4̄m ′

1(i)

s ⊢ e1 e2
•

• Adj (m2,m
′
2 ⊎ m ′

1)
adj-refinement

4.2.3.2.5 Typing of self The rules self-noun and self-adj indicate that the

special identifier self is typed according to a self marker in the typing context.

This marker is disposed by the noun and adjective descriptor typing rules noun

and adj.

⊢ {−→s } •

• Step

{−→s ; self : term} ⊢ self •

• Term(∅)
self-noun

⊢ {−→s } •

• Step {−→s } ⊢ e •

• Noun(m)

{−→s ; self : e} ⊢ self •

• Term(m)
self-adj

The rule self-character indicates that all, directly available identifier in the con-

text is a character for self.

⊢ {−→s } •

• Step

{−→s } ⊢ self •

• Term(m) i ∈ I (p) {−→s ; p} ⊢ i •

• t

{−→s ; p} ⊢ self •

• Term((i , t) ⊎ m)
self-character

Similarly to rules ident-basic, ident-local-scoping, ident-block and

ident-label, the rules self-basic, self-local-scoping, self-block and

self-label repercuss the typing of self through a block element, a local scop-
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ing and a step labelling respectively.

{−→s } ⊢ self •

• a I (s′) = ∅
{−→s ; p} ⊢ self •

• a
self-basic

{−→s ; s2} ⊢ self •

• a

{−→s ; s1 ⊲ s2} ⊢ self •

• a
self-local-scoping

{−→s1 ;−→s2} ⊢ self •

• a

{−→s1 ; {−→s2}} ⊢ self •

• a
self-block

{−→s ; s′} ⊢ self •

• a

{−→s ; label l s′} ⊢ self •

• a
self-label

4.2.3.2.6 Typing of references The rule ref indicates that if a label exists

in a step, it could be referred to in the context of this step. A reference has type

Stat .

⊢ s •

• Step l ∈ L(s)

s ⊢ ref l •

• Stat
ref

4.2.3.3 Rules for the phrase level

This section contains the typing rules for the phrase level of Section 4.1.2.4.

4.2.3.3.1 Typing of definitions Definitions introduce new identifiers. For

a definition, the parameters could either be identifiers (def rule) or expressions

for definition by matching cases (def-case rule). Note that definitions have one

restriction in comparison with declarations. Definitions of polymorphic identifiers

are not allowed. This is due to the fact that any CGa expression ought to have a

concrete category. One could declare identity (a):a but can not define it with

the same type (see Section 4.3.2.2).
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⊢ s •

• Step i 6∈ DI (s)

∀j, k ∈ {1 . . . n}, j 6= k ⇒ ij 6= ik ∀j ∈ {1 . . . n}, s ⊢ ij
•

• () → aj

s ⊢ e •

• a if i ∈ dI (s) then s ⊢ i •

• (a1, . . . , an) → a

s ⊢ i(i1, . . . , in) := e •

• Def ((a1, . . . , an) → a)
def

⊢ s •

• Step if i ∈ I (s) then s ⊢ i •

• (a1, . . . , an) → a

∀j ∈ {1 . . . n}, s ⊢ ej
•

• aj s ⊢ e •

• a

s ⊢ i(e1, . . . , en) := e •

• Def ((a1, . . . , an) → a)
def-case

4.2.3.3.2 Typing of sub refinements The rule sub-noun lists the conditions

to build a correct sub refinement with a term- set- or noun-identifier, and a noun

expression. The rule sub-adj does so with an identifier and an adjective expression.

⊢ s •

• Step s ⊢ i •

• Term(m1)/Set(m1)/Noun(m1)

s ⊢ e •

• Noun(m2) ∀i ′ ∈ dom(m1) ∩ dom(m2), m1(i
′)4̄m2(i

′)

s ⊢ i ≪ e •

• Sub(Term(m1 ⊎ m2)/Noun(m1 ⊎ m2)/Set(m1 ⊎ m2))
sub-noun

⊢ s •

• Step s ⊢ i •

• Term(m1)

s ⊢ e •

• Adj (m2,m
′
2) ∀i ′ ∈ dom(m1) ∩ dom(m ′

2), m1(i
′)4̄m ′

2(i
′)

s ⊢ i ≪ e •

• Sub(Term(m1 ⊎ m ′
2)/Noun(m1 ⊎ m ′

2)/Set(m1 ⊎ m ′
2))

sub-adj

4.2.3.4 Rules for the discourse level

This section contains the typing rules for the discourse level of Section 4.1.2.5.

4.2.3.4.1 Typing of basic steps Only well typed statements, declarations,

definitions or sub refinements could be considered as phrases or basic steps accord-

ing to the basic-step rule.

⊢ s •

• Step s ⊢ p •

• Stat/Dec(t)/Def (t)/Sub(t)

s ⊢ p •

• Step
basic-step

4.2.3.4.2 Typing of local scopings The rule local-scoping for local scop-

ings indicates that once a step s2 is valid in the context of a step s3, it is possible

to form a local scoping which puts s2 as a context for s3.
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⊢ s1
•

• Step s1 ⊢ s2
•

• Step {s1; s2} ⊢ s3
•

• Step

s1 ⊢ s2 ⊲ s3
•

• Step
local-scoping

4.2.3.4.3 Typing of blocks The rule block expresses that if a block of steps

{−→s } is valid in a certain context s1 and if a step s2 is valid under the context

extended with this block ({s1; {−→s }}), then extending the block {−→s } with the step

s2 forms a valid block {−→s ; s2}. With the rule empty-step we state that the empty

step is a valid step. The extra rule self-marker states that the self marker, used in

the rules for typing self and in the rules noun and adj, is considered as a normal

step by the type system.

⊢ s1
•

• Step s1 ⊢ {−→s } •

• Step {s1; {−→s }} ⊢ s2
•

• Step

s1 ⊢ {−→s ; s2} •

• Step
block

⊢ {} •

• Step
empty-step

⊢ s •

• Step

s ⊢ self : term/e •

• Step
self-marker

4.2.3.4.4 Typing of step labels The rule label indicates that if a step is a

valid step, then labelling it with an unused label forms a valid step too.

⊢ s1
•

• Step l 6∈ L(s1) s1 ⊢ s2
•

• Step

s1 ⊢ label l s2
•

• Step
label

4.3 Features of CGa

In this section we discuss in detail some features of MathLang-CGa. We group

these features in three groups: the language features (Section 4.3.1), the typing

features (Section 4.3.2) and the language’s meta-theory (Section 4.3.3).

4.3.1 Language features

4.3.1.1 Binders

Binders play an important role in both MV, WTT and MWTT. Their presence in

these languages reflect the wide use of variable binding operators in mathematics
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and logics. A binding makes an abstraction explicit by introducing a variable used

throughout an expression. The lambda binder λ, the universal and existential

quantifiers ∀ and ∃, or the integration sign
∫

dx are among famous binders. We

recommend the reading of [Zin04, § 4.2.2] where C. Zinn discusses the role of

variables.

From a grammatical point of view a binder is a constructor which holds a

variable declaration and provides the variable declared for an expression. The

bindings are effectively defined in WTT and MWTT as the combination of a binder

identifier, a declaration and an expression. In WTT the set of binders was assumed

to be predefined. In our first year PhD report [Maa03], we considered splitting the

set of binders into three families of binders.

1. The “pure abstraction” binders for which the abstraction permits to reason

on an abstract object. For these bindings a substitution may occur as for

A. Church’s λ. We classified also the quantifiers ∀, ∃ and the operators such

as Σ, min, lim and
∫

dx among this family of binders.

2. The “description binders” for which the variable introduced stands for the

binding expression itself. The body of the binding is therefore a description

making some judgment on the variable introduced. B. Russell’s ι binder is of

this kind.

3. The “comprehension binders” for which the variable introduction is used to

describe a complex structure. MV’s Set binder and WTT’s Abst, Set, Noun

and Adj binders [KN04] are among this family of binders.

The goal of this decomposition was to group binders by their grammatical behavior.

For family 1 the variable could be of any grammatical category (term and set more

likely but one could imagine a λ-abstraction on a statement). For family 2 the

variable bound and the binding itself share the same category as they stand for

the same thing. The bounded expression is usually a statement. For family 3, the

bounded expression is also usually a statement but the variable is just a medium

for describing a notion that can not be described by extension and therefore needs

to be described by comprehension. For example, the golden number φ which could

be described as the positive real number such that φ2 − φ − 1 = 0.

The problem faced in WTT and MWTT was the strict definition and usage

opportunities for binders (all binders have only one declaration and one expression

as arguments). These languages did not permit to define new binders nor to get a
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Declarations
Common name CGa declaration
Set binder Set( dec(term), stat ) : set

∀ quantifier forall( dec(‘a), stat ) : stat

Church’s λ lambda( dec(‘a), ‘b ) : ‘b

Russell’s definite description ι iota( dec(‘a), stat ) : ‘a

Instances
Formula CGa equivalent
{x ∈ R | x > 0} Set( x:R, >(x,0) )

∀P, P (S) ⇒ P (R) forall( P(set):stat , =>(P(S),P(N)) )

λx.xx lambda( x:term, app(x,x) )

n ∈ N st. 3 < n < 5 iota( n:N, and(<(3,n),<(n,5)) )

Table 4.1: Examples of binder identifiers

refine checking of their grammatical aspect (such as checking that both the variable

and the binding expression share the same category in a ι-expression).

In CGa, we offer the possibility to declare new binders and we therefore give

more expressive freedom. See Table 4.1 for some examples of declaration and

instances of common binders. This is made possible by the following elements of

the language.

• Declarations are first class element of the expression level, see Section 4.1.2.3.

In WTT and MWTT they were a subsidiary level used in bindings and con-

texts.

• Earlier parameters holding declarations extend the typing of a parameter of

an identifier’s instantiation, see the rule instance on page 87.

Example 9 (Binders) Let us see some examples of binder declarations and uses.

λ-binder A possible declaration of λ is lambda (dec(term),term):term if we

decide to consider λ-expressions as CGa terms (see Table 4.1 for an alter-

native declaration). The λ-calculus K operator could therefore correspond to

the expression lambda(x:term,lambda(y:term,y)).

Quantifiers One could define the ∀ quantifier and state that for an element e of a

set S, e is greater or equal to any element of S. This could be done as follows

(the prefix ‘ denotes category variables).

{

forall(dec(‘a),stat):stat;
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S:set;

e:S;

forall(x:S, >=(e,x));

}

Limit operator We define the limit operator to be the binder:

lim(dec(term),term,term). The second argument being the value the vari-

able declared by the first argument approaches. The formula limx→a f(x)

would be expressed in CGa as lim(x:term,a,f(x)).

ι-binder We define here, using the ι-binder, the golden mean aforementioned.

Note the repetition of the ‘a category variable in the declaration of ι. We

assume here R, =, -, sq, 1 and 0 to be predefined.

{

iota(dec(‘a),stat):‘a;

phy := iota( x:R, =(-(-(sq(x),x),1),0) );

}

4.3.1.2 Definition by matching cases

In CGa, definitions define the meaning of a symbol. The language gives two ways

to define an identifier.

• Stand-alone definition. For this kind of definition a unique expression is given

as definiens. The definiendum is a new denomination for this expression. A

list variables plays the role of parameters of the definition. These variables

should all be well declared identifiers and be unparameterised (as stated in

the rule def on page 91). The types of these parameters and the type of

the definiens-expression constitute the type signature of the identifier (as

stated by the rules def on page 91 and ident-def on page 85). An instance

of the newly defined identifier needs to provide an expression-argument per

parameter matching the parameter’s type (see the rule instance on page 87).

One can envision in later computerisations the in-lining of the identifier’s

definiens in place of an identifier’s instance. It is important to notice that,

in contrast to WTT’s typing rule, we do not restrict the set of free variables

of the context to be equal to the set of parameters. Therefore, some free

variables might occur in the definiens without being a parameter. We discuss

this issue in Section 4.3.1.5.
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Example 10 The union of sets, A ∪ B = {x | x ∈ A ∨ x ∈ B}, could be

defined with two parameters A and B:

{

in(term ,set):stat; Set(dec(term),stat):set;

or(stat ,stat):stat; A:set; B:set;

union(A,B) := Set( x:term , or(in(x,A),in(x,B)) )

}

• Definition by cases. For this kind of definition, the language associates a

symbol with one expression per situation. Each particular situation is given

by a context and a pattern formed by the definiendum’s parameters. The

symbol’s definition is therefore split into several definition cases.

This kind of definition is similar to the definitions by pattern matching in

ML languages [Pie02, Ch. 4] but with important differences. CGa allows

the cases of definition to be disjoint in the document where traditional ML

languages imposes the cases to be all defined at once. In CGa, a case of a

definition could be redundant or “visibly” in contradiction with a previous

one. Matching such as function x -> true | x -> false are allowed but

usually result in a warning at ML compilation time. Our type system does

not verify the exhaustibility of a pattern matching definition. This is mainly

due to the fact that CGa types are not constructed.

The only verification done by our type system (def-case on page 91) is the

coherence of the typing result (i.e. the type signature of the identifier should

be identical for each case). Note that the patterns are expressions of the

language and that the typing of each pattern is done independently.

Example 11 In [Lan51] (see Section 5.3.1), E. Landau defines addition as

follows:

x + 1 = x′ for every x

x + y′ = (x + y)′ for every x and every y

where x′ stands for the successor of x. Here is a CGa encoding of this defi-

nition.

96



Chapter 4. MathLang-CGa, Language Definition

{

N:set; 1:N; S(N):N

x:N |> {

+(x,1) := S(x);

y:N |> +(x,S(y)) := S(+(x,y))

}

}

Example 12 The Fibonacci function that defines how to calculate Fibonacci

numbers by recursion. The first and second numbers are 0 and 1. Each new

number is the sum of the two previous ones.

{

N:set; 0:N; 1:N; +(N,N):N;

Fibonacci(0) := 0;

Fibonacci(1) := 1;

{ n:N; >(n,0) } |> Fibonacci(+(n,2)) :=

+( Fibonacci(n),

Fibonacci(+(n,1)))

}

Remark 5 Example 12 is a recursive definition. Such kind of definition

could be expressed with a stand-alone definition or a definition by cases if the

type signature of the function is already stated (either with a declaration or a

previous case).

4.3.1.3 One class of identifiers

In WTT and MWTT, identifiers are separated into three disjoint sets: variables,

constants, and binders.

The rest of this paragraph briefly describes how identifiers work in WTT and

MWTT (see Sections 2.2 and 4.4). All three kinds of identifiers have a weak type,

and this is all that variables have. Constants also have a definition and parameters

(each parameter being a variable declaration). Each use of a constant is applied

to arguments of the right weak type. Binders have parameters like constants,
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and one additional special parameter for the bound variable. Unlike variables and

constants, binders can not be defined inside a document but can only be listed in

the preface. Binders can not be given definitions; a statement using a binder can

act as a definition but there is no way to indicate this.

In encoding texts, we found these restrictions of the different identifier kinds

problematic, so CGa instead now has just one kind of identifiers and distinguishes

the uses via types. To fit binders in our new scheme and to allow declaring/defining

new binders in documents, we replace the old single special parameter of each binder

with a new kind of parameter with a declaration type usable with any identifier.

For example, the binder ∀ might be declared as forall(dec(‘a), stat):stat,

making it an identifier with output type stat and two parameters: a declaration

of an identifier of arbitrary type ‘a and an expression of type stat (statement).

An example using this identifier is the translation forall( n:N, >=(n,0) ) of

the proposition ∀n ∈ N. n ≥ 0 (assuming N, >= and 0 are already declared). See

Section 4.3.1.1 and Table 4.1 for further examples.

4.3.1.4 Grouping and scopes

4.3.1.4.1 Grouping A fundamental idea of CGa (inherited from MV) is cap-

turing the grammatical and binding structure of a mathematical text. In MV and

WTT, each line of a book has a context representing the set of assumptions about

types of variables (“let x be a natural number”) and truths (“suppose x = y2 for

some natural number y”) used in the definition or statement made by the line. MV

allows using flags as a secondary graphical 2-dimensional way of writing the current

context in a book; an element repeated in the contexts of consecutive lines can be

written as a flag whose head contains the repeated element and whose flagstaff

goes through all the lines repeating the element (see Section 2.1.2.2). MV also has

a secondary notion of blocks derived from flag nesting.

Unlike MV, MWTT directly supports flags and blocks rather than treating them

as secondary syntax-sugaring notions derived from the contexts, see Section 4.4.

Upon careful examination of MWTT’s flags and blocks, we found that they over-

lapped in function. MWTT’s blocks allow grouping lines and sub-blocks and lim-

iting to a block the scope of some of the constants defined in the block. MWTT’s

flag allow identifying a group of lines in which a context element is active.

In CGa, we instead merged similar functionality. A block, written

{step1, . . . , stepn}, is a sequence of statements. The local scoping construct step1 ⊲

step2 makes the declarations, definitions, sub refinements and assertions inside step1
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assumptions used by step2 and restricts declarations, definitions and sub refine-

ments inside step1 to be visible only in step2. Both blocks and local scoping con-

structs are steps, as are declarations, definitions, sub refinements and assertions.

Steps can be of various sizes, such as the declaration of a variable, the definition of

a function, a proof, or an entire book.

4.3.1.4.2 Scopes The scopes of identifiers depend on the location of their dec-

larations or definitions. Declarations could occur anywhere in an expression or

could be an atomic step. We explain here the three possible cases: a declara-

tion/definition in a local scoping, a declaration/definition as atomic step in the

body of a local scoping and a declaration as a parameter of an identifier. The

first two are shared by definitions and declarations. The third one is declaration

specific.

Local scoping The first case is the presence of a declaration or a definition in a

local scoping. The introduced identifier is available in the step (and its sub-

steps) covered by the local scoping. Here, an identifier x is declared in the

context part of a local scoping. x is available in the part of this context that

follows the declaration 3 , and also in the body part 4 of the local scoping.

But x is not available prior to being declared: in the preceding steps 1 and

in the preceding part of the context 2 of the local scoping. Furthermore, x

is not available in the steps that follow the local scoping 5 .

{

1 ;

{ 2 ; x:term; 3 ; } |> { 4 ; };

5 ;

};

Block The second case is a declaration or a definition inside some blocks. The

identifier is therefore available is all the steps that follow. A declaration of a

triangle is an atomic step of the sub-block of a block. The identifier triangle

is not available before being declared 1 and 2 but is available in all that

follows 3 and 4 . The availability of triangle would have been identical if

the declaration had been replaced by a definition.

{

1 ;

{ 2 ;
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triangle:noun;

3 ; };

4 ;

};

Binding The last case is a declaration as argument for an instantiation. If an

identifier takes a declaration as parameter, then the declared identifier is

available for the following parameters. We declare a binder identifier b with

a declaration as a second parameter. We also declare an identifier a with

three parameters. In an expression using these two identifiers, a variable x is

declared. This identifier x is not available before being declared 1 and 2 .

x is available in the parameters of the binder that follows the declaration of

x 3 . Finally x is neither available in the remaining part of the expression 4

nor in the steps that follow 5 .

{

b(term , dec(term), term): term;

a(term , term , term): stat;

a( 1 , b( 2 ,x:term , 3 ), 4 );

5 ;

};

4.3.1.5 Context and parameters

A major difference between the CML form of a mathematical text and its for-

malised counterpart is the handling of parameters. When defining a new symbol

(definiendum) the mathematician gives firstly a clear list of parameters that one

should provide to make use of the newly defined symbol and secondly the actual

expression (definiens) for which the new symbol will stand. This expression may

contain occurrences of the parameters’ variables. The generic representation of a

definition is f(x, y) := E[x, y] where f is the definiendum, x and y the parameters,

:= the definition symbol, E the definiens, and where the square brackets [ and ]

contain the list of free variables of E. In a mathematical text, the parameters are

either introduced implicitly of by a phrase like “let x and y be” but some situations

could be more ambiguous when, for example, the list of parameters of a function

f are clearly stated in a formula f(x, y) = . . . but where an extra parameter exists

(such as the arbitrary set S of x and y). From a formal point of view, x and y are

placeholders in the definiens as well as S. Formally S should be a parameter. We
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name this kind of parameters ghost parameters. To avoid such a situation which

breaks the δ-reducibility, MV, WTT and MWTT constrain each variable of the

context to be a parameter in a definition (see mwtt-full-def in MWTT’s weak

type system Section 4.4.2). This is directly inherited from Automath and assures

the existence of a δ-normal-form for every expression. We decided to remove this

constraint of having all the context’s variables as parameters; this allows parame-

ters to exist on their own and makes the author free to chose his parameters.

4.3.2 Typing features

4.3.2.1 Object orientedness, abstraction with nouns and adjectives

In this section we explain the reasons for CGa’s object-orientedness.

4.3.2.1.1 Nouns as classes

Let us try to compare MV and Automath. In the first place it

must be said that MV has been inspired by the structure of Automath

as well as by the tradition of writing in Automath. In that tradition

elementhood, i.e. the fact that an object belongs to a set, is expressed

by the typing mechanism available in Automath. So in order to say that

p is an element of the set S, this is coded as p : S, so S is the type of p.

This is in accordance with the tradition in the standard mathematical

language. If we say that p is a demisemitriangle, one does not think of

the set or the class of all demisemitriangles in the first place, but rather

thinks of “demisemitriangle” as a type of p. It says what kind of things

p is.

In order to keep this situation alive, MV does not take sets as the

primitive vehicles for describing elementhood but substantives (in the

above example semidemitriangle is a substantive). [dB87, §1.12]

Nouns are abstractions that classify objects according to their common features as

explained in Section 4.1. Nouns have an important place in the representations of

mathematics in MV and WTT, see Sections 2.1 and 2.2 respectively.

As already mentioned in Section 3.4, we encountered limitations of the ex-

pressiveness of WTT-style nouns when we started translating Euclid’s Elements

[Hea56]. Euclid starts his first chapter by defining basic geometric objects such as

points, lines, figures, triangles, angles, etc. The definition of a line is as follows:
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Euclid’s Elements CGa translation
A point is that which has
no parts

point := Noun

A line is breadthless
length

line := Noun {length:term}

A surface is that which
has length and breadth
only

surface := Noun {length:term; breadth:term}

Table 4.2: Examples of noun definitions

20. Of trilateral figures, an equilateral triangle is that which has its three sides
equal, an isosceles triangle that which has two of its sides alone equal, and a
scalene triangle that which has its three sides unequal.

Euclid [Hea56, Book I]

Figure 4.1: Definition of trilateral figures by Euclid

A line is breadthless length. In MWTT, one way to write this is by defining line

by forming a noun characterized by two statements: one that line “has length”,

the other that line is breadthless (does not “have breadth”). This uses a constant

“has” which takes two nouns and returns a statement. This constant was unsat-

isfactory because it is hard to define its semantics precisely and because MWTT

could not make any use of it for checking well-formedness. Because “has” deeply

characterises the noun line and by consequence any concrete line — weak typed

as “term” — created as a line instance, we felt it should be replaced by something

that informs the language that lines have length, to allow approving of statements

about the length of a line and disapproving of those about nonsense properties like

its breadth, angle, weight, etc.

We found a solution in the concept of classes and objects in programming. A

line is a class with one character length. Any instance of line is an object with a

length. We characterise a line as breadthless in our translation with the absence of

such a character. Table 4.2 gives more examples.

Consider the first definition in Figure 4.1 which contains the definition of tri-

lateral figures by Euclid. This definition uses the noun figure. In the preceding

definitions in [Hea56], figures (rectilinear figures) are defined as those contained

by straight lines. Therefore we define the noun figure with one character being

the set of straight lines (we shorten it to lines in this example) and a statement

precising that the figure is contained by this set of lines. The Noun descriptor de-

scribes the noun with a step. The first unit of this step defines the character sides.
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Definition 1. A set with an associative law of composition, possessing an
identity element and under which every elements is invertible, is called a group.
[...] A group G is called finite if the underlying set of G is finite [...]
A group [with operators] G is called commutative (or Abelian) if its group law
is commutative. N. Bourbaki [Bou74, Chapter I, §4]

Figure 4.2: Definition of group, finite group and Abelian group by N. Bourbaki

Sides is a set of lines. The second unit of this step is a statement which uses an

identifier contained_by. This identifier (assumed to be declared earlier) takes a

term and a set and returns a statement (contained_by (term,set): stat). The

two parameters passed to this identifier are the future instance of the figure itself

(encoded by the keyword self) and by the sides of the figure (character sides of

self).

figure := Noun { sides:set(line);

contained_by(self ,sides) }

Remark 6 According to the typing rules of Section 4.2, the noun triangle and

the adjective isosceles have the following types respectively.

Noun( {(sides, Set({(length,Term)})} )

Adj ({(sides, Set({(length,Term)})}, {(sides, Set({(length,Term)})})

Considering now the example of Figure 4.2 which is the definition of a group by

N. Bourbaki. We define group as a noun, The characters of this noun are identi-

fiable in the text. The set E, the compositional law ∗ and the neutral element e.

Two statements also define a group: the associativity of ∗ and the existence of an

inverse of any element of E (we use an infix notation for =).

group := Noun { E:set;

{ a:E; b:E } |> *(a,b):E;

e:E;

forall (a:E,

forall (b:E,

forall (c:E,

*(*(a,b),c) = *(a,*(b,c)))));

forall (x:E, invertible(e,x))

}
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Remark 7 According to the typing rules of Section 4.2, the group identifier has

type Noun( {(E, Set), (∗, (Term,Term) → Term), (e,Term)} ).

Remark 8 The type system prevents any misuse of identifiers’ characters. For

instance, let ABC be a declared triangle (ABC:triangle). This triangle is therefore

a term with type Term( {(sides, Set({(length,Term)})} ). According to our def-

inition of triangle, the only defined character is sides, the set of lines composing

a triangle. The expression ABC.sides refers to the sides of our triangle ABC. The

set ABC.sides has type Set({(length,Term)}).

4.3.2.1.2 Adjectives as mixins

An adjective belongs to a substantive, and serves a double purpose:

(i) to form a new substantive, and (ii) to form a new sentence.

[dB87, §1.19]

According to (i), an adjective is a function from noun to noun. An adjective, like

isosceles, when applied to a noun like triangle creates a new noun isosceles triangle.

In our system where nouns are classes, the adjectives are therefore mixins [FKF98].

Intuitively, a mixin is a function from class to class. As in mixin calculi, an ad-

jective can also be applied to an adjective to form a new adjective, to a term to

form a new term, and to a set to form a new set (mapping the adjective across all

members of the set). In CGa, we call these constructions refinements. The rules

noun-refinement, adj-refinement, term-refinement and adj-refinement dic-

tate the typing of such refinements accordingly.

Following (ii), we also incorporate the possibility that an existing term, noun or

set gets the properties held by an adjective or a noun. For example one can describe

a triangle ABC and demonstrate that this triangle is isosceles. The last line of this

demonstration can be written in CGa as the statement: ABC << isosceles (read

ABC is isosceles). In our syntax we extend this sub refinement to be a cast in-

heritance. The expression A ≪ B, given by N.G. de Bruijn in MV, is seen as a state-

ment which states that “every A is a B”. For example,

triangle << trilateral figure. We kept this notation in CGa.

Let us see the use of these notions in some examples. In the example taken

from Euclid’s Elements , several adjectives are defined. The noun triangle is de-

fined as a refinement of the noun figure using the adjective trilateral. We define

the adjective trilateral with the constructor Adj. The Adj constructor takes as

a parameter the noun to be extended to form the new noun. In the case of our
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example, trilateral could only be applied to figures as it requires the character

sides. The body of Adj is a step (similarly to the Noun descriptor). In this step two

specific objects are available. self which refers to the instances of the noun being

defined (see section 4.3.2.1.1) and super which refers to the instance of the noun

being refined (only needed when a component of the old noun is hidden by a com-

ponent with the same name of the new noun). After the definition of trilateral,

triangle is simply defined as a trilateral figure. We similarly define the ad-

jectives equilateral, isosceles and scalene (We use an infix notation for the identifiers

=(term,term):stat and !=(term,term):stat and and(stat,stat):stat).

{

trilateral :=

Adj (figure) {

card(sides) = 3

};

triangle := trilateral figure;

equilateral :=

Adj (triangle) {

forall(side1:sides ,

forall(side2:sides ,

=(side1.length ,

side2.length))

};

isosceles :=

Adj (triangle) {

exists_one(side1:sides ,

exists_one(side2:sides ,

=(side1.length ,

side2.length)))

};

scalene :=

Adj (triangle) {

forall (side1:sides ,

forall (side2:sides ,

!=(side1.length ,

side2.length)))

}

}
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4.3.2.1.3 Multi adjective refinements With adjectives we have an operation

of simple inheritance between nouns. Let us see with this last example how multi

adjective refinements work.

The example of Figure 4.2 defines two adjectives. These adjectives for groups are

finite and Abelian. Finite states that the set E of the group is finite. Abelian (or

commutative) states that the operator of the group is commutative. In CGa, we

write the definitions of these adjectives as follow.

{

finite :=

Adj (group) {

finite_set(E)

};

Abelian :=

Adj (group) {

forall(x:E,

forall(y:E,

=( *(x,y), *(y,x) )))

}

}

We could combine these two adjectives to obtain either Abelian finite group

or finite Abelian group. In CGa both expressions share the same type. Their

meaning may differ as the statements introduced by the adjectives may overlap. It

is for instance possible to define an isosceles equilateral scalene triangle.

This expression is perfectly typable but of course would be considered as inconsis-

tent even by pupils in primary schools. This reflects exactly the purpose of this first

layer of MathLang which is to capture the structure of the text and its elements to

allow, in a later stage, semantical analysis.

group
finite−−−−→ finite group

Abelian

y
yAbelian

Abelian group −−−−→
finite

Abelian finite group
finite Abelian group

4.3.2.2 Weak typing

We discuss in this section the notion of weak typing for MathLang-CGa. We already

presented the notion of weak types and weak typing for WTT in Section 2.2.2 on

page 26.
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Is the CGa typing weak? Yes in the sence that the CGa types are, like WTT

ones, atomic types. Unlike most type systems, WTT and CGa’s type system do

not have a function type. This fact alone creates the weakness of our type system

in comparison to the numerous descendants of the Simple Type System [Hin97].

The benefit we get from this weakness is a low level of complexity of the type

system. The type system attributes to abstract syntax expressions a concrete type.

This gives a static vision of the meaning hosted in the language. This makes CGa

authoring accessible but nevertheless checkable as we see in Chapter 5.

Each type in WTT and CGa is inhabited by expressions having little in common.

As we saw in Section 3.3.1.2.4, the language does not permit directly to describe a

set of sets (an element of such a set being at the same time a term according to its

belonging to a set and a set by definition). The solution we saw in Section 3.3.1.2.4,

which was proposed by N.G. de Bruijn, is to define a special operator “element of”

to downcast a set into a term (element_of(set):term). Another solution is to

use a special character a term to stand for its “set-selfness”. The formula a ∈ b ∈ c

could therefore be turned into the following expressions where E is the character

representing this “set-selfness”.

{

c:set( Noun { E:set } );

b:c;

a:b.E

}

Could the type signature of identifiers be assimilated to a light arrow type? In

Section 4.2.3.1.1, we presented the typing rules for identifiers. They attribute to an

identifier a type (element of the set T from Section 4.2.1.1) composed by a sequence

of input atomic types and an output atomic type (i.e. (a1, . . . , an) → a). Such

type is only attributed to identifiers. No expression could get similar typing (as

enforced by the instance rule on page 87). Functions are not “first class citizens” of

the language. Assuming that we declare two identifiers fun(dec(’a),term):term

and app(term):term, it is possible to define a function f(x) = e by its λ-term

f := fun(x:term,e) and later express the application f(a) by app(f,a) but the

typing does not verify that f is a function and that a’s type match f’s input type.

Both f and a are seen as terms by CGa’s type system.

Does the object orientedness make the type system stronger? The object-oriented

nature of CGa comes from the object-oriented structure of mathematical texts and
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particularly nouns and adjectives (see Sections 3.3.1.3 and 4.3.2.1). The language

expressiveness is highly extended with this feature but the type system remains a

weak type system as the type of any expression or character is atomic.

4.3.3 Meta-theory

In Section 2.2.4 we gave a summary of WTT’s meta-theory as developed by F. Ka-

mareddine and R. Nederpelt and presented in [KN04]. We did not attempt to prove

the similar properties for CGa for several reasons.

The first reason being that the language kept evolving to fulfill our first re-

quirement of endorsing mathematical authoring. When developing MWTT we

could faithfully rely on part of WTT’s met-theory as we verified that none of our

additional constructions in MWTT were affecting the decidability of weak type

checking nor the weak typability. As for the subject reduction and strong normali-

sation, they are broken by the inclusion of the definition by cases in MWTT. This

leads us to our second reason.

The second reason is based on the distance between the goal of CGa and some

properties of WTT’s meta-theory. The subject reduction and strong normalisation

make sense for a language attached to a calculus as these properties are fundamen-

tal for the valuation and verification of the reliability of the calculus. CGa is a

descriptive language. A typical type system checks the decidability of a calculus

where in CGa it simply permits to check the grammatical well-formation. The CGa

aspect will certainly be useful for later computerisation which will come with their

specific meta-requirements.

The third reason resides in the weakness of the type system. As we explained

in Section 4.3.2.2, CGa’s types remain weak. The type system did not evolve

much since WTT. The major improvement is the extension with object-oriented

constructs. This extension and the noun and adj rules of Section 4.2.3.2.3 require

a simple unification for type inference.

4.4 MWTT, a Refinement of WTT

In this section we present MWTT our early work on refining WTT. As explained

in Section 2.2.5, the research work for this PhD started with an investigation on

the feasibility to translate a mathematical text into WTT. We started to translate

the first chapter of E. Landau’s Foundations of Analysis into WTT. We identify
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the constructions that makes the specificity of MWTT. We give the reasons from

E. Landau’s text that lead to these extensions. Most material in this section were

published in [KMW04b].

4.4.1 Abstract syntax for MWTT

We present here the abstract syntax of MWTT and the differences with WTT as

presented in [NK01, KN04]. The notation we use in this section is a mixture of

those used in [NK01, KN04, Maa03, KMW04b].

4.4.1.1 Grammatical categories for MWTT

In MWTT we have five grammatical categories over which g ranges: T for terms,

S for sets, N for nouns, A for adjectives and P for statements.

4.4.1.2 Atomic level for MWTT

The identifiers define the atomic level. Variables stand for abstractions over terms,

sets or statements. Constants are names for terms, sets, nouns, statements or

adjectives. Binders are defined in the language and bind a variable in an expression.

Each identifier is part of one grammatical category. In the abstract syntax, the

grammatical category of an identifier is indicated by an exponent.

Variables v ∈ V ::= VT | VS | VP

Constants c ∈ C ::= CT | CS | CN | CA | CP

Binders b ∈ B ::= BT | BS | BN | BA | BP

Example 13 (Variables) In the sentence “Let M be a set to which 1 belongs,”

M is a set variable and is denoted by M
S.

Example 14 (Constants) We give here some examples of constants.

• Constants of 0-arity: 1T , NS, a triangleN , isoscelesA, falseP .

• Constants of greater arity: +T , ∪S, a multiple of N , divisible byA, ∧P .

Example 15 (Binders) The expression“a natural number from 1 to 10”describes

a noun. We use the NounN (as presented in [KN04], see Section 4.3.1.1) to express

it. NounN
nT :NS(1T ≦T nT ≦T 10T )
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4.4.1.3 Phrase level for MWTT

The phrase level represents formula-like elements. Expressions are either a variable

occurrence, a constant or binder call, or an attribution (i.e. refinement in CGa).

Terms ET ::= VT | CT ( ~P) | BT
Z(E)

Sets ES ::= VS | CS( ~P) | BS
Z(E)

Nouns EN ::= CN ( ~P) | BN
Z (E) | EA EN

Adjectives EA ::= CA( ~P) | BA
Z(E)

P and E are introduced in section 4.4.1.6. ~Pstands for a sequence of P.

4.4.1.4 Sentence level for MWTT

The sentence level describes irreducible reasoning components. MWTT has two

kinds of definitions similarly to CGa (see Section 4.3.1.2). The case definition

(right column) did not exist in WTT.

Statements EP ::= VP | CP ( ~P) | BP
Z (E)

Definitions D ::= CT (~V ) := ET | CT ( ~P) := ET

| CS(~V ) := ES | CS( ~P) := ES

| CN(~V ) := EN | CN ( ~P) := EN

| CA(~V ) := EA | CA( ~P) := EA

| CP (~V ) := EP | CP ( ~P) := EP

~V stands for a sequence of V .

4.4.1.5 Discourse level for MWTT

The discourse level defines the constructions to structure mathematical texts. Con-

texts, lines and books were the only elements defined in WTT’s discourse level.

Contexts γ ∈ Γ ::= ΓF | Γ,Z | Γ, EP

Flags ΓF ::= ΓFS | ΓF , [Z] | ΓF , [EP ]

Flagstaffs ΓFS ::= ∅C | ΓFS, •
Lines l ∈ L ::= Γ ⊲ EP | Γ ⊲ D
Blocks k ∈ K ::= ∅K | K ◦ L | K ◦ {K}~C

Books b ∈ B ::= ∅B | B ◦ L | B ◦ {K}~C

~C stands for a sequence of C .
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In MWTT flags are composed by a head (a statement or a variable declaration

in [ ]) and a flagstaff (several •). MWTT included flags as full-fledged element

in the abstract syntax. In WTT flags are only a sugared notion. Flags allow to

introduce a variable or to make an assumption on several consecutive lines.

Normal notation Flag notation

[e1], [e2], e3, e4 ⊲b1

•, •, e5 ⊲b2

•, [e6] ⊲b3

•, • ⊲b4

e1

e2

e3, e4 ⊲ b1

e5 ⊲ b2

e6

⊲b3

⊲b4

In MWTT, a block represents a group of consecutive lines and/or blocks. The

main feature of blocks is to restrain the scope of some constants (subscript list).

In WTT, blocks were not defined.

4.4.1.6 Subsidiary sets

Declarations z ∈ Z ::= VS : SET | VP : STAT | VT : ES | VT : EN

Parameters P ::= ET | ES | EP

Expressions e ∈ E ::= ET | ES | EN | EP

4.4.2 Weak type system

We define the following weak types (for terms, sets, nouns, adjectives, statements,

declarations, definitions, contexts, lines, blocks and books respectively) over which

w ranges.

T, S, N, A, P, Z, D, G, L, K, B.

The weak types Z, L and K are MWTT specific. In this section we use a similar

notation for typing rules as described in Section 4.2.1.2 where the typing context

is a book.

4.4.2.1 Flattening flags

The flag construction is important to enhance the expressiveness of MWTT in

comparison with WTT but the flattening of each flag does not change its typing.
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Each flagstaff element is replaced by the content of the corresponding flag’s head.

By flattening we only lose the boundaries of the flag.

4.4.2.2 Functions

We use in the derivation rules some specific functions.

• dvars returns the set of variables declared in a given context

(dvars : Γ → ℘(V)).

dvars : Γ → ℘(V)

dvars(∅Γ) = ∅
dvars(γ, v : e) = dvars(γ) ∪ {v}

dvars(γ, v : SET) = dvars(γ) ∪ {v}
dvars(γ, v : STAT) = dvars(γ) ∪ {v}

dvars(γ, p) = dvars(γ)

• dconsB returns the set of defined constant in a given book. This excludes

local constants (dconsB : B → ℘(C)).

dconsB : B → ℘(C)

dconsB(∅B) = ∅
dconsB(b ◦ p) = dconsB(b)

dconsB(b ◦ d) = dconsB(b) ∪ dconsD(d)

dconsB(b ◦ {k}c1,...,cn
) = dconsB(b) ∪ (dconsK(k) − ∪n

i=1ci)

• dconsK returns the set of defined constant in a given block. This excludes
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constants defined locally in inner blocks (dconsK : K → ℘(C)).

dconsK : K → ℘(C)

dconsK(∅K) = ∅
dconsK(k ◦ p) = dconsK(k)

dconsK(k ◦ d) = dconsK(k) ∪ dconsD(d)

dconsK(k ◦ {k′}c1,...,cn
) = dconsK(K) ∪ (dconsK(k′) − ∪n

i=1ci)

• dconsD returns the set composed by the constant defined in a given definition

construction.

dconsD : D → ℘(C)

dconsD(γ ⊲ c(v1, . . . , vn) := e) = {c}
dconsD(γ ⊲ c(e1, . . . , en) := e) = {c}

• inC(i, c,b) gives the type of the ith argument of constant c as defined in the

book b.

• inB(i, b,b) represents the type expected by the binder b.

• fvars returns the set of free variables of a given expression

(fvars : E → ℘(V)).

fvars : E → ℘(V)

fvars(v) = {v}
fvars(c(e1, . . . , en)) = ∪n

i=1 fvars(ei)

fvars(bv:e′e) = (fvars(e)\v) ∪ fvars(e′)

fvars(bv:SETe) = fvars(e)\v
fvars(bv:STATe) = fvars(e)\v

fvars(e1 e2) = fvars(e1) ∪ fvars(e2)

• casedconsB and casedconsK return the set of constants defined by cases in

a given book, respectively block, excluding local definitions (casedconsB :
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B → ℘(C) and casedconsK : K → ℘(C)). Their definitions follow the defi-

nition of dconsB (respectively dconsK) but differ by returning only the con-

stants defined by cases. Both casedconsB and casedconsK make use of

casedconsD.

casedconsB : B → ℘(C)

casedconsK : K → ℘(C)

casedconsD : d → ℘(C)

casedconsD(γ ⊲ c(v1, . . . , vn) := e) = ∅
casedconsD(γ ⊲ c(e1, . . . , en) := e) = {c}

• OK(b ; γ) is an abbreviation for ⊢ b •

• B and b ⊢ γ •

• G.

4.4.2.3 Weak typing rules

4.4.2.3.1 Rules for MWTT expressions The rule mwtt-var assigns the

type corresponding to the variable’s grammatical category. The constant rule

mwtt-cons does the same after checking the coherence of the arguments’ weak

typings. The mwtt-bind rule, in addition, introduces the new variable in the typ-

ing environment of the inner expression. The rule mwtt-attr describes how to

construct a new noun by attributing an adjective to an existing noun.

OK(b ; γ) v ∈ VT/S/P v ∈ dvars(γ)

b ; γ ⊢ v •

• T/S/P
mwtt-var

OK(b ; γ) c ∈ CT/S/N/A/P

c ∈ dconsB(b) ∀i ∈ {1, . . . , n}, b ; γ ⊢ ei
•

• inC(i, c,b)

b ; γ ⊢ c(e1, . . . , en) •

• T/S/N/A/P
mwtt-cons

OK(b ; γ) b ∈ BT/S/N/A/P b ; γ, z ⊢ e •

• inB(b)

b ; γ ⊢ bz(e) •

• T/S/N/A/P
mwtt-bind

b ; γ ⊢ e1
•

• A b ; γ ⊢ e2
•

• N

b ; γ ⊢ e1e2
•

• N
mwtt-attr

114



Chapter 4. MathLang-CGa, Language Definition

4.4.2.3.2 Rules for MWTT contexts These rules check the coherence of

contexts. The first one mwtt-empty-cont states that an empty context is a valid

context. The last one mwtt-assump checks if an assumption in the context is a

well formed statement expression. The three remaining rules mwtt-set-var-decl,

mwtt-stat-var-decl and mwtt-term-var-decl correspond to the three construc-

tions of variable introduction.

⊢ b •

• B

b ⊢ ∅Γ
•

• G
mwtt-empty-cont

OK(b ; γ) v ∈ VS v 6∈ dvars(γ)

b ⊢ γ, v : SET •

• G
mwtt-set-var-decl

OK(b ; γ) v ∈ VP v 6∈ dvars(γ)

b ⊢ γ, v : STAT •

• G
mwtt-stat-var-decl

OK(b ; γ)

v ∈ VT v 6∈ dvars(γ) b ; γ ⊢ e •

• S/N

b ⊢ γ, v : e •

• G
mwtt-term-var-decl

OK(b ; γ) b ; γ ⊢ p •

• P

b ⊢ γ, p •

• G
mwtt-assump

4.4.2.3.3 Rules for MWTT definitions There are two kinds of definitions

in the abstract syntax with three typing rules. One rule mwtt-full-def is for the

basic constant definition which provides a unique expression as definiens for the con-

stant. The two remaining rules mwtt-case-def-first and mwtt-case-def-alter

are for definitions by cases and are MWTT specific.
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OK(b ; γ)

c ∈ CT/S/N/A/P c 6∈ dconsB(b) dvars(γ) = ∪n
i=1vi

∀i ∈ {1, . . . , n}, vi ∈ Vgi b ; γ ⊢ e •

• T/S/N/A/P

b ; γ ⊢ c(v1, . . . , vn) := e •

• D
mwtt-full-def

OK(b ; γ) c ∈ CT/S/N/A/P

c 6∈ casedconsB(b) dvars(γ) = ∪n
i=1fvars(ei)

∀i ∈ {1, . . . , n}, b ; γ ⊢ ei
•

• wi b ; γ ⊢ e •

• T/S/N/A/P

b ; γ ⊢ c(e1, . . . , en) := e •

• D
mwtt-case-def-first

OK(b ; γ) c ∈ CT/S/N/A/P

c ∈ casedconsB(b) dvars(γ) = ∪n
i=1fvars(ei)

∀i ∈ {1, . . . , n}, b ; γ ⊢ ei
•

• inC(i, c,b)

b ; γ ⊢ e •

• T/S/N/A/P

b ; γ ⊢ c(e1, . . . , en) := e •

• D
mwtt-case-def-alter

4.4.2.3.4 Rules for MWTT blocks An empty block is a valid according to

rule mwtt-empty-block. Additionally, the rules mwtt-empty-line-in-block and

mwtt-empty-block-in-block indicate how a valid block can be extended with a

line and a block respectively.

⊢ b •

• B

b ⊢ ∅K •

• K
mwtt-empty-block

b ⊢ k •

• K b ◦ {k}∅ ; γ ⊢ p/d •

• P/D

b ⊢ k ◦ γ ⊲ p/d •

• K
mwtt-line-in-block

⊢ b •

• B b ⊢ k •

• K

{c1, . . . , cn} ⊆ dconsK(k′) b ◦ {k}∅ ⊢ k′ •

• K

b ⊢ k ◦ {k′}c1,...,cn

•

• K
mwtt-block-in-block

4.4.2.3.5 Rules for MWTT books The rules for books mwtt-empty-book,

mwtt-empty-line-in-book and mwtt-empty-block-in-book are similar to the

rules for blocks. A book could be seen as the outermost block.
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⊢ ∅B
•

• B
mwtt-empty-book

⊢ b •

• B b ; γ ⊢ p/d •

• P/D

⊢ b ◦ γ ⊲ p/d •

• B
mwtt-line-in-book

⊢ b •

• B {c1, . . . , cn} ⊆ dconsK(k) b ⊢ k •

• K

⊢ b ◦ {k}c1,...,cn

•

• B
mwtt-block-in-book

Conclusion

In this chapter we defined the theoretical CGa system that is to say an object-

oriented language for CGa and a weak type system to check CGa documents’ well

formation. We also presented MWTT which is a refinement of WTT developed

during this PhD early studies.

117



Chapter 5

MathLang-TSa, Authoring

Method and Experience

This chapter focuses on describing the interface for encoding mathematics with

MathLang support. We firstly describes in Section 5.1 our platform-independent

method to create or turn a natural language text into a TSa-CGa MathLang doc-

ument (following MathLang-CGa defined in Chapter 4). We then extend in Sec-

tion 5.2 this method to provide a manner to explicate the morphology of some

specific natural language abbreviations and notations. A number of notations such

as aggregated inequations (i.e., a = b < c), joint declarations (i.e., “let x and y be

natural numbers”) or alternative styles (i.e., a ∈ R and R contains a) can be input

and their meaning attached easily with this method. We illustrate in Section 5.3

the use of this method for encoding several mathematical texts. Most material in

this chapter were published in [KLMW07].

5.1 TSa’s Natural Language Annotation

We propose an authoring technique which uses mathematical natural language as

primary input instead of trying to replace it. As an author composes a document

on computer, it is desirable to truly derive any formal or symbolic version from

the natural way the mathematicians sees his document which is a succession of

arranged symbols and text chunks. We propose to decorate this natural original

text with extra information. This extra content has to be more precise, complete

and computation-friendly than natural language. With such extra information

intermingle with the original text, it is possible to ensure subsequent translations

to be consistent and faithful to natural language text.
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term Common mathematical objects. “a + b”

set Sets of mathematical objects. “N”
noun Families of terms. “ring”

adjective
Noun refiners.

“Abelian”

statement Affirmations, arguments, properties,
assertions, . . .

“a + 0 = a”

declaration Introductions of new symbols or no-
tions.

“Let a be . . . ”

definition Explanations of the meaning of new
symbols notions.

“A ring is . . . ”

step A group of mathematical assertions. “. . . , therefore . . . ”

context Preliminary assertions prior to a step. “Assume . . . ”

Table 5.1: TSa box annotations’ colour coding system

5.1.1 Box annotation

Our approach augment natural language text with supplementary information.

We do so by wrapping pieces of text with annotation boxes . To each box is as-

sociated some meta-information which describes the grammatical role played by

the wrapped text in the document’s argumentation. The background colour of an

annotation box gives the CGa grammatical category to which the wrapped text

belongs. Table 5.1 contains the colour coding system we use. It is important to

notice that once we remove these annotation boxes we find the text completely

unchanged. Let us illustrate the use of annotation boxes with the sentence “There

is an element 0 in R such that a + 0 = a” extracted from a textbook in abstract

algebra [Gal02, Chapter 12]. The grammatical information, in terms of CGa’s

grammatical constructions, that we can easily infer from the original text is shown

by the following annotation boxes. The boxes surrounding “an element 0”, “a”, “0”

and “a+ 0” indicate that these expressions are terms. “R” is wrapped in a set box

and “an element 0 in R” in a declaration box. The box surrounding “a + 0 = a”

indicates that this equation is a statement. The whole sentence is put in a step

box.

There is an element 0 in R such that a + 0 = a

Such box-annotation is similar to an explicit typing of values in programming if we

consider our grammatical categories equivalent to types. The equation representing

this example would be written as follows in a pseudo programming language.
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(eq(( plus(a:term ,0: term )):term ,a:term )): statement

It differs from traditional programming with type inference where the user gives

the information of the type signatures of identifiers only once. In such language

with type inference our example would be written as follows.

eq(plus(a,0),a)

The type of eq, plus, a and 0 would therefore be inferred or retrieved from the

context by a type inference system. Explicit typing of values differs also from

explicit typing of identifiers where the type of an identifier is provided for each

instance of this identifier. Our example would be written as follows in an explicit

typing of identifiers.

(eq:term -> term -> statement )

(( plus:term -> term -> term) (a:term) (0: term ))

(a:term)

If we compare the pseudo-language code eq(plus(a,0),a) and its

box-annotated natural language equivalent, we can see that their namespaces dif-

fer. The symbol “+” corresponds to the identifier plus. One might argue that the

symbols = and + could have been used with infix notation and relevant symbols’

precedence. We would have obtained an expression a+0=a very similar to the natu-

ral language sentence’s equation. But imagine a situation where, instead of stating

the equality between a + 0 and a by an equation, the authors prefers to use of the

verb “equal”. The sentence would be printed differently but would still mean that

a+0=a.

a + 0 equals a

An equation and its natural language equivalent should reflect the same meaning

(a+0=a in our example). Similarly a natural language sentence and its equivalent

formula should get similar box annotations. Our sentence could look as follows and

still be annotated with the same boxes.

0 ∈ R , a + 0 = a

5.1.2 Interpretation

To establish the meaning of the text contained in each annotation box, we attribute

to each box its interpretation in terms of CGa grammatical expressions. For exam-

ple the boxes surrounding“an element 0”and“0”get 0 as an interpretation attribute
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which means that they should be interpreted as an identifier named 0. The box

surrounding “R” (respectively a, a+0 and the equation) get R (respectively a, plus

and eq) as an interpretation attribute. Each interpretation attribute is printed in

a typewriter typeface on the left hand side of the annotation box between the <

and > angle brackets. Immediately below are the versions of our three sentences

with interpretation attributes.

There is <0>an element 0 in <R>R such that <eq> <plus> <a>a + <0>0 = <a>a

There is <0>an element 0 in <R>R such that <eq> <plus> <a>a + <0>0 equals <a>a

<0>0 ∈ <R>R , <eq> <plus> <a>a + <0>0 = <a>a

With these examples we see that CGa’s grammar is not a natural language gram-

mar but a grammar for mathematical justifications (following N.G. de Bruijn’s

terminology [dB91a]) or argumentations. To make the editing and update of the

interpretation attribute of box annotations easier. Its is recommended to have

coherent naming of identifiers.

5.1.3 Nested annotations

In our example we see also that some boxes are inside other boxes. In the case

of our equation, each inner box is interpreted as an argument for its surrounding

box. The nesting of boxes indicates that some annotated expressions are sub-

expressions of others. It is therefore a straightforward automatic process to create

a CGa grammatical expression out of a text with box annotations. We illustrate

this with our sentence-example.

There is <0>an element 0 in <R>R such that <eq> <plus> <a>a + <0>0 = <a>a

{ 0 : R; eq ( plus( a, 0 ), a ); };

We show here the CGa grammatical expression corresponding to our box-annotated

text. This expression is written using the abstract syntax presented in Section 4.1.

Note that this syntax is not meant to be used by the end-user of CGa, it is only
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designed for theoretical discussion on CGa’s grammar. The CGa end-user edits

his natural language text with annotation boxes. The internal syntax used in our

implementations follows XML recommendations (see Section 6.1.1).

5.1.4 Annotations, a syntax for MathLang-CGa

The annotation boxes play the role of a user-oriented input syntax for CGa. We

show here that this annotation language could be used as a concrete syntax for

input in CGa. Table 5.2 contains the definition of denotation semantic [[ ]]a which

expresses the meaning of a annotation document in terms of documents written

in the CGa’s abstract syntax presented in Section 4.1. Table 5.3 presents the

reverse denotational semantic [[ ]]b which expresses the meaning of abstract syntax

documents in terms of annotation boxes.

Remark 9 We do not have an isomorphism between these two syntaxes. For ev-

ery annotation document d, [[ [[ d ]]a ]]b 6= d and for every abstract syntax document

a, [[ [[ a ]]b ]]a 6= a. This is due to the fact that the annotation syntax is not meant

to be complete but is designed to satisfy the mathematicians needs. One of the

restriction that does not permit to define such isomorphism is pointed out by foot

note 2 of Table 5.3.

5.1.5 Automatic grammatical analysis

We implemented this authoring method with annotation boxes as a plugin for the

scientific text editor TEXmacs, see Section 6.3.1 for technical description of this

plugin and Appendix C for the integrated documentation of the plugin. During or

after the editing of the natural language text, the mathematician is asked to wrap

relevant pieces of text in TSa’s annotation boxes. Continuing with our sentence-

example, the user of the MathLang plugin for TEXmacs easily obtains, among

others, the following views.

An annotation view with annotation boxes printed as coloured boxes:There is an element 0 in R such that a+0 = a
A standard view without annotation boxes:There is an element 0 in R such that a+0 = a
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Category and identifier

[[ <#>d ]]a = term([[ d ]]a)

[[ <#>d ]]a = set([[ d ]]a)

[[ <#>d ]]a = noun([[ d ]]a)

[[ <#>d1 d2 ]]a = adj([[ d1 ]]a , [[ d2 ]]a)

[[ <#> ]]a = stat

[[ <#>d ]]a = dec([[ d ]]a)

[[ <# i> ]]a = i 1

[[ <i> ]]a = i 1

[[ <exp.i> ]]a = exp.i 1,2

[[ <#.i>d ]]a = [[ d ]]a .i 1

Step and phrase

[[ <i >d ]]a = label i [[ d ]]a

[[ d1 d2 ]]a = [[ d1 ]]a ⊲ [[ d2 ]]a

[[ d1 . . . dn ]]a = {[[ d1 ]]a ; . . . ; [[ dn ]]a}

[[ <i> <i1> . . . <in> d ]]a = i(i1, . . . , in) := [[ d ]]a 1,3

[[ <#> <i>d1 . . . dn d ]]a = i([[ d1 ]]a , . . . , [[ dn ]]a) := [[ d ]]a 1,3

[[ <#sub> <i> d ]]a = i ≪ [[ d ]]a 1

Expression

[[ <i>d1 . . . dn ]]a = i([[ d1 ]]a , . . . , [[ dn ]]a) 1,3

[[ <i>d1 . . . dn d ]]a = i([[ d1 ]]a , . . . , [[ dn ]]a) : [[ d ]]a 1

[[ <i>d1 . . . dn ]]a = i([[ d1 ]]a , . . . , [[ dn ]]a) : [[ <#> ]]a 1,4

[[ d ]]a = Noun {[[ d ]]a}

[[ d1 d2 ]]a = Adj([[ d1 ]]a) {[[ d2 ]]a}

[[ d1 d2 ]]a = [[ d1 ]]a [[ d2 ]]a

[[ <#self> ]]a = self

[[ <#ref i > ]]a = ref i

The meta variables i and d range over annotation interpretations and documents respectively.

1Some box annotation background colour depends on the grammar category of identifiers.
2The interpretation contains the abstract syntax expression.
3The interpretation i is equivalent to an abstract syntax’ cident.
4The background colour of <#> depends <i> ones.

Table 5.2: TSa’s annotation boxes denoted in terms of CGa’s abstract syntax.
Denotation function [[ ]]a transforming annotation boxes into abstract syntax expressions.
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Category and identifier

[[ term(e) ]]b = <#>[[ e ]]b

[[ set(e) ]]b = <#>[[ e ]]b

[[ noun(e) ]]b = <#>[[ e ]]b

[[ adj(e1, e2) ]]b = <#>[[ e1 ]]b [[ e2 ]]b

[[ stat ]]b = <#>

[[ dec(c) ]]b = <#>[[ c ]]b

[[ v ]]b = <# v> 1

[[ i ]]b = <i> 1

[[ e.i ]]b =

{
<e.i>

<#.i>[[ e ]]b
1,2

Step and phrase

[[ label l s ]]b = <l >[[ s ]]b

[[ s1 ⊲ s2 ]]b = [[ s1 ]]b [[ s2 ]]b

[[ {s1; . . . ; sn} ]]b = [[ s1 ]]b . . . [[ sn ]]b

[[ ci(i1, . . . , in) := e ]]b = <ci> <i1> . . . <in> [[ e ]]b 1

[[ ci(e1, . . . , en) := e ]]b = <#> <ci>[[ e1 ]]b . . . [[ en ]]b [[ e ]]b 1

[[ i ≪ e ]]b = <#sub> <i> [[ e ]]b 1

Expression

[[ ci(e1, . . . , en) ]]b = <ci>[[ e1 ]]b . . . [[ en ]]b 1

[[ i(ce1, . . . , cen) : e ]]b = <i>[[ ce1 ]]b . . . [[ cen ]]b [[ e ]]b 1

[[ i(ce1, . . . , cen) : c ]]b = <i>[[ ce1 ]]b . . . [[ cen ]]b 1,3

[[ Noun {s} ]]b = [[ s ]]b

[[ Adj(e) {s} ]]b = [[ e ]]b [[ s ]]b

[[ e1 e2 ]]b = [[ e1 ]]b [[ e2 ]]b

[[ self ]]b = <#self>

[[ ref l ]]b = <#ref l >

We use the meta variables e, c, v, i, l, s and ci defined in Section 4.1. The meta variable ce
ranges over both categories and expressions.

1Some box annotation background colour depends on the grammar category of identifiers.
2The interpretation contains the abstract syntax expression.
3The background colour of <i> depends the category c. The annotation syntax permits

only the situation where c is a simple category.

Table 5.3: CGa’s abstract syntax denoted in terms TSa’s annotation boxes.
Denotation function [[ ]]b transforming abstract syntax expressions into annotation
boxes.
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An interpretation view with annotation boxes printed as coloured boxes and in-

terpretations printed on the top left corner in between the angle brackets < and

>: <>There is <> <0>an element 0 in <R>R such that <equal> <plus> <a>a+ <0>0 = <a>a
The MathLang plugin for TEXmacs communicates the content of the document

to CGa’s checker we present Section 6.2 and based on CGa’s type system defined

in Section 4.2. Let us assume that R, = and + were properly introduced in the

larger document. When the user is satisfied with his annotation of the sentence,

the TEXmacs plugin is instructed to send the entire document to the type checker.

The checker analyses the grammatical structure of the CGa document and finds

out that a has not been properly introduced in our sentence-example. A set of

errors1 with their locations in the TEXmacs document are sent back to the plugin

to be shown to the user. Here are two views of the text with the errors’ labels

printed in between stars *.There is an element 0 in R such that *e-6* *e-3* *e-2 e-1*a + 0 = *e-5 e-4*a<>There is <> <0>an element 0 in <R>R such that *e-6*<equal> *e-3*<plus> *e-2 e-1*<a>a+ <0>0 = *e-5 e-4*<a>a
The description of each error label is also provided by the plugin in the MathLang

plugin menu as shown here.

Error (e-1):

Anticipated instance of "a"

Error (e-2):

Categories mismatch , Unspecified expected, not term.

Error (e-3):

Types mismatch for "plus",

(term ,term):term expected , not (Unspecified ,term):term.

Error (e-4):

Anticipated instance of "a"

1The high number of errors is due to the fact that the checking of the document does not stop
after one error is found but analyses the entire document. An error may point at several locations
in the document, in order to cover all the expressions involved in a typing error.
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Error (e-5):

Categories mismatch , Unspecified expected, not term.

Error (e-6):

Types mismatch for "equal",

(term ,term):stat expected , not (term ,Unspecified):stat.

To fix these errors we simply define a. The extra “for all a in R” text is wrapped in

a context box annotation which indicates that it forms the context of the equation

(this is one possible way to annotate this extra expression).There is an element 0 in R such that a+0 = a for all a inR
The sentence we obtain is now valid in accordance to CGa grammar and type

checker. This sentence also corresponds to the original sentence we found in [Gal02,

Chapter 12].

5.2 TSa’s Annotation Shuffling

The grammatical box annotation as presented in Section 5.1 is guided by the style

in which the original natural-language sentences were written. One can easily find

a piece of mathematical text that does not permit such simplistic annotations. The

writing style used by mathematicians is usually uneven in regard to the structure

of the underlying meaning described, and by extent uneven in regard to the gram-

matical box annotations. Authors usually simplify some expressions or rearrange

some explanations for the sake of facilitating and also entertaining the reader. Such

writing style helps any reader to focus on the actual knowledge contained in the

text. To adapt to any style, it is therefore necessary to extend our annotation lan-

guage with some extra indication on how the author’s style has to be interpreted.

The author’s writing style does not dramatically change the structure of the math-

ematical reasoning contained in the text which means that the grammatical role of

each piece of text remains clear, especially to the author himself.

5.2.1 Syntax souring

These grammatical annotations presented in Section 5.1 are applied to a text writ-

ten in the mathematical natural language. This natural language text is the lan-

guage in which the mathematician is used to communicate mathematical knowledge

(see Sections 2.4.1.1 and 3.2.1.1). But this language is highly automation-unfriendly
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for computer software. We showed in Section 5.1.1, and in [KMW04a] that CGa

has constructions that correspond to the way common mathematical justifications

are structured. The CGa language defined in Chapter 4 is automation-friendly

and mimics the mathematical natural language structure of justification. There-

fore CGa’s authoring does not require the user to tweak, alter, or translate the

document’s knowledge for computerisation, although there is a need to tweak the

writing style when encoding text directly into the core CGa language. Because

we regard our starting material, natural language, to be the sweetest for human

readers, we call this tweaking syntax souring. This term describes the process of

rewriting natural language into a syntactically formalised language. We call sour-

ing annotations, the additives needed to describe how to perform a transformation

of natural language to a core formalised language.

5.2.1.1 Syntax sugaring

The notion of syntax sugaring is well known by programmers. It was coined by

P. J. Landin. Syntactic sugar is added to the syntax of programming languages to

make it easier to use by humans. Syntax sugaring does not affect the expressiveness

of the language but lightens its syntax. Syntactic sugar is usually an additive for

the syntax of a formal language. This formal language is the target language that

needs to be lightened for a human to input it. De-sugaring is the process of getting

rid of the sugared bits by replacing them with proper expressions written in the

core language syntax.

Programming language

+

Syntactic sugar

de-sugaring−−−−−−−−−−→ Core programming

language

5.2.1.2 Souring: dual of de-sugaring

In our case the primary input is mathematical natural language. This language

needs to be extended for computer software to understand it. Souring is the process

of rewriting the sour bits to produce a sour document, i.e. a document which

is formal enough to be understood by computer software. The input document

and the sour document do not belong to the same type of document. A sour

document is not a proper natural language text because it has been reorganised

according to its core mathematical knowledge content. In that sense it is no longer a

natural language text but more a core CGa document with local natural languages
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formatting elements. As a consequence, syntax souring is not the opposite of syntax

sugaring.

Natural language

+

Core annotations

+

Syntactic sour bits

souring−−−−−−−→ Sour core language

The duality between syntax sugaring and syntax souring resides in the fact that

both are methods to humanise the authoring of rigid languages. These two methods

are not equivalent because sugaring has a programming language as input. Syntax

sugaring is a technique to adapt rigid languages to human uses. De-sugaring corre-

sponds to rigidifying natural language. Syntax souring indicates how to transform

natural language into a rigid language (this natural language which is altered by

the souring process).

5.2.1.3 Syntax souring and natural language grammars

It is important to notice that the syntax souring system is by no means a natu-

ral language grammar. Syntax souring and the TSa annotation language do not

stand at the natural language level but at the level of the mathematical natural

language semantic. Natural language grammars describe the syntactic structure of

natural language. The structure obtained is then interpreted to provide a natural

language semantic. Such semantics reside at the speech level and identify a role

or a meaning to every token of the syntax. There have been several grammars

that used similar constructs as the syntax souring transformation (we presented

in this Section 5.2). Nevertheless they are natural language grammars and do not

provide this separation between the original human-medium (natural language)

and the software-medium (CGa core language). We do not enter in the details of

computational linguistic nor of natural language processing but we mention here

Transformational-Generative Grammar [Cho57] [Far05, Chapter 5] and Combina-

tory Categorial Grammar [Ste96].

The TSa annotation language is an authoring method which permits the di-

rect identification of the semantical role of parts of a natural language text (in-

dependently of its natural language semantic). The syntax souring annotations

facilitates the use of this method by accommodating some natural language mor-

phisms. Our authoring method—joining both TSa grammatical annotation and
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syntax souring—would benefits from automatic recognition and natural language

processing. We discuss a possible outlook in Section 7.1.2.

5.2.2 Denotational representation

We give here the denotational representation of the TSa annotation language which

we introduced in Section 5.1 and which is formalised in Section 6.4.1. Table 5.4 is

a summary of the denotational representation.

5.2.2.1 Document

Our starting point is the mathematician’s text (as he wrote it on paper) which is

composed by a mixture of natural language text and formulas formed by symbols.

This primary input corresponds to DF (formed by F individuals) in the abstract

syntax of Section 6.4.1. We add to this primary input, grammatical and souring

annotations that wrap portions of text. We already saw in Section 5.1 how we

represent grammatical annotations. In this section we explain how we represent

the souring annotations discussed in Section 5.2.1. We denote by T a portion of text

which may include formulas, grammatical annotations and souring annotations. We

denote by A an arbitrary annotation.

5.2.2.2 Grammatical annotations

A grammatical annotation is an instance of one of the grammatical categories term,

set, noun, adjective, statement, declaration, definition, context, or step

(see Table 5.1). Each instance of a grammatical annotation may get an attribute

which corresponds to the grammatical annotation’s interpretation as introduced in

Section 5.1.2. We represent grammatical annotations by a box whose background

colour—according to the colour coding of Table 5.1—informs the grammatical cat-

egory and whose interpretation is printed on the upper left-hand side of the box

in between the angle brackets < and >. Here is for instance the term a annotated

with a term-box with "a" as interpretation: <a>a . We use G, G′, G1, etc., to

range over grammatical interpretations. Grammatical annotations correspond to

G labels in the formal system presented in Section 6.4.1.

5.2.2.3 Souring annotations

Sour bits correspond to souring annotations. We denote them by a distinguishable

border colour and a thicker box for the annotation they describe (i.e., <list>a, b, c ).
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We define in Section 5.2.3 the following syntax souring annotations (which corre-

spond to the elements souring labels Su of Section 6.4.1): position i, fold-right,

fold-left, base, list, hook, loop, shared and map (where i is a natural number).

5.2.2.4 Patterns

To describe the souring rules, we need to reason about the annotation boxes con-

tained in a text. To do so, we add parameters to a text T to identify the text

patterns that could be transformed. We use three different notations (as shown in

Table 5.4) for these parametrised texts.

In-order notation The arguments should appear in T in the same order as they

appear in the pattern.

Un-ordered notation The order of arguments is unimportant.

Named notation The arguments are named. The names n1, . . . , nk are used as

markers to determine the argument’s location in the text.

The behaviour of a parametrised text is reflected in the de-formatting function

(see Definition 14) and the compatibility property (see Definition 15) stated in

Section 6.4.

5.2.3 Souring transformations

In this section we define the souring annotations and indicate how they can be used.

We describe the result of each souring transformation where souring annotations

are unfolded to obtain a text containing grammatical annotations, similarly to

those of Section 5.1. Such a document could then be checked according to the CGa

grammatical checker defined in Section 4.2.

We give in Section 6.4 a formal definition of a syntax souring operational system

implementing these transformations. The set of syntax souring transformations we

define in this section are summarised in Appendix A.3.

5.2.3.1 Reordering

<position i> When dealing with a natural language mathematical text, one regularly

faces situations where two expressions holding similar knowledge are ordered differ-

ently. The position souring annotation is meant for reordering inner-annotations.
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Grammatical annotation
<x>x <Q>the set Q A chunk of text that belongs to a particular grammatical

category is annotated with the corresponding grammati-
cal annotation. The background colour informs the gram-
matical category (i.e., x is a term and could therefore be

denoted <x>x ), see Table 5.1. Grammatical annotations
correspond to grammatical labels G of Section 6.4.1.

Souring annotation

<list>x, y, z Souring annotation boxes are printed with a thicker bor-
der than other annotation boxes for differentiation. They
correspond to souring labels Su of Section 6.4.1.

Patterns

In-order notation T ( <A1>T1 , . . . , <Ak>Tk ) or T




<A1>T1

...
<Ak>Tk




Un-ordered notation T
[

<A1>T1 , . . . , <Ak>Tk

]
or T




<A1>T1

...
<Ak>Tk




Named notation T
[

n1 : <A1>T1 , . . . , nk : <Ak>Tk

]
or

T




n1 : <A1>T1

...

nk : <Ak>Tk




<A1>T1 , . . . , <Ak>Tk being the arguments for T .

Texts and symbols: Formatting
As we focus mainly on grammatical and souring nodes we omit, in this rep-
resentation, the formatting elements (texts and symbols). In our examples,
we represent these formating elements as they would be rendered by typeset-
ting software. These formating elements correspond to formatting labels F of
Section 6.4.1.

Table 5.4: TSa annotation representations summary
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Each direct sub-expression gets a position number as attribute to indicate its po-

sition in the interpretation. The souring rewriting function reorders the elements

according to their position indices. The reordering transformation corresponds to

→pos of Section 6.4.2.1.6.

Definition 1 (Reordering transformation)

T




<position 1>T1

...

<position n>Tn




souring−−−−→ T (T1, . . . , Tn)

Example 16 (Reordering) Considering the expression “a in R”, one can easily

imagine the author using the equivalent expression “R contains a”. The expressions

“a in R” and “R contains a” should both be interpreted as in(a,R) if in is the set

membership relation. To indicate in the second expression that the order of the

argument is not the “reading” order, we annotate R and a with position 2 and

position 1, respectively.

<in> <position 2> <R>R contains <position 1> <a>a

<in> <a> <R>

Example 17 (Mirror symbols) It is common for binary symbols like ⊂ to have

a mirror twin like ⊃. The position souring annotation usefully gives the same

interpretation to twin symbols. The formulas “A ⊂ B” and “B contains A” are both

interpreted as subset(A,B).

<subset> <A>A ⊂ <B>B <subset> <position 2> <B>B ⊃ <position 1> <A>A

<subset> <A> <B>

5.2.3.2 Sharing and chaining

<shared> <hook> <loop> Mathematicians have the habit of aggregating equa-

tions which follow one another. This creates reading difficulties for novices yet
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contributes to the aesthetic of mathematical writing. The shared and hook/loop

souring annotations are solutions which elucidate such expressions.

5.2.3.2.1 Sharing The shared annotation indicates that an expression is to

be used by both its preceding and following expressions. The shared expression is

inlined at the end of the preceding expression and at the beginning of the following

one. This transformation corresponds to ։share of Section 6.4.2.1.2.

Definition 2 (Sharing transformation)

<G1>T1
<shared>T <G2>T2

souring−−−−→ <G1>T1 T <G2>T T2

Example 18 (Simple sharing) The formula “∃y such that x = y > z” could be

annotated as follows and therefore be interpreted as

ex(y:term, and(eq(x,y),gt(y,z))).

<ex>∃ <y>y such that <and> <eq> <x>x = <shared> <y>y <gt> ≥ <z>z

<ex> <y> <and> <eq> <x> <y> <gt> <y> <z>

Example 19 (Sharing) Let us take an example form [Gal02]’s chapter on ring

theory. The following sentence is made easier to computerise by the use of sharing.

The multiple equation “0+a0 = a0 = a(0+0) = a0+a0” requires the use of two

shared annotations. We can see that a0 and a(0 + 0) are shared by two equations

each. We annotate them as being shared to obtain an unfolded result equivalent to

“0+a0 = a0, a0 = a(0+0), a(0+0) = a0+a0”.

<eq> 0 + a0 = <shared> a0 <eq> = <shared> a(0 + 0) <eq> = a0 + a0

<eq> 0 + a0 a0 <eq> a0 a(0 + 0) <eq> a(0 + 0) a0 + a0

The full interpretation of this expression being:

eq(plus (0, times(a,0)), times(a,0));

eq(times(a,0), times(a,plus (0 ,0)));

eq(times(a,plus (0,0)), plus(times(a,0), times(a,0)))
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5.2.3.2.2 Chaining The tuple of souring annotations hook/loop indicates the

expression contained in the hook should be repeated in the loop. We named this

concept chaining because it permits the separation of two expressions which are

effectively printed as one in a natural language text. Chaining provides results

similar to sharing (any sharing could be expressed in terms of chaining), but is

more expressive. This transformation corresponds to ։chain of Section 6.4.2.1.3.

Definition 3 (Chaining transformation)

T




< hook>T ′

< loop>


 souring−−−−→ T

(
T ′

T ′

)

Example 20 (Simple chaining) Let us see how the expression we used to il-

lustrate a simple sharing annotation (see Example 18) could be annotated using

chained sub-expressions.

<ex> ∃ <y>y such that <and> <eq> <x>x = <hook> <y>y <gt> <loop> ≥ <z>z

<ex> <y> <and> <eq> <x> <y> <gt> <y> <z>

Example 21 (Chaining) Let us see an example where a shared souring an-

notation could not have been used. If we consider the equation we used in the

sharing example and decide to quantify this equation over a, we would obtain

“∀a ∈ R, 0+a0 = a0 = a(0+0) = a0+a0” which is effectively a shortcut for

“∀a ∈ R, 0+a0=a0 ∧ a0=a(0+0) ∧ a(0+0)=a0+a0”. We can see that in this ex-

ample the individual equations are combined using two binary operators and, the

combination of whose annotation boxes disallows the use of shared.

∀ a∈R , <and> <and> <eq> 0 + a0= <hook> a0 <eq> <loop> = <hook> a(0 + 0) <eq> <loop> = a0 + a0

a∈R <and> <and> <eq> 0 + a0 a0 <eq> a0 a(0 + 0) <eq> a(0 + 0) a0 + a0

The full interpretation of this expression being:
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forall(a:R,

and( and( eq(plus(0,times(a,0)) ,times(a,0)) ,

eq(times(a,0),times(a,plus(0 ,0))) ),

eq(times(a,plus(0,0)),plus(times(a,0),times(a ,0)))

))

5.2.3.3 List manipulations

<fold-right> <base> <list> <fold-left> <base> <list> <map> <list> The list sour-

ing annotations indicate how lists of expressions have to be unfolded into. We define

two list folding annotations, fold-right and fold-left, and a mapping annota-

tion, map.

5.2.3.3.1 Folding The fold-right souring annotation defines a pattern which

is repeated for each element of the list argument. For each repeated pattern, the

list inner annotation is replaced by one element of the list and the base inner

annotation is replaced by the pattern with the next element of the list. A major

use of the fold-right souring annotation is to handle quantification over multiple

variables. fold-left works similarly but starts with the last element of the list.

These transformations correspond to →fold of Section 6.4.2.1.5.

Definition 4 (Right folding transformation)

< fold-right> Tf


 b : < base> Tb

l : < list> T1 . . . Tk


 souring−−−−→

Tf




b : Tf




b : Tf

[
· · ·Tf

[
b : Tb

l : Tk

]
· · ·
]

l : T2




l : T1



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Definition 5 (Left folding transformation)

< fold-left> Tf


 b : < base> Tb

l : < list> T1 . . . Tk


 souring−−−−→

Tf




b : Tf




b : Tf

[
· · ·Tf

[
b : Tb

l : T1

]
· · ·
]

l : Tk−1




l : Tk




Example 22 (Folding) Considering the sentence “for all a, b, c in R [...] (a +

b) + c = a + (b + c)”, we would like to use one single forall instance for each

variable a, b and c. We simply annotate the list of variables as such and the base

equation as base and the souring unfolding creates a fully expanded interpretation

on our behalf.

< fold-right> <forall>for all <list> <a>a , <b>b , <c>c in <R>R < base> <eq> (a + b) + c = a + (b + c)

<forall> <a> <R> <forall> <b> <R> <forall> <c> <R> <eq> (a + b) + c = a + (b + c)

The full interpretation of this expression being:

forall(a:R,

forall(b:R,

forall(c:R,

eq(plus(plus(a,b),c),

plus(a,plus(b,c))) ) ) )

5.2.3.3.2 Mapping The map souring annotation also defines a pattern but with

only one argument being list. This pattern is also repeated for each element of the

list. The resulting expression is a sequence. Similarly to folding, this souring anno-

tation is useful for declarations, definitions or statements over several arguments.

It corresponds to →map defined in Section 6.4.2.1.4.

Definition 6 (Mapping transformation)

< map> Tf

(
< list> T1 . . . Tn

)
souring−−−−→ Tf(T1) . . . Tf(Tn)
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Example 23 (Mapping) In the case of the sentence “Let a and b belong to a

ring R” taken from our supplement example, the variables a and b are declared

simultaneously.

< map> Let < list> <a>a and <b>b belong to <R>a ring R

<a> <R> <b> <R>

5.3 Authoring Experience

In this section we illustrate the use of MathLang’s CGa-TSa on concrete examples

taken from the mathematical literature. All examples presented here were input

using the MathLang-TSa plugin for TEXmacs. The customised views (i.e., without

annotations, with annotations and with printed interpretation) are instantaneously

accessible via the plugin menu. See Appendix C for the plugin’s documentation.

See Section 6.3.1 for a presentation of the plugin.

We start in Section 5.3.1 with examples from E. Landau’s Foundations of Anal-

ysis [Lan51]. Section 5.3.2 continues with the annotations of examples taken from

Euclid’s Elements [Hea56]. We finish in Section 5.3.3 with another encoding exam-

ple, namely the proof of irrationality of
√

2 used by F. Wiedijk in his comparison

of theorem provers [Wie06].

5.3.1 Examples from E. Landau’s Foundations of Analysis

In 1930, E. Landau’s Foundations of Analysis [Lan51] was published in its original

German version [Lan30]. The whole book was encoded by L.S. van Benthem Jut-

ting [vBJ77a] in Automath (see Section 2.1.1). We present here the TSa-CGa

encoding of some passages of the first chapter of Foundations of Analysis .

First example We start with the definition of the Axiom 2 [Lan51, Chapter 1].

The original version is as follows.Axiom 2. For each x there exists exactly one natural number , called thesuccessor of x , which will be denoted by x0.
[Lan51, Chapter 1]
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This passage defines an axiom which could be interpreted as a CGa definition of a

statement identifier (we name this identifier Ax2). This axiom is applied to any x (as

the first phrase states), we decided therefore to parametrise the Ax2 identifier by x

(we assume this variable to be declared in the context of this example). This choice

depends on the manner one wants to refer to the axiom later in the document. The

rest of the definition is a statement that, for such x, there exists a unique natural

number called the “successor of x”. The TSa annotation version of this example is

as follows.Axiom 2. For each x there exists exactly one natural number , called thesuccessor of x , which will be denoted by x0.
And the TSa annotation version with printed CGa interpretations is as follows.<><><Ax2>Axiom 2. <x>For each x <exists_unique>there exists exactly one <> <y><natural_number>natural number , called <is>the<y> <successor>successor of <x>x ,which will be denoted by x0.

[Lan51, Chapter 1]

We note the parametrisation of Ax2 and the use of an existential quantifier

(exists_unique) to reason about the existence of a successor of x. The identi-

fiers exists_unique, natural_number and successor were declared prior to the

axiom’s definition. The following CGa plain syntax code is the interpretation of

the whole example.

{

Ax2 (x) := exists_unique(y:natural_number ,

is(y,successor(x)))

}

It is important to notice that this encoding is one possible encoding of this example.

One can argue that the “Axiom” label commonly means that the statement is

admitted throughout the document, a line forall(x:natural_number,Ax2(x))

might therefore be added. Such precision is left to the author’s decision and their

logical correctness is to be analysed by future aspects (see Section 7.1). The concern

of the CGa aspect is only to capture the grammatical meaning of the document’s

argumentation.
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Second example Let us now consider the definition of “plus” taken from the

same chapter. The definition is as follows.Theorem 4, and at the same timeDe�nition 1:To every pair of numbers x; y, we may assign in exactly one way a naturalnumber, called x+ y (+ to be read �plus�), such thatx+1=x0 for every xx+ y 0=(x+ y)0 for every x and every yx + y is called the sum of x and y, or the number obtained by addition of yto x.
[Lan51, Chapter 1]

We already used this example in Example 11 of Section 4.3.1.2 for the same purpose

as here which is to illustrate the use of definition by cases. This definition is split

in two cases: x+1 = x′ and x+y′ = (x+y)′. We represent each one by a definition

case in a step. A case of a definition by cases differs in TSa from a traditional

definition by the presence of the symbol # as interpretation for the definition box.

Additionally, one can consider the first sentence of the definition as a prelim-

inary declaration of the symbol “+”. We therefore annotated this sentence as a

declaration.

In this particular example, E. Landau uses two labels “Theorem” and “Defini-

tion” for the same paragraph. In our encoding of this example, we make use of the

CGa labelling to identify both (i.e., labels Th4 and Def1 in the following version

with printed interpretations of the example).
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The TSa annotation version of this example is as follows.Theorem 4, and at the same timeDe�nition 1:To every pair of numbers x; y, we may assign in exactly one way a naturalnumber, called x+ y (+ to be read �plus�), such thatx+1= x0 for every xx+ y 0=(x+ y) 0 for every x and every yx + y is called the sum of x and y, or the number obtained by addition of yto x.
The following is the annotation version with printed interpretations.<Th4>Theorem 4, and at the same time<Def1>De�nition 1:<>To every pair of numbers x; y, we may assign in exactly one way a naturalnumber, called <+><#>x+ <#>y (+ to be read �plus�), such that<><#><+><x>x+ <1>1= <S><x>x0 <><>for every <x>x<><#><+><x>x+ <S><y>y 0= <S>(<+><x>x+ <y>y)0 <><>for every <x>x <>and every <y>yx+ y is called <>the <sum>sum of <#>x and <#>y, or the number obtained by addi-tion of y to x.
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Third example We consider here a larger example with the definition and proof

of Theorem 29 taken from the first chapter of E. Landau’s Foundations of Analy-

sis . The Theorem 29 defines the commutative law of multiplication. The original

version and the TSa annotation version of this example are as follows.Theorem 29 (Commutative Law of Multiplication):x y = y x :Proof. Fix y , and letMbe the set of all x for which the assertion holds.I. We have y � 1 = y; and furthermore, by construction in the proof of The-orem 28, 1 � y= y;hence 1 � y= y � 1, so that 1 belongs toM.II. If x belongs toM, then x y = y x, hence x y + y = y x + y = y x0. By theconstruction in the proof of Theorem 28, we have x0y = x y + y, hence x0y =y x0, so that x0 belongs toM.The assertion therefore holds for all x . �
[Lan51, Chapter 1]Theorem 29 (Commutative Law of Multiplication):x y = y x :Proof. Fix y , and letMbe the set of all x for which the assertion holds.I. We have y � 1 = y; and furthermore, by construction in the proof of The-orem 28, 1 � y= y;hence 1 � y= y � 1, so that 1 belongs toM.II. If x belongs toM, then x y = y x, hence x y + y = y x + y = y x0. By theconstruction in the proof of Theorem 28, we have x0y = x y + y, hence x0y =y x0, so that x0 belongs toM.The assertion therefore holds for all x . �
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The following is the annotation version with printed interpretations.<><Th29>Theorem 29 (Commutative Law of Multiplication): <x> <y><=> <*> <x>x <y>y = <*> <y>y <x>x :<Proof-Th29>Proof. <>Fix <> <y>y , and <>let <M>M be the set of <forall>all <> <x>x <M> for<Th29><x>which <y> the assertion holds.<Proof-Th29-I>I. We have <=><*><y>y � <1>1 = <y>y; and furthermore, <#ref Proof-Th28-I>by construc-tion in the proof of Theorem 28, <=><*><1>1 � <y>y = <y>y; hence <=><*><1>1 � <y>y =<*><y>y � <1>1, so that <in><1>1 belongs to <M>M.<Proof-Th29-II>II. <><>If <x>x belongs to <M>M, then <=><*><x>x <y>y = <*><y>y <x>x, hence<=><+><*><x>x <y>y + <y>y = <shared><+><*><y>y <x>x + <y>y<=> = <*><y>y <S><x>x0.<#ref Proof-Th28-II>By the construction in the proof of Theorem 28, we have<=><*><S><x>x0<y>y = <+><*><x>x <y>y + <y>y, hence <=><*><S><x>x0<y>y = <*><y>y <S><x>x0, sothat <in><S><x>x 0 belongs to <M>M.<forall><2><Th29><x> <y> The assertion therefore holds <1><>for all <x>x <N> . �
We mention four particular exposures of this encoding.

1. Our annotation of Theorem 29’s definition uses parameters similarly to the

annotation of Axiom 2 in our previous example.

2. In this example, E. Landau uses two notations representing multiplication: a

notation without any symbol to mark the multiplication (e.g., xy) and a dot

“·” notation (e.g., x · y). In the annotated example, each use of multiplication

is consistently associated with a unique interpretation symbol “*”.

3. The proof of the Theorem 29 as written by E. Landau contains an aggregated

equation: xy + y = yx + y = yx′. We use the sharing souring annotation

we presented in Section 5.2.3.2.1 to annotate this equation. As a result the
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interpretation of this equation duplicates the middle element. The result of

the de-souring of this equation is equivalent to having both xy + y = yx + y

and yx + y = yx′.

4. Finally, E. Landau refers to the construction of the proof of Theorem 28

because his manner to prove Theorem 29 is identical to the manner he already

proved Theorem 28. We indicate this relation by a reference to the step-

labels Proof-Th28-I and Proof-Th28-II respectively. These labels were

attributed to the sub-parts of the proof of Theorem 28 in the same fashion

as the Proof-Th29-I and Proof-Th29-II labelling here.

Former encoding During our first year of PhD studies, we translated the whole

first chapter of [Lan51] into MWTT (see Section 3.4.1). The MWTT encoding of

the whole first chapter of E. Landau’s Foundations of Analysis [Lan51] is presented

in an appendix 2 to [KMW04b].

5.3.2 Examples from The 13 Books of Euclid’s Elements

In this section we give some examples taken from the first book of Euclid’s Ele-

ments [Hea56]. In contrast with the examples from Section 5.3.1, these ones are

written in a less formal style. We have used these examples in Section 4.3 but we

then only gave their CGa’s plain syntax version.

First example We present here the TSa-CGa encoding of the six first definitions

of the first book of Euclid’s Elements . For this purpose, we use the object-oriented

nature of CGa language (see Section 4.3.2.1). The definitions are as follows.

2Available at http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:

mkm_symposium-entcs-appendix-2004.ps.gz, last visited 2007–04–22.
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Chapter 5. MathLang-TSa, Authoring Method and Experience1. A point is that which has no part.2. A line is breadthless length.3. The extremities of a line are points.4. A straight line is a line which lies evenly with the points on itself.5. A surface is that which has length and breadth only.6. The extremities of a surface are lines.
[Hea56, Book I]

Among those six definitions, Euclid defines three kinds of objects: the points,

the lines and the surfaces. The three other so-called definitions introduce specific

features of points and surfaces for the third and sixth definitions respectively, and

they introduce a specific kind (or sub-kind) of lines (fourth definition). We interpret

and annotate these definitions as follows:

• The kinds of objects are CGa nouns,

• The specific features are CGa characters,

• And the sub-kinds are CGa adjectives.

The TSa annotation version of this example is as follows.1. A point is that which has no part.2. A line is breadthless length.3. The extremities of a line are points.4. A straight line is a line which lies evenly with the points on itself.5. A surface is that which has length and breadth only.6. The extremities of a surface are lines.
144



Chapter 5. MathLang-TSa, Authoring Method and Experience

And the TSa annotation version with printed CGa interpretations is as follows.<>1. <point>A point is <> <> <has_no_part> <self>that which has no part.<>2. <line>A line is <><> <has_no_breadth>breadthless <self> <> <length>length.3. <> <extremities>The extremities of <#>a line are <point>points. <> <points><>4. <straight>A straight line is <> <line>a line <>which <lies_on_evenly>lies evenly<points>with the points on itself.<>5. <surface>A surface is <> <> <>that which has <length>length and <> <breadth>breadthonly.6. <> <extremities>The extremities of <#>a surface are <line>lines.
In these annotation versions we see that the second and third definitions and the

fifth and sixth are merged two-by-two as they define the “line” and “surface” nouns

respectively. In both cases we use the noun description construction (a step anno-

tation box inside a noun annotation box which corresponds to the CGa’s abstract

syntax Noun construction, see Table 5.2). Alternatively, we could use a CGa sub re-

finement for the definitions which add new characters (third and sixth definitions).

Summarising, the first definition states the absence of part3 for “points”. The

second and third definitions define three characters for “lines”: length, extremities

and points. The fourth definition defines that the “straight” adjective characterise

a line by stating that its points (character defined in the third definition) lies on

evenly (we used specific statement identifier, which we named lies_on_evenly, to

represent this characteristic). The fifth and sixth definitions defines the following

characters for the “surface” noun: length, breadth and extremities.

Second example This example is concerned with the twentieth definition in

Book I of Euclid’s Elements . We illustrated the use of adjectives in CGa’s plain

syntax with this definition as example. The listing on page 105 is the CGa in-

terpretation of the twentieth definition. The original version, the TSa annotation

3The CGa language does not support to explicitly state the absence of a character; alternatively
we used a statement expression has_no_part.
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version and the TSa annotation version with printed interpretations are as follows.

20. Of trilateral �gures, an equilateral triangle is that which has itsthree sides equal, an isosceles triangle that which has two of itssides alone equal, a scalene triangle that which has its three sidesunequal.
[Hea56, Book I]

20. Of trilateral �gures, an equilateral triangle is that which has itsthree sides equal, an isosceles triangle that which has two of itssides alone equal, a scalene triangle that which has its three sidesunequal.20. Of trilateral �gures, <>an <equilateral>equilateral <> <triangle>triangle is <>thatwhich has <fold-right> <forall>its <> <list> <s1> <s2> <sides>three sides <base> <=> <s1> equal,<s2> <>an <isosceles>isosceles <> <triangle>triangle <>that which has <fold-right><exists_unique> <> <list> two <s1> <s2> of its <sides>sides alone <base> <=> <s1> equal, <s2><>a <scalene>scalene <> <triangle>triangle <>that which has <fold-right> <forall>its <> <list><s1> <s2> <sides>three sides <base> <!=> <s1> unequal. <s2>
5.3.3 Pythagoras’ proof of irrationality of

√
2

This section contains a TSa-CGa encoding of the Pythagoras’ proof of irrationality

of
√

2. The proof we use is due to G.H. Hardy and E.M. Wright [HW80]. It was

used by F. Wiedijk in [Wie06] for a comparison of theorem provers. We used this
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example in [KMW04b] to illustrate our MWTT-based system to customise ren-

dering of MWTT documents (see Section 6.3.2). The annotation of this example

causes no particular difficulty. The original version, the TSa annotation version

and the TSa annotation version with printed interpretations are as follows.Theorem 1. [Pythagoras' Theorem 2p is irrational.Proof. If 2p is rational, then the equation a2 = 2b2 is soluble in integers a, bwith (a; b)= 1. Hence a2 is even, and therefore a is even. If a=2c, then 4c2=2b2, 2c2= b2, and b is also even, contrary to the hypothesis that (a; b)= 1. �
[HW80]Theorem 1. [Pythagoras' Theorem 2p is irrational.Proof. If 2p is rational, then the equation a2 = 2b2 is soluble in integers a, bwith (a; b)= 1. Hence a2 is even, and therefore a is even. If a=2c, then 4c2=2b2, 2c2= b2, and b is also even, contrary to the hypothesis that (a; b)= 1. �<><Th>Theorem 1. <Th>[Pythagoras' Theorem <irrational><sqrt> <2>2p is irrational.<>Proof. <>If <rational><sqrt> <2>2p is rational, then <><soluble>the equation <=><sq><a>a2 =<*><2>2<sq><b>b2 is soluble <>in <a><integer>integers <a>a, <b><b>b<integer> with <h><=><gcd>(<a>a;<b>b) = <1>1.<h> <>Hence <even><sq><a>a2 is even, <>and therefore <even><a>a is even. <>If<><c><c> <integer> <=><a>a = <*><2>2<c>c, <>then <=><*><4>4<sq><c>c2 = <*><2>2<sq><b>b2,<><=><*><2>2<sq><c>c2 = <sq><b>b2, <>and <even><b>b is also even, <> <contradiction>contrary tothe <h>hypothesis that <=><gcd>(<a>a; <b>b)= <1>1. �
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Let us use this example to illustrate another facet of TSa-CGa encodings with the

definition of a context for the whole example. We sometime name this context a

preface. A preface contains all the identifiers used but not declared nor defined in

a document. in this practical example we need to declare “integer”, “1”, “2” and

other symbols an notions. We show here the TSa annotation version and the TSa

annotation version with printed interpretations of our example’s preface. We added

some explanatory text in this preface which is not required. A common preface is

usually a succession of annotation boxes empty of texts.We use integers. 1, 2 and 4 are integers. We use the symbols: = , p , 2, *and gcd( , ) for the great common divisor. We use the following statements:to be soluble, to be even to be rational, to be irrational and to be incontradiction with another fact .<>We use <integer><integer>integers. <map><><list><1>1, <2>2 and <4>4 are <integer>integers. Weuse the symbols: <> <=><#> =<#> , <> <sqrt> <#>p , <> <sq><#> 2, <> <*><#> *<#> <>and<gcd>gcd(<#> ,<#> ) for the great common divisor. We use the following statements:<> <soluble><#> to be soluble, <> <even><#> to be even <> <rational><#> to be rational, <><irrational><#> to be irrational <> and <contradiction> to be in contradiction <#> withanother fact <#> .
Conclusion

This chapter contains the presentation and definition of the MathLang-TSa system

which provides a robust mechanism to interface natural language mathematical

texts with the CGa language. This method includes a text annotation system and

a set of syntax souring transformations. We illustrated the TSa authoring method

on several concrete examples.

In Computational linguistics, transformational grammars [Far05, Chapter 5]

provide a morphism method similar to souring. Nevertheless these grammars are

a natural language grammars and do not provide the TSa separation between the

original human-medium (natural language) and the software-medium (CGa lan-

guage).
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Implementations, CGa and TSa

Since the start of the MathLang project, the focus has always been to combine

theoretical specification and working implementation. This is part of our wish to

base MathLang’s design on encoding experiences (Section 3.4 describes how we

managed so far to be driven by experience). Another focus has always been the

extensive use of existing techniques and standards. The development was driven

by the key characteristics we aimed for our system.

1. Flexibility. A computer language to be widely used by mathematicians should

adapt to their needs and not the reverse. A language like LATEX gives full

liberty to the user with its macro system or its lower level language TEX. One

of the main reasons theorem provers are not yet in the standard toolkit of any

mathematician working on computer is certainly their rigidity. The users of

such systems often need to adapt their works to the granularity level of the

system and to the system’s manner to organise knowledge. A system that

wants to put its user ahead and let him free to use his editing habits would

need to be fully flexible in its concrete encoding. Our choice was therefore an

XML-based implementation and an attempt to make use of XML’s flexibility

and extensibility.

2. Standalone. The traditional programming process (editing – compiling –

evaluating feedback – error fixing) is understood by computer scientists and

adapted for most of the programmers’ needs where the execution of the pro-

gram is the final goal. But this editing process could be awkward for most

mathematicians. Mathematical texts are meant to play different roles de-

pending whether they are a book, a journal article, a school textbook, a

formal proof, an engineering specification, a simple note or a student’s as-
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signment. The use one can make out of such a text and its content vary

according to these roles. Some might lead to a complete proof likely to be

checked by a computer and some might result in an implemented algorithm

and therefore executed similarly to a computer program. Because the for-

malism level of a mathematical writing is not always known in advance, it is

important to keep the editing process open. We consider as a requirement

for the system to leave to the author the choice of the level of validation. To

give this liberty to the author we have embedded typing and analysis results

inside the document. By standalone document we mean the document as

edited by the author plus explicit typing, plus environment information, plus

errors found by the checker. Some external programs may make use of this

embedded information for their computations. Therefore these embedded re-

sults and errors are to be independent from the program that created them.

Here, standalone means a full reading of “edited” and “generated” content is

possible without the need to run the program that created this “generated”

content.

3. Faithful to CML. Centuries of mathematical practices have forged a tradi-

tion of mathematical writings made of standard symbols and representations,

proof structure and abstractions. All the tacit rules that compose this CML

make it a trustworthy communication medium for mathematics. Logicians,

mathematicians and computer scientists have regularly wanted to elaborate

and spread a more formal version or formal replacement to CML. These at-

tempts were successful in the sense that they created new forms of mathemat-

ical works and that they helped to better understand mathematical deduction

itself. Nevertheless they failed to overthrow CML as a universal language for

mathematics. This failure is certainly due to the reduced space given to in-

tuition in a formal language. Intuition is irreplaceable in mathematicians’

works, communications and teachings. This is why our input is CML and

computerisation is facilitated with user-friendly authoring methods.

4. Cost effective. Any encoding of a document on computer requires some time

and effort which could be reduced by good quality editing facilities. It is im-

portant for the feedback given by this automatic checking to be proportional

to the encoding effort. For the design and implementation of our language we

have focused on a clear distinction between different aspects of knowledge.

This decomposition requires a systematic definition of the requirements and
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the expected automated feedbacks for each aspect. Our language became

aspect-oriented [KLM+97] to facilitate this stratification.

In this chapter we go into the details of our implementation choices. All our

choices were driven by these four aims. Section 6.1 is concerned with the defini-

tion of concrete syntax for CGa. Section 6.2 describes how the XML DOM-based

implementation of the checker is populating the XML document with checking re-

sults. In Section 6.3 we describe the manner we handle natural language in our

user interface. Finally, we present in Section 6.4 the operation system for the TSa

syntax souring transformation of Section 5.2.

6.1 CGa’s Concrete Syntax

CGa’s concrete syntax follows the XML recommendations of the World Wide Web

Consortium (W3C) [Worb]. The CGa XML syntax is the standard syntax for CGa.

We have also developed a programming-code syntax for CGa which we refer to as the

CGa’s plain syntax (see Section 6.1.2) and an extension for the TEXmacs scientific

editor which we refer to as the TSa-CGa macros for TEXmacs (see Section 6.1.3).

These three syntaxes are not meant to be directly employed by the end-user. The

CGa XML syntax is the internal software representation. The CGa’s plain syntax

is used for testing and theoretical discussions as it follows the abstract syntax

of Section 4.1. The mathematician uses the TSa-CGa macros for TEXmacs via

a TEXmacs GUI (see Section 2.4.1.4) and the TSa-CGa plugin for TEXmacs (see

Section 6.3.1).

A CGa document embraces the actual author’s input as well as automatic feed-

backs generated by the checker. We explain how these automatic feedbacks are

embedded in the XML document in Section 6.2. The reason why we decided not

to have one plain syntax as a main user-interface was to avoid some notable disad-

vantages.

• Expert-oriented. A plain syntax as unique input and as standard document

representation restrict the language users to a small set of initiates. Any

person wanting to use the language would have been required to learn this

unique plain syntax of the language in order to enjoy any advantages that

the language features would offer.

• Parser-dependent. A type-inferred syntax facilitates the authoring but also

makes any intelligent reading or use of the document tied up to the availability
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of an inference software to make explicit the meta-information (such as typing

and environment). It is notable that standard programming (or formal proof

editing) toolkits (Integrated Development Environment) either contain such

an inference system or communicate with the expert system (compiler or

theorem-prover). For example, Proof General [Asp00, WAL05, ALW06] which

is a generic IDE for theorem provers, asks the interfaced theorem-provers for

meta-information (such as typing, tactics available or proof obligations).

• Uniqueness of human-oriented representation. The choice of having one stan-

dard syntax for human input constrains any human user of the system to

use this syntax (see Coq and Mizar, for example). Pre-processors, such as

Camlp4 [dR03, Pou06], permit one to extend the flexibility of text-based input

syntax. Nevertheless, text-based input are more difficult to interface with.

A fixed software-oriented XML syntax could accommodate several human-

oriented representations with the help of dedicated editors and GUI.

6.1.1 CGa XML syntax

As mentioned previously, CGa XML syntax encodes the author’s input document

as well as the checker’s output such as typing, errors and environment. These

contents are differentiated in the XML by different namespaces.

6.1.1.1 Core Grammatical

Namespace URI (usual prefix: cga)

http://www.macs.hw.ac.uk/ultra/mathlang/grammatical-core

This namespace provides XML elements to construct the steps and expressions of

the CGa’s abstract syntax described in section 4.1. Table 6.1 defines a transforma-

tion function from the CGa’s abstract syntax to the CGa XML syntax. Table 6.2

contains an overview of the CGa elements of the CGa XML syntax.

6.1.1.2 Core Grammatical Meta

Namespace URI (usual prefix: cga-meta)

http://www.macs.hw.ac.uk/ultra/mathlang/grammatical-core-meta

This namespace groups the XML elements we use to enclose the meta-information

automatically generated by CGa checker (see Section 6.2). This includes typing

results, typing errors and environment information.
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Category and identifier

[[ term(e) ]]x=<cterm >
[[ e ]]x

[[ set(e) ]]x=<cset >
[[ e ]]

x

[[ noun(e) ]]x=<cnoun >
[[ e ]]

x

[[ adj(e1, e2) ]]x=<cadj >
[[ e1 ]]

x

[[ e2 ]]
x

[[ stat ]]x=<cstat >

[[ dec(c) ]]x=<cdec >
[[ c ]]x

[[ v ]]x=<cvar >
<name > v

1

[[ i ]]x=<ident >
<name > i

1

[[ e.i ]]x=<holder>
e

[[ i ]]x

Step and phrase

[[ sp ]]x=<step >
<phrase >

[[ p ]]
x

2

[[ s1 ⊲ s2 ]]x=<step >
<local >

[[ s1 ]]
x

[[ s2 ]]x

[[ {s1; . . . ; sn} ]]x=<step >
[[ s1 ]]

x

...
[[ sn ]]

x

[[ label l s ]]x=<label >
<name > l

[[ s ]]x

1

[[ ci(i1, . . . , in) := e ]]x=<definition >
[[ ci ]]

x

[[ i1 ]]x

...
[[ in ]]

x

[[ e ]]x

[[ ci(e1, . . . , en) := e ]]x=<definition >
[[ ci ]]

x

[[ e1 ]]
x

...
[[ en ]]

x

[[ e ]]
x

[[ i ≪ e ]]x=<sub >
[[ i ]]

x

[[ e ]]
x

Expression

[[ ci(e1, . . . , en) ]]x=<instance >
[[ ci ]]

x

[[ e1 ]]
x

...
[[ en ]]

x

[[ i(ce1, . . . , cen) : ce ]]x=<declaration >
[[ i ]]x

[[ ce1 ]]
x

...
[[ cen ]]x

[[ ce ]]
x

[[ Noun{s} ]]x=<noun >
[[ s ]]

x

[[ Adj(e){s} ]]x=<adjective >
[[ e ]]

x

[[ s ]]
x

[[ e1 e2 ]]x=<refinement >
[[ e1 ]]

x

[[ e2 ]]
x

[[ self ]]x=<self >

[[ ref l ]]x=<reference >
<name > l

1

For readability, we show only the opening tag of each XML element; instead we use indentation

to express nesting. In the [[ e.i ]]
x

case, it is important to notice that <holder> and i are similarly

indented and therefore are nested in the XML tree.

1The element <name> contains the row raw identifier, variable and label name respectively.
2The phrase p is the equivalent of the basic step sp at the phrase level.

Table 6.1: CGa’s abstract syntax denoted in terms of CGa’s XML syntax.
Denotation function [[ ]]x transforming abstract syntax expressions into XML syntax ex-

pressions.
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XML elements XML children Abstract syntax

<mathlang> <step> Whole document

Steps
<step> <label>?, label label step

( <phrase> phrase

| <step>* {−−→step}
| <local>, <step> ) step ⊲ step

<label> <name>

<local> <step>

Phrases
<phrase> ( expression | <definition> | <sub> ) phrase

<definition> ( <id>, <id>*, expression cident(
−−−→
ident) := exp

| <id>, expression*, expression) cident(−→exp) := exp
<sub> <id>, expression ident ≪ exp

Expressions
<adjective> expression, <step> Adj(exp) {step}
<declaration> <id>, ident

(category | expression)*, (
−−−−−−−−−→
category | exp) :

(category | expression) category | exp
<instance> <holder>?, <id>, expression* cident(−→exp)
<noun> <step> Noun {step}
<refinement> expression, expression exp exp
<self> self

<reference> <name> ref label
<id> <name> ident

Categories
<cterm> expression term(exp)
<cset> expression set(exp)
<cnoun> expression noun(exp)
<cadj> expression, expression adj(exp, exp)
<cstat> stat

<cdec> category dec(category)
<cvar> <name> cvar

<name> Chain of characters

expression = <adjective> | <declaration> | <instance> | <noun>
| <refinement> | <reference> | <self>

category = <cterm> | <cset> | <cnoun> | <cadj> | <cstat> | <cdec>
| <cvar>

Table 6.2: Elements of the CGa XML syntax

We give the possible children and the corresponding abstract syntax expression of each

CGa XML element. The symbol “|” denote the alternative, “?” the optional occurrence

and “*” the zero or more occurrence.
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6.1.1.2.1 Typing results Typing results are presented in two kinds of posi-

tions in the XML document. Firstly, as child of each language construction, the

output type of the construction is printed in an <cga-meta:type> element. Sec-

ondly, the type of each identifier is informed in an <cga-meta:env-type> element.

See Section 6.1.1.2.3 for explanation on where this typing is positioned in relation

to the identifier itself and to the typing environment.

Each <cga-meta:type> and <cga-meta:env-type> element contains one

atomic type data and one schema type data, respectively. The representation

with the CGa’s abstract syntax types defined in Section 4.2.1.1, is described in

Table 6.3.

CGa’s terms, sets, nouns and adjectives are particularised by a mapping of

character names and types (represented by T in section 4.2.1.1). A mapping is

basically a noun description. In CGa’s abstract syntax, mappings are expressed by

means of noun and adjective descriptions (Noun and Adj constructions). As we saw

in Section 4.1, these descriptions use a step as medium to define the list of characters

that compose the mapping. Later on, these mappings can be combined to obtain

new nouns and adjectives, or transformed terms and sets. The representation of

these mappings in CGa XML syntax is related to the way the mapping has been

obtained. Table 6.3 defines the cga-meta XML elements to build such mappings.

A mapping is either:

• An empty mapping if it comes from an empty noun or adjective description.

{

n := Noun;

n’ : noun;

}

Here n and n’ are defined by empty noun descriptions.

• A mapping described by a step.

{

Noun { sides:set };

Adj (figure) { card(sides)=3 }

}

• Obtained by a refinement.

trilateral figure
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• A noun or adjective identifier which is the comprehensive name for a mapping.

{

figure := Noun { sides:set };

trilateral := Adj (figure) { card(sides)=3 };

}

Names of mappings are essential for human comprehension. Formally, a mapping

is no more than a set of character names associated with their types. Only this

abstract representation matters for the typing of an expression involving mappings,

names themselves do not hold any formal information. Nevertheless when an error

is detected, the user is entitled to get from the checker a message that can be

easily understood. For example, if we define group and ring as two nouns. Group

is defined with its set and operation as characters, and ring with its set and two

operations as characters. For brevity we omit here the definition of the group and

ring neutral elements and axioms.

{

group := Noun { E : set;

{a:E; b:E} |> add (a,b) : E

};

ring := Noun { E : set;

{a:E; b:E} |> add (a,b) : E;

{a:E; b:E} |> mul (a,b) : E

}

}

Let us then declare a property P on rings and apply it wrongly on a group G.

{

P (ring) : stat;

G : group;

P (G)

}

Here the type checker would notice the wrong argument’s type for the instance of

P. The identifier P expects an argument of type

Term( { (E, Set), (add, (Term,Term) → Term), (mul, (Term,Term) → Term) } )
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but is provided with an expression of type

Term( { (E, Set), (add, (Term,Term) → Term) } ).

CGa checker makes use of the mappings’ names to describe the error with more

readability.

Error (e-1):

Types mismatch for "P",

(term[ring]):stat expected , not (term[group]):stat.

It is nevertheless possible to obtain from the XML elements the full list of characters

and types for each noun.

6.1.1.2.2 Typing errors The errors detected by the checker are reported di-

rectly inside the document. See section 4.2 for a description of CGa’s type system

and section 6.2 for an explanation on the way this type system is implemented.

CGa’s type checker analyses the whole document. It works in a non-stop manner

reporting all typing-errors found. The documents that do not comply to the XML

recommendations are rejected by the checker. In the rest of this section, we mean

typing-error when we use the word “error”.

The errors found by the checker are listed as children of the root XML ele-

ment of the document. Each error is described in one <cga-meta:error> with a

unique xml:id attribute and a description in terms of cga-meta elements listed in

Appendix B.1.

There are two peculiarities in the way errors are handled in our CGa imple-

mentation. Firstly the representation of errors and secondly the location of errors

inside the document.

Error description Each error has a unique representation (see table 6.3).

For example, if an identifier is used with arguments of the wrong types (according

to the identifier’s definition), then a new error is created. Its description takes into

account the error’s name (Types_mismatch) and the error’s parameters (xml:id of

the misused parameters). This makes the error description unique.

On the implementation side, this unique representation reduces the listing of

errors. If similar errors occur several times they are identified as such and therefore

a unique error description points at several locations where the typing rules failed

to validate an expression.
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Atomic type
[[ Term(m) ]]x= <cga -meta:Term >

[[ m ]]
x

[[ Set(m) ]]x= <cga -meta:Set >
[[ m ]]

x

[[ Noun(m) ]]x= <cga -meta:Noun >
[[ m ]]x

[[ Adj (m1,m2) ]]x= <cga -meta:Adj >
[[ m1 ]]

x

[[ m2 ]]
x

[[ Stat ]]x= <cga -meta:Stat >

[[ v ]]x= <cga -meta:Var > v

[[ Dec(t) ]]x= <cga -meta:Dec >
[[ t ]]

x

[[ Def (t) ]]x= <cga -meta:Def >
[[ t ]]x

[[ Sub(t) ]]x= <cga -meta:Sub >
[[ t ]]

x

[[ Step ]]x= <cga -meta:Step >

[[ Categ(a) ]]x= <cga -meta:Categ >
[[ a ]]

x

Type signature
[[ (a1, . . . , an) → a ]]x= <cga -meta:Schema >

<cga -meta:In>
[[ a1 ]]

x

...
[[ an ]]

x

<cga -meta:Out >
[[ a ]]

x

Type mapping
Empty mapping <cga -meta:Empty >

Described by a step <cga -meta:Description >
[step’s xml:id]

Refinement of two
mappings m1 and m2

<cga -meta:Refinement >
[[ m1 ]]x

[[ m2 ]]
x

Mapping m named n <cga -meta:Named >
<cga -meta:name > n
[[ m ]]

x

For readability, we show only the opening tag of each XML element; instead we use indentation

to express nesting.

Table 6.3: CGa types and their corresponding XML elements.
Denotation function [[ ]]x transforming CGa types into XML syntax expressions.
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For example, if the addition is misused several times in a file

err.mathlang.plain containing the following lines:

{

x : term;

0 : term;

S : set;

+ (term , term) : term;

= (term , term) : stat;

= ( + (0,x), +(S,0) );

= ( + (S,0), +(0,x) )

}

then, the two typing mistakes of line 7 and 8 are pointed out as being a unique

error e-1:

Error (e-1): Types mismatch for "+",

(term ,term):term expected, not (set ,term):term.

err.mathlang.plain: L5 C2 -23

err.mathlang.plain: L8 C15 -21

err.mathlang.plain: L9 C6 -13

Error pointers The type checker identifies the wrongly formed expressions

(resulting of a failure to apply the typing rules of Section 4.2). This does not

necessarily mean that the authoring mistake occurred at the location of the typing

failure. The system points at the locations involved in the error. This feature is a

simplistic approach of type error slicing in typed programming languages [HW04].

In CGa, we opted to associate to each error all the different locations that could

have played a role in the typing failure. Each position of error in the XML document

is identified by an element <cga-meta:error> with an attribute ref referring to

the error descriptor (via its xml:id).

For example, if we change slightly our previous example by fixing the misuse

of the addition but also by introducing an error in the declaration of = we get the

following.

{

x : term;

0 : term;

+ (term , term) : term;
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= (stat , term) : stat;

= ( + (0,x), +(x,0) );

= ( + (x,0), +(0,x) )

}

The checker finds an error related to the typing of = and points at the type decla-

ration of = and at the instances of this identifier not complying with this type.

Error (e-1): Types mismatch for "=",

(stat ,term):stat expected, not (term ,term):stat.

err.mathlang.plain: L5 C2 -23

err.mathlang.plain: L7 C2 -23

err.mathlang.plain: L8 C2 -23

6.1.1.2.3 Environment The typing environment is composed by the steps pre-

ceding the document’s element to be checked. It is used in every typing rule of

Section 4.2. The ident-* rules of Section 4.2.3.1.1 explicate how to retrieve the

type of an identifier inside the typing environment. We decided to build this envi-

ronment inside the XML tree to permit an access to this meta-information. This

concrete environment consists of two kinds of cga-meta XML elements, the envi-

ronment modifiers described in table 6.4 and the environment referees described in

table 6.5.

Environment modifiers These are the actions that a local expression has

on its immediate followers. This could be, for example, the introduction of a new

identifier for declarations and definitions.

Environment referees These are pointers that one should follow to rebuild

the environment at each position in the XML tree. The algorithms for rebuilding

the environment are explained in detail in Section 6.2.2.

6.1.1.3 Location

Namespace URI (usual prefix: loc)

http://www.macs.hw.ac.uk/ultra/mathlang/location

CGa XML syntax is the standard representation for CGa documents. Since our

implementation of CGa’s type system is XML DOM based, the tree representation
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<env-identifier> To announce a new identifier. Attribute xml:id is the iden-
tifier’s unique XML identifier (prefixed i- by the checker).
Its attribute name-ref refers to the XML element holding
the identifier’s name.

<env-instance> To announce the instance of an identifier. Its attribute for
indicates the xml:id of the identifier.

<env-status> To inform about a new status of an identifier. Its attribute
for indicates the xml:id of the identifier. Its attribute
xml:id is the status modifier’s unique XML identifier (pre-
fixed st- by the checker). If the status modifier brings a
change from previous status, the attributes extends con-
tains the xml:id of the previous status modifier. This
element could have one or more <env-holder> as optional
children.

<env-holder> Possible child element for <env-status>. It is used when a
status modifier concerns a character of a term. Its attribute
ref points at the term identifier’s xml:id. An element
<env-status> could contain several <env-holder> if the
identifier in question is the character of a character... of a
term.

<env-type> To inform about a new type of an identifier. Its attribute
for indicates the xml:id of the identifier. Its attribute
xml:id is the type modifier’s unique identifier (prefixed
ty- by the checker). If the type modifier brings a change
from previous type, the attribute extends contains the
xml:id of the previous type modifier.

Table 6.4: Environment modifiers cga-meta elements

The environment referees point at the accessible environment modifiers. Each
environment modifier has an attribute ref containing the xml:id of the element
to which it points. The algorithms presented in Section 6.2 explain how to
follow them.
<env-pre-external> Points at a preceding content which is external to the

current position.
<env-pre-contained> Points at the direct container of the current position.
<env-pre-local> Points at the preceding content which is in the local

scoping of the current position.
<env-post-internal> Points at the last internal (sub) content of the current

position.

Table 6.5: Environment referees cga-meta elements
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of the XML syntax is the abstract syntax on which the checker bases its analysis.

But the input from users could have a different form. CGa’s plain syntax and

TSa-CGa macros for TEXmacs are examples of alternative input. In both cases,

the first task of the checker is to transform these concrete representations into a

CGa XML document. Note that this task corresponds to the simple parsing of

the XML source document in the case of CGa XML syntax. The checker produces

meta-information that are or could be useful for the human-user (error list, typing,

structure). In the case of the CGa XML syntax, this kind of meta-information

is directly added in the relevant position in the XML tree. In the case of other

syntaxes, the additional <loc:location> elements inform about the location in

the original syntax which corresponds to each XML node. For CGa’s plain syntax,

the <loc:location> element has three attributes namely the file name (file), the

line number (line), the character number of the beginning (begin) and the ending

(end) characters of the expression. In the case of TEXmacs, each TSa annotation

(see Section 6.1.3) gets a unique identifier and this identifier is included as an id

attribute of a <loc:location>.

6.1.2 CGa’s plain syntax

For testing purposes and theoretical discussions, we developed a plain syntax for

CGa (see Section 4.1). This syntax is a developer-oriented alternative to the CGa

XML syntax. During the period of December 2005 to February 2006, P. van Tilburg

worked in the ULTRA group for his internship [vT06]. He adapted and enhanced a

Camlp4 parser we developed for MWTT [Maa03]. Thanks to this contribution to

the project, we are able to provide an input syntax which follows exactly the CGa’s

abstract syntax of Section 4.1. Additionally, he developed some printers for this

CGa’s plain syntax representation. We refer to his report [vT06] for an exhaustive

description of this implementation.

6.1.3 TSa-CGa macros for TEXmacs

In Chapter 5 we saw how we are using TEXmacs with the MathLang-TSa plugin

as an input for CGa. In Section 5.1 we used one sentence as example, we repeat it

here. There is an element 0 in R such that a+0= a for all a in R.
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The TEXmacs tree corresponding to the internal encoding by TEXmacs could be

printed as follows (using TEXmacs presentation facilities).hMathLang-stepj j jThere is hMathLang-declarationj j jhMathLang-termj0j jan elementhwith jmode jmath j 0ii in hMathLang-set jR j j hwith jmode jmath jRiii such thathMathLang-stepjjjhwithjmode jmathjhMathLang-statementjeqjjhMathLang-termjplusjjhMathLang-termjajjai+hMathLang-termj0jj0ii=hMathLang-termjajjaiii hMathLang-contextjjjfor all hMathLang-declarationjjjhwithjmode jmathjhMathLang-termjajjaii inhwithjmodejmathjhMathLang-setjRjjRiiiii.i
This example illustrates our choice to represent each TSa annotation by a TEXmacs

element with three arguments.hMathLang-termjinterpretationjfeedback jtexti
The first argument is the interpretation that the user inputs. The second argument

contains the CGa checking feedback. These arguments are empty on input and are

filled with error labels (see example in Section 5.1.5) by the plugin. The third

argument contains the text annotated. Tables 5.2 and 5.3 describe the correlation

between grammatical annotations and CGa’s abstract syntax.

6.2 CGa’s Type Checker

6.2.1 XML DOM

CGa is a language for computerising mathematical text. Its manner of represent-

ing the data is central in its design and therefore in its implementation. Figure 6.1

represents the overall architecture of the current CGa-TSa framework. The cen-

tral element is the “DOM graph” which is the internal representation of the XML

document. We implemented the CGa checker using a XML DOM interface [Wora],

which means that the DOM graph is altered in place.

We see in Section 6.2.2 how we incorporate inside the DOM graph the environ-

ment, typing and typing error information respectively. This corresponds to the

“Type checker” node of Figure 6.1.

We currently provide three different input formats (see Section 6.1). Here is the

way we denoted them in Figure 6.1:

1. The CGa XML syntax is represented by the left hand side “XML document”

node and the “DOM XML Parser” node.
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2. The CGa’s plain syntax is represented by the “Plain document” node and the

Camlp4 “Plain Parser” node (right hand side).

3. The TSa-CGa macros for TEXmacs permit one to input a TSa annotated doc-

ument which is represented by the “TEXmacs document” node (bottom right

corner). We implemented a client-server communication between TEXmacs

and the CGa checker via our plugin for TEXmacs (see Section 6.3.1).

H. Lesourd from the Ωmega group at Universität des Saarlandes gave a prac-

tical help in developing the TEXmacs plugin’s client.

Additionally, a set of XSL transformations produce different overviews of a CGa

document such as errors, types, environment, document’s skeleton (“XSLT” group-

ing node in the figure). They use the typing result embedded in the document by

the type checker.

6.2.2 Typing environment

CGa checker creates inside the XML DOM graph the typing environment. This

is done prior to applying each typing rule. The typing environment is constructed

with environment modifiers and environment referees (see Section 6.1.1.2.3). The

environment referees give the route to follow to map the documents pieces in scop-

ing.

6.2.2.1 Retrieving the typing environment

The search for environment items works as follows. It first aggregates the location

points that are visible and then gets the content needed (list of identifiers, status

of an identifier, type of an identifier).

Definition 7 (Containers) We define the containers of an element e to be the

sequence composed by:

1. The elements pointed at by the pre contained sub-elements of e,

2. The containers of the elements pointed at by the pre local sub-elements of

e,

3. And the containers of the elements pointed at by the pre external sub-

elements of e.
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Figure 6.1: CGa-TSa system architecture
Diagrama describing the role of the different pieces of software in the current CGa-
TSa framework. See Section 6.2.1 for additional explanations.

aThis diagram stems from P. van Tilburg [vT06]. We present here an updated version of the
diagram.
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Definition 8 (Internal visibility) We define the elements visible from an inter-

nal point of view at an element e to be the sequence composed by:

1. The elements internally visible at each container of e,

2. The elements externally visible at each element pointed at by the pre local

sub-elements of e,

3. And the elements externally visible at each element pointed at by the

pre external sub-elements of e.

Definition 9 (External visibility) We define the elements visible from an ex-

ternal point of view at an element e to be the sequence composed by:

1. The elements externally visible at each element pointed at by the pre external

sub-elements of e,

2. The elements externally visible at each element pointed at by the

post internal sub-elements of e,

3. And the element e itself.

At any point of the XML tree it is therefore possible to retrieve the list of nodes

which compose the typing environment. The typing environment at a CGa XML

element is the sequence of elements visible from an internal point of view at this el-

ement. This environment is easily computable. The following Caml code computes

it.

Listing 6.1: Functions written in Caml rebuilding the environment

let rec containers element =

(pre_contained element)

@ (List.flatten

(List.map containers (pre_local element )))

@ (List.flatten

(List.map containers (pre_external element )))

and visible_internal element =

(List.flatten

(List.map visible_internal (containers element )))

@ (List.flatten

(List.map visible_external (pre_local element )))

@ (List.flatten
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(List.map visible_external (pre_external element )))

and visible_external element =

(List.flatten

(List.map visible_external (pre_external element )))

@ (List.flatten

(List.map visible_external (post_internal element )))

@ [element]

6.2.2.2 Environment referees

In this section we show the environment referees for the CGa language constructions

of Section 4.1. Each environment referee is represented by an arrow labeled with the

kind of referee. We use CGa’s abstract syntax generic construction and represent by

dash-border boxes the underlying cga XML elements. We ignore here the handling

of labels/references.

6.2.2.2.1 Vocabulary level We start here with the environment referees for

characters. We use two environment referees to reflect the content of the character

rule. The pre contained referee indicates that the left hand side premise s ⊢
e •

• Term(m) of the rule and the conclusion of the rule share the same typing envi-

ronment. The post internal referees shows that we retrieve the term’s character

in the step describing the noun this term inhabits.

The lower part is a representation of the typing of the term (we used an CGa’s

plain syntax declaration instead of a typing judgment to show the step describing

the noun expression).
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6.2.2.2.2 Category level

The environment referees for the

category expressions are sim-

ply one pre contained per case

for the sub-expression. This

pre contained represents the

fact that both premises and con-

clusion share the same typing en-

vironment in the categ-term,

categ-noun, categ-set,

categ-dec and categ-adj rules.

6.2.2.2.3 Expression level

The Environment referees for

the instantiation encode the

typing environment of the

instantiation’s arguments.

Firstly, the pre local refer-

ees show that each argument is typed in the environment composed by the pre-

ceding argument (and by extent the preceding argument’s environment as well).

Note the slight difference with the typing instance rule which includes in the en-

vironment only the arguments declaring a local variable. The reason was then not

to break the typing with non-phrase expressions (i.e. expressions that can not be

included as such in a step because they would not a be valid phrase). Here, we are

only interested in showing the path to construct the environment. Secondly, the

pre contained referee indicates that the arguments share the same environment

as the whole instance.

The environment referee for

declaration simply indicates with

one pre contained per parameter

that the typing environment for ev-

ery parameter is the same as for the declaration itself (see dec).
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The step which describes a noun in the noun de-

scription construction is typed under the same en-

vironment as the noun description. Nevertheless,

we use a pre local environment referee to forbid

access to future character search. This feature ap-

pears in the noun rule in the form of the premise i ∈ dI (s′) ∪ DI (s′) and the self

marker.

The environment referees for the refinement in-

dicate that both premises and conclusion share the

same typing environment in the term-refinement,

set-refinement and noun-refinement rules.

The environment referees for the ad-

jective description construction are sim-

ilar to the ones for character and for

noun description. The similarity with

the noun description comes from the

pre local referee we use. It forbids fu-

ture external accesses. The reason for

the similarity with the character’s en-

vironment referees is the need to get

the type of an expression to link with a

pre external to the step describing the

adjective argument.

6.2.2.2.4 Phrase level The environment referees for definition and sub refine-

ment are one pre contained referee per argument and one pre contained referee

for the expression respectively.
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6.2.2.2.5 Discourse level The environment referees for the phrase, local-scop-

ing and block of step language constructions reflect the behavior of the rules for

extracting an identifier’s typing from the context (see Section 4.2.3.1.1) which are

ident-basic, ident-local-scoping and ident-block respectively.

6.3 TSa’s Natural Language Interface

This section summarises the methods we developed to handle natural language texts

and to provide a user interface prototype. In Section 6.3.1 we present our effort

to develop a software capable of integrating CGa encoding inside CML phrasing

using TSa’s methods. In Section 6.3.2 we present our early method for rendering

MWTT in a CML form.

6.3.1 TSa’s editing tools

The goal of our editing tools is to provide the mathematician with a user-friendly

editor for CGa which gives a complete freedom in the phrasing. We used TEXmacs

to develop our first prototype because it is both “What You See Is What You Get”

and structured. We created the TSa-CGa plugin for TEXmacs to bring it to the

level of “What You Edit Is What You Mean”. In Chapter 5, we went into the

details of the TSa authoring method of which the TSa-CGa plugin for TEXmacs is

an implementation.

The TSa-CGa plugin for TEXmacs supplies several ways to input CGa and TSa

elements in a TEXmacs document. One can access TSa functions via a “MathLang”
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menu, via an icon bar and via keyboard shortcuts. Appendix C reproduces the

TSa-CGa plugin documentation (also accessible inside TEXmacs).

The menu of the TSa-CGa plugin contains five groups of entries.

1. The “Annotations” group which provides grammatical annotations (in-line or

paragraph width).

2. The “Checking and feedback” group contains the function to communicate

the entire document to a CGa checker, and the sub-menu where the errors’

descriptions will be listed.

3. The “Views” group which permits the user to customise the document’s view

(see Section 5.1.5 for examples of customised views).

4. The “Customising” group which could be used to set alternative addresses

and ports for the connection to a CGa checker.

5. The “Help” group which gives access to the plugin’s documentation.
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Our prototype implementation of CGa’s client editor is based on TEXmacs but it

is possible to develop other clients for the CGa checker server. As we can see with

this menu, the TSa-CGa plugin extends the editing facility and do not replace it.

6.3.2 Presentation tools in the previous MWTT implemen-

tation

In Section 3.4.1 we mentioned our early extension of WTT and in Section 4.4 we

presented the syntax and type system of this language which we named MWTT.

We developed an implementation of this type system. At the time, we also designed

a system for customising the rendering views of MWTT documents.

This system uses several XSL transformations to generate a CML text with

colour annotations showing the weak types in the document. This process takes into

account the presentation information given by the author inside his MWTT code

to generate an output which is close to the original CML version of the document.

With our development of TSa (direct annotation of CML text with grammat-

ical and souring information), this previous rendering system became obsolete.

Figure 3.4 describes the system’s transformation procedure. We illustrate here the

manner in which the natural language templates were encoded. We are using the

example from Section 5.1. We consider the MWTT line corresponding to the en-

tire sentence “There is an element 0 in R such that a + 0 = a for all a in R”. We

would therefore define a template “There is 1 such that 2 ”. The box 1 being

the context of the line and 2 its body.

This template links one MWTT construction to its rendering view. Templates

for MWTT variables, constants and binders are defined either globally or locally.

One association could be reused at different locations of the document. They are

defined using XSL with some MWTT-specific commands to easily refer to the

information contained in the MWTT encoding. The template for the line above is

as follows.

<template output="cml.tex" kind="xsl">

<categ kind="par" boxed="no">

<xsl:text >There is </xsl:text >

<xsl:apply -templates select=" context"/>

<xsl:text > such that </xsl:text >

<xsl:apply -templates select="body"/>

<xsl:text >.</xsl:text >

</categ >
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</template >

This information is a mix of XSL standard elements and MWTT specific ones. A

first process transforms all the presentation data that coats the document into one

single XSL transformation file. In a second process, this XSL transformation is

applied to the document itself producing the CML rendering view.

6.4 TSa: Syntax Souring Operational System

In this section we define an operational system implementing the syntax souring

transformations defined in Section 5.2. The set of syntax souring rewriting rules

we define in this section are summarised in Appendix A.4. Most material in this

section were published in [KLMW07].

6.4.1 Souring abstract syntax

The following develops a foundation for MathLang-TSa documents.

6.4.1.1 Conventions

We assume the following conventions: the symbol N denotes the natural numbers,

an ordered pair is denoted (a; b) and functions are taken to be sets ϕ of ordered

pairs with a domain dom(ϕ) = {a | ∃b ∋ (a; b) ∈ ϕ}. A sequence is a function s

for which dom(s) = {n | 0 ≤ n < k} for some k ∈ N where [] = Ø denotes the

empty sequence and [x0, x1, . . . , xn] denotes the sequence such that s(i) = xi for

each i ∈ dom(s) = {0, . . . , n}. Upon that sequence is defined the metric |s| = n+1.

We define s1, s2 to be the concatenation of sequences s1 and s2, as the new sequence

s such that

s(i) =

{
s1(i) for i ∈ dom(s1)

s2(i) for i − k ∈ dom(s2) where k = |s1|

where dom(s1, s2) = {0, . . . , |s1| + |s2| − 1}. This concatenation operator is as-

sociative, so that s1, (s2, s3) = (s1, s2), s3. Furthermore, the identity provides the

properties that [], s = s and s, [] = s. Finally, we define several types referred to

above.
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6.4.1.2 Labels and documents

TSa documents are constructed out of elements of several different kinds. Each

kind of element is denoted by a different label. We define L to be the set of labels

with ℓ ranging over L. The set L is the disjunction

L = F (Formatting labels)

∪ G (Grammatical labels)

∪ S (Souring labels)

of sets that we define as follows.

6.4.1.2.1 Formatting instructions The set F consists of formatting instruc-

tions. This set varies depending on the typesetting system used (i.e., the formatting

instructions used in a single document ought to be associated with one single type-

setting system). Definition 13 formally defines the set F over which f ranges.

6.4.1.2.2 Grammatical labels The set G consists of grammatical labels. Each

grammatical label is composed of a grammatical category and an interpretation.

G = C × I.

The set of grammatical categories is defined as

C = {term, set,noun, adj, stat,decl,defn, step, cont}.

It contains identifiers for the primitive grammatical categories used in TSa’s anno-

tations as enumerated in Table 5.1. The set I consists of strings used for identifying

abstract interpretations (e.g., 0, R, eq, plus and a are the interpretation strings

used in the examples throughout Section 5.1). Let g, c and i range respectively

over G, C and I.
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6.4.1.2.3 Souring labels The set S defines the souring labels. This set, over

which s ranges, is split into Su and Si (S = Su ∪ Si).

Su = {fold-left, fold-right, map, base, list, hook, loop, shared}
∪ ({position} × N)

Si = {hook-travel, head, tail, daeh, liat, right-travel, left-travel}
∪ ({cursor} × N)

The set Su contains souring identifiers to be employed directly by the user while

Si holds several identifiers used internally for rewriting.

6.4.1.2.4 Documents A TSa document is an element of the set D, see Defi-

nition 10. In addition, we denote by DF , DG, DF∪G , DG∪S and DF∪G∪S the sets of

documents for which labels are in F, G, F ∪ G, G ∪ S and F ∪ G ∪ S, respectively.

Definition 10 (Document) Let D be the smallest set such that

1. [] ∈ D,

2. if d ∈ D and ℓ ∈ L then [(ℓ; d)] ∈ D, and

3. if both d1 and d2 are elements of D then (d1, d2) ∈ D.

Remark 10 (Notational conventions) For convenience, [(ℓ; d)] abbreviates to

ℓ〈d〉. Furthermore, when not ambiguous ℓ〈[]〉 abbreviates to ℓ. In the case of gram-

matical labels ordered pairs, we denote the interpretation (second element of the

pair) by an adjoined superscript. A pair (c; i) from G is denoted by ci. Similarly,

an ordered pair from {position} × N (respectively {cursor} × N) is denoted by a

superscript number (second element of the pair) adjoined to position (respectively

cursor).

Upon D is defined the following relations.

Definition 11 (Sub-document) We define sub-document, and we denote by

⊏G , the binary relation between documents such that:

d ⊏G d (SUB1)

d ⊏G g〈d1〉 if d ⊏G d1 (SUB2)

d ⊏G (d1, d2) if d ⊏G d1 or d ⊏G d2 (SUB3)
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Remark 11 It is important to notice that our sub-document property (SUB2) is

restricted to grammatical labels which means that for any label ℓ 6∈ G and any

documents d1 and d2 such that d1 ⊏G d2, we have that d1 6⊏G ℓ〈d2〉.

Example 24 (Abstract syntax) Let us illustrate this encoding with a sub-part

of the example we used in Section 5. We consider the expression “an element 0

in R” which we annotated as follow: <0>an element 0 in <R>R .This expression

is equivalent to the following document where formatting instructions are printed

as "m", m being a string using a similar syntax to the one of of LATEX macros’

definition body.

decl
〈
"#1 in #2"

〈
term0 〈"an element $0$"〉 , setR 〈"$R$"〉

〉〉

6.4.1.2.5 Document filters

Definition 12 (Label inclusion) We define label inclusion, and we denote by

∈̃G , the binary relation between a label and a document such that:

ℓ ∈̃G ℓ〈d〉 (INC1)

ℓ ∈̃G g〈d〉 if ℓ 6= g and ℓ ∈̃G d (INC2)

ℓ ∈̃G (d1, d2) if ℓ ∈̃G d1 or ℓ ∈̃G d2 (INC3)

Remark 12 It is important to notice that our label inclusion property (INC2) is

restricted to grammatical labels, which means that for any labels ℓ1 6∈ G and ℓ2 ∈ L
such that ℓ1 6= ℓ2, and any document d such that ℓ2 ∈̃G d, we have that ℓ2

˜6∈G ℓ1〈d〉.

The two main uses of documents are rendering and grammatical interpretation.

There are separate filters apropos to each situation.

Definition 13 (Rendering functions) Let f : D → DF be a function defined

such that:

f([]) = [] (FORM1)

f(ℓ〈d〉) =

{
ℓ〈f(d)〉 if ℓ ∈ F
f(d) otherwise

(FORM2)

f(d1, d2) = f(d1), f(d2) (FORM3)
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Thus, f flattens a given document d at any label from G or S, removing all such

labels. Once this is achieved, it will be possible to use r : DF → F, defined so that:

r([]) = ε (REN1)

r(f〈d〉) = fill(f, [r(d(0)), . . . , r(d(|d|−1))]) (REN2)

r(d1, d2) = r(d1) • r(d2) (REN3)

Where, in a specific typesetting system, ε is the blank formatting instruction, • is

the concatenation operator and fill is a formatting-system-specific function. The

function fill interprets a formatting instruction (first argument) with a sequence of

rendered documents (second argument) passed as argument. One can imagine a

formatting instruction to be a template with holes and fill to simply fill these holes.

The number of vacancies exhibited by the first argument of fill should be equal to

the length of the sequence (which is the second argument of fill). The function fill

returns an element of the set F which should be a formatting instruction awaiting

for no argument.

Remark 13 According to Definition 13, the number of vacancies exhibited by the

first argument of fill should be equal to the length of the sequence, second argument

of fill. But it may happen that a formatting instruction f is paired with a longer

sequence in a D-document d. Nevertheless this formatting instruction should see its

paired sequence decrease in length by the application of the function f (case FORM2

can make a sequence to decrease in length).

Definition 14 (De-formatting function) To prepare a document for souring,

we define df : D → DG∪S as a function which strips a document of all formatting

entities.

df([]) = [] (DF1)

df(ℓ〈d〉) =

{
d if ℓ ∈ F
ℓ〈df(d)〉 otherwise

(DF2)

df(d1, d2) = df(d1), df(d2) (DF3)

6.4.2 The souring rewriting system

In this section we formally define the souring rewriting rules [BN98] of the souring

transformations given in Section 5.2.
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Definition 15 (Compatibility) We define the following compatibility property

for a rewriting rule →n.

d1, d, d2 →n d1, d
′, d2 if d →n d′ (COMP1)

g〈d〉 → g〈d′〉 if d →n d′ (COMP2)

Remark 14 Note that our compatibility rule (COMP2) is restricted to grammat-

ical labels.

Definition 16 (Reflexive transitive closure) We denote by ։n the reflexive

transitive closure of →n.

Definition 17 (Normal form) We define the n-normal form relatively to →n

and we denote by NF n the property on a document d such that no ։n rewriting

can be applied to d.

6.4.2.1 The souring rewriting rules

Below are the formal rewriting rules for souring transformations from Section 5.2.1.

6.4.2.1.1 The list machinery The →list rewriting rules describe how opera-

tions on list are processed. Four internal souring labels from Su labels: head, tail,

daeh and liat (the word daeh is the reverse of head and liat is tail reversed).

Combined with a sequence starting by a list label, they disappear and alter the

sequence paired with list during rewriting. In L9 (respectively L10, L11 and L12),

the head (respectively tail, daeh and liat) isolate the head (respectively tail, last

element and head elements) of the list paired sequence. The rules L1–L8 show
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how these internal souring labels can navigate in a document in search for a list.

head〈d1, d2〉 →list d1, head〈d2〉 where list ˜6∈G d1 (L1)

tail〈d1, d2〉 →list d1, tail〈d2〉 where list ˜6∈G d1 (L2)

daeh〈d1, d2〉 →list d1, daeh〈d2〉 where list ˜6∈G d1 (L3)

liat〈d1, d2〉 →list d1, liat〈d2〉 where list ˜6∈G d1 (L4)

head〈g〈d1〉, d2〉 →list g〈head〈d1〉〉, d2 where list ∈̃G d1 (L5)

tail〈g〈d1〉, d2〉 →list g〈tail〈d1〉〉, d2 where list ∈̃G d1 (L6)

daeh〈g〈d1〉, d2〉 →list g〈daeh〈d1〉〉, d2 where list ∈̃G d1 (L7)

liat〈g〈d1〉, d2〉 →list g〈liat〈d1〉〉, d2 where list ∈̃G d1 (L8)

head〈list〈g〈d1〉, d2〉, d3〉 →list g〈d1〉, d3 (L9)

tail〈list〈g〈d1〉, d2〉, d3〉 →list d2, d3 (L10)

daeh〈list〈d1, g〈d2〉〉, d3〉 →list g〈d2〉, d3 (L11)

liat〈list〈d1, g〈d2〉〉, d3〉 →list d1, d3 (L12)

6.4.2.1.2 Sharing The →share rewriting rule is the operational definition of

the sharing transformation of Definition 2. It duplicates the document paired with

a share souring label at both the tail of a preceding grammatical label’s paired

sequence and the head of a following grammatical label’s paired sequence.

g1 〈d1〉 , shared 〈d〉 , g2 〈d2〉 →share g1 〈d1, d〉 , g2 〈d, d2〉 (S1)

6.4.2.1.3 Chaining The ։chain rewriting rule is the operational definition of

the chaining transformation of Definition 3. The hook souring label is replaced in

C1 by a copy of its paired document and by a hook-travel paired with a copy

of this paired document. The Si hook-travel internal souring label travels with

C3–C5 to reach a loop. Rule C2 specifies that when a hook-travel meets a loop,

they both disappear and are replaced by one copy of the document paired with
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hook-travel.

hook 〈d〉 →chain d, hook-travel 〈d〉 (C1)

hook-travel 〈d〉 , loop →chain d (C2)

hook-travel 〈d0〉 , d1, d2 →chain d1, hook-travel 〈d0〉 , d2 where loop ˜6∈G d1

(C3)

hook-travel 〈d0〉 , g 〈d1〉 →chain g 〈hook-travel 〈d0〉 , d1〉 (C4)

g 〈d1, hook-travel 〈d0〉〉 →chain g 〈d1〉 , hook-travel 〈d0〉 (C5)

6.4.2.1.4 Mapping The ։map rewriting rule is the operational definition of

the mapping transformation of Definition 6. The mapping rewriting reproduces

the document paired with a Su map souring label for each element of the sequence

associated with the list souring sub-label. Rule M2 replaces the mapping pattern

by two version of the document paired with map. The first one has its sub-pair

list-sequence replaced by the head of the sequence (the rule makes use of ։list

and head of Section 6.4.2.1.1). The second one is paired with map and has its

sub-pair list-sequence replaced by the tail of the sequence (the rule makes use of

։list and tail of Section 6.4.2.1.1). Rule M1 simply states that a pair of a map

and a document containing an empty list list (or precisely list〈[]〉) gets removed

by this rewriting.

map〈d〉 →map [] where list ⊏G d (M1)

map〈d0〉 →map d1, map〈d2〉 where d0 ։souring d′
0,

head〈d′
0〉 ։list d1

and tail〈d′
0〉 ։list d2

(M2)

6.4.2.1.5 Folding The ։fold rewriting rule is the operational definition of the

right and left folding transformations of Definitions 4 and 5. Right folding works in

similar fashion to mapping. Rule F1 duplicates the folding pattern for the head and

the tail of the list (the rule makes use of ։list , head and tail of Section 6.4.2.1.1).

right-travel travels (rules F2 and F3) to reach the base. If the list is empty in

the pattern, only the base is left (rule F4) otherwise a new fold-right replaces
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the base (rule F5).

fold-right〈d0〉 →fold right-travel〈d2〉, d1 (F1)

where d0 ։souring d′
0, head〈d′

0〉 ։list d1 and tail〈d′
0〉 ։list d2

right-travel〈d1, d2〉 →fold d1, right-travel〈d2〉 (F2)

where base ˜6∈G d1

right-travel〈g〈d1〉, d2〉 →fold g〈right-travel〈d1〉〉, d2 (F3)

where base ∈̃G d1

right-travel〈d1〉, base〈d2〉 →fold d2 where list ⊏G d1 (F4)

right-travel〈d1〉, base〈d2〉 →fold fold-right〈d1〉 (F5)

Left folding differs from right folding by using a left recursion on the list with

daeh and liat from Section 6.4.2.1.1.

fold-left〈d0〉 →fold left-travel〈d2〉, d1 (F6)

where d0 ։souring d′
0, daeh〈d′

0〉 ։list d1 and liat〈d′
0〉 ։list d2

left-travel〈d1, d2〉 →fold d1, left-travel〈d2〉 (F7)

where base ˜6∈G d1

left-travel〈g〈d1〉, d2〉 →fold g〈left-travel〈d1〉〉, d2 (F8)

where base ∈̃G d1

left-travel〈d1〉, base〈d2〉 →fold d2 where list ⊏G d1 (F9)

left-travel〈d1〉, base〈d2〉 →fold fold-left〈d1〉 (F10)

6.4.2.1.6 Reordering The ։pos rewriting rule is the operational definition of

the re-ordering transformation of Definition 1. As one may expect this rule work as

a sorting engine. Rule P1 re-orders position elements depending on their number

attribute. An internal Si souring label cursor takes the role of a marker. Its
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preceding elements are in order while the following ones still need to be ordered.

positioni〈d1〉, positionj〈d2〉 →pos position
j〈d2〉, positioni〈d1〉 (P1)

where j < i

ℓ〈position1〈d1〉, d2〉 →pos ℓ〈d1, cursor
1, d2〉 (P2)

cursori, positioni+1〈d1〉, d2 →pos d1, cursor
i+1, d2 (P3)

ℓ〈d, cursori〉 →pos ℓ〈d〉 (P4)

Remark 15 (Reordering restriction) Equations (P2) and (P4) restrict the or-

dering rewriting to a sequence of documents inside a label ℓ. The ordering rules

cannot rewrite something of the form

position1〈d1〉, . . . , positionn〈dn〉,

whereas it could rewrite

ℓ〈position1〈d1〉, . . . , positionn〈dn〉〉.

6.4.2.1.7 Souring rewriting rule We can finally define the souring rewriting

rule as being a combination of the previous rules.

Definition 18 (Souring rewriting rule) The souring rewriting rule, denoted by

→souring is defined as follow:

d0 →souring d4

where
d0 ։share d1 (d1 being a NFshare),

d1 ։chain d2 (d2 being a NFchain),

d2 ։pos d3 (d3 being a NFpos),

d3 ։lists d4 (d4 being a NFlists).
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Example 25 Let us illustrate the souring rewriting with a concrete example. We

consider the formula 0 + a0 = a0 = a(0 + 0) = a0 + a0 where a0 stands for the

multiplication of a and 0. Here is its annotated version using two chainings.

<eq> 0 + a0 = <hook> a0 <eq> <loop> = <hook> a(0 + 0) <eq> <loop> = a0 + a0

Let us see step-by-step the souring rewriting.

1. Here is its representation using our souring abstract syntax.

stateq 〈0 + a0, hook 〈a0〉〉 , stateq
〈
loop, hook

〈
a(0 + 0)

〉〉
, stateq 〈loop, a0 + a0〉

2. In a first step, case C1 of rule →chain is applied (following its compatibility

property).

stateq 〈0 + a0, a0, hook-travel〈a0〉〉 , stateq
〈
loop, hook

〈
a(0 + 0)

〉〉
, stateq 〈loop, a0 + a0〉

3. Then case C5.

stateq 〈0 + a0, a0〉 , hook-travel〈a0〉 , stateq
〈
loop, hook

〈
a(0 + 0)

〉〉
, stateq 〈loop, a0 + a0〉

4. Case C4.

stateq 〈0 + a0, a0〉 , stateq
〈
hook-travel〈a0〉 , loop, hook

〈
a(0 + 0)

〉〉
, stateq 〈loop, a0 + a0〉

5. Case C2.

stateq 〈0 + a0, a0〉 , stateq
〈
a0, hook

〈
a(0 + 0)

〉〉
, stateq 〈loop, a0 + a0〉

6. This operation gets repeated for the second chain.

. . .

7. We finally obtain the following document.

stateq 〈0 + a0, a0〉 , stateq
〈
a0, a(0 + 0)

〉
, stateq

〈
a(0 + 0), a0 + a0

〉

And here is this document in its annotated version.

<eq> 0 + a0 = a0 <eq> a0 = a(0 + 0) <eq> a(0 + 0) = a0 + a0

183



Chapter 6. Implementation

Note that we showed the completion of first chaining souring rewriting first. Both

chainings could happen in parallel.

6.4.2.2 Input document and document transformations

As a conclusion for the description of the souring operational rewriting system we

compare here different authoring paths depending on the input document format.

Traditional natural

language input method

Natural language text

with grammatical

annotations (Section 5.1)

Natural language text

with grammatical and

souring annotations

(Section 5.2)

DF DF∪G DF∪G∪S

DF DG DG∪S

F DG

Typesetting system’s

rendering on paper or

screen, e.g. TEXmacs,

MathML HTML, LATEX

(Section 2.4.1)

Grammatical automatic

checking (Section 4.2)

and further computations

or/and formalisations

(Section 7.1.1)

f

f
r

df df

souring

Conclusion

This chapter gives a large overview of the implementation of MathLang’s CGa and

TSa aspects presented in the preceding chapters. We presented the XML default

syntax, the plain syntax and the TSa syntax for CGa. We also presented the man-

ner CGa’s typing results are embedded in a CGa document and the rewriting system

implementing the TSa syntax souring transformations. Since the souring rewriting

rules are defined on top of a generic document format, it should be straightforward

to adapt the rules to some specific formatting system and core “sour” language.
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Future Developments and

Conclusion

In this chapter we reflect on the current and future developments related to this

thesis and we give a conclusion to the thesis. We split these outcomes into three

categories, the MathLang specific developments in Section 7.1, the possible reuse of

some techniques developed in this thesis, for OpenMath and OMDoc in Section 7.2,

and a general perspective on document management in Section 7.3.

7.1 MathLang’s Current and Future of Develop-

ments

7.1.1 Current and Future aspects

The MathLang project initiated in 2000 by F. Kamareddine and J.B. Wells advo-

cated the computerisation/formalisation of mathematical documents by means of

aspects. This thesis reported on two aspects: CGa and TSa. The development

of TSa involved the collaboration of another PhD research student in the Math-

Lang project, R. Lamar. The forthcoming PhD thesis of another PhD student

in the MathLang project, K. Retel, concerns the development of the Document

Rhetorical aspect Document Rhetorical aspect (DRa). We briefly describe DRa in

Section 7.1.1.2. Then we review other aspect possibilities, but these could change

as progress on the MathLang project is made.
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7.1.1.1 Extending CGa and TSa

Current known shortcomings in the TSa-CGa system include good handling of

expressions with ellipses, such as

n times︷ ︸︸ ︷
x + . . . + x, 22.

.
.
2

, and 1
1+ 1

1+···

. Other priorities

are developing and integrating methods to automate the annotation process, which

at present can be redundant and tedious (see Section 7.1.2). These automated

recognition tools would permit to ask mathematicians to test the system (up to

now the computer scientists working in the Mathematical Knowledge Management

field have been the only users of the system).

7.1.1.2 Document Rhetorical aspect (DRa)

In CGa a document is decomposed into steps either put in a sequence or contex-

tualise by the local-scoping construction. One would encode division labels (such

as chapter, section) and narrative labels (such as axiom, theorem, proof) by this

unique step construction (see Chapters 4 and 5), our ground level language CGa

does not make the difference between them to enhance its flexibility. These labels

need to be computerised and could be based on the CGa generic step construction.

From a logical/mathematical point of view, a statement is a statement. The DRa

is about the subjective value, the social context and the expected use by humans

of such steps.

The DRa captures the author’s understanding of what is a theorem or an axiom

and what this labelling imposes for the relationship of the associated piece of text

with the rest of the document. The DRa describes a fix set of relation kinds

between labeled elements that could occur in a mathematical document (such as

justifies or uses). These relations are either directly stated by the author or deduced

from a pre-defined grammars (in such standard of user-defined grammars a label

theorem would impose a relation justifies to a proof ). Coherence between these

stated relationships (for instance a step labeled axiom can not be at the same time

related to a proof by a relation justifies) is then automatically validated.

Additionally, from these labels and relations, a graph of logical precedences

is automatically extracted. This graph could be seen as a prognostication of the

structure of a formal proof of the informal CML document. This aspect and the

use of this aspect to move further into a formalisation in Mizar are presented in

K. Retel’s report [Ret05] and in the articles [KMRW07b] and [KMRW07a]. Further

extensive details can be found in K. Retel’s forthcoming PhD thesis.
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7.1.1.3 Informal Justification aspect (IJa)

CGa has no words like hence, by, since which give clues about the logical coherence

of text. Within CGa’s local scoping the difference is not made between consid-

erations, assumptions or hypothesis of declarations. The logical meaning of these

context components will be exposed by this aspect and composed with DRa rela-

tions. The logical justifications to move from one step to another in the document

will be made explicit by the author. These logical indications will be automatically

checked and will result in a well formed proof with unchecked pieces. In the spirit

of H. Barendregt’s [Bar03] and S. Autexier and A. Fiedler’s [AF06], IJa will point

at the holes in the proof and will identify the proof obligations with no restriction

on the logic to be used. IJa completes the initial CGa structure into a more formal

and homogeneous document, keeping track of all holes (open places in reasonings)

and proof obligations so that the mathematician knows exactly what remains to

be done on the theory-in-construction.

7.1.1.4 Meta-logic aspect (MLa)

Texts written in CGa+DRa+IJa will contain all the logical and semantical infor-

mation that a CML proof could have. Such a text will contain holes that need to be

filled to reach logical completeness. The purpose of this aspect in the path to full

formalisation is to provide a language to describe the logical framework the author

wants to work with and to use this framework to fulfill the proof requirements. The

well-formation and well-use of this logical content will be analysed by this aspect

but the proof checking itself is to be done by further aspects or external systems.

This aspect should adapt to different logical systems.

7.1.1.5 Universal indexing aspect (UIa)

The way to relate documents with each others is an important authoring activity.

This aspect will bring all the methodology and tools to relate documents and their

contents in a universal manner. This aspect will facilitate cooperation and shar-

ing including version control. This aspect will re-use established web-techniques

(W3C’s URLocation, URIdentifier, URName, Xpointer, Xpath and Xlink)

and be inspired by the time-honoured librarians techniques.
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7.1.2 Automatic annotation and recognition

The method we presented in Chapter 5 requires a lot of input from the author. In

an accomplished framework, such annotation of text should be automated to be

fully usable. Mathematical texts are a mixture of formula and natural language

texts. CGa offers constructions to capture both in the same language.

7.1.2.1 Parsing formulas

Recognition-wise, formulas are already well structured. From formula already an-

notated, the author unconsciously indicates how to decompose a formula. This in-

cludes an indication on the precedence of symbols. This symbol precedence could

be represented in lattices. This approach would be more generic than the one

proposed in [MLUM06] of attributing to each symbol a precedence ponderation.

7.1.2.2 Dynamic natural language recognition

Natural language recognition has been a prolific area of research in computer science

for decades. The approach we defined in Chapter 5 joint with the approach of an

evolutionary corpus successfully used by Y. Baba and M. Suzuki [BS03], would be

a good experimental starting point. Implementation-wise, many natural language

text parsers would be suitable for this task as suggested by C. Brown.

7.1.2.3 Prospection

The annotation of natural language we presented in Chapter 5 will be useful

in a wide variety of settings. One possible area of application is work being

done with optical character recognition of mathematics. In the work of the In-

fty Project [KSSS06, RRSS06], for example, it is desirable to extract information

from printed materials. As TSa annotations becomes capable of being automated,

it will provide further aid to extracting semantic information from a document with

as little hand-translation as possible.

7.2 Towards an OpenMath/OMDoc Checker

Someone willing to use OpenMath or OMDoc for encoding some mathematical

knowledge has to put some effort into structuring his formulas with OpenMath and

organising the document content accordingly to OMDoc guidances. This process
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could be frustrating as the level of encoding effort does not match the level of

automatic analysis OpenMath and OMDoc tools provide (see Section 3.2.1.5).

7.2.1 Checking

As a matter of fact, a weak typing (such as MathLang-CGa or WTT) would be

a realistic alternative to ECC and STS (see Section 2.4.2.1). Which OMDoc (see

Section 2.4.2.2) content could be translated into CGa?

• The structure of an OMDoc document could be translated into a CGa step-

based structure.

• Formal contents (i.e. <FMP> elements) could be automatically translated into

CGa expressions.

• The formulas embedded in informal contents (i.e. <CMP> elements) could be

also translated as the natural language part of the informal content could

benefit from user direct TSa annotation..

We do not consider that the transformation from OMDoc to CGa could be auto-

mated but a semi-automation could make use of OMCD extended with CGa type

signatures. For example transc1’s sin could get CGa’s type signature

(term) -> term.

7.2.1.1 A MathLang-CGa OMCD

A MathLang-CGa OMCD (see its definition in Listing 7.1) could provide symbols

to express CGa types with OpenMath symbols. Following the guidelines of the

articles [CC99] and [Dav99] we have created an OpenMath symbol for each CGa

type listed in Section 4.2.1.1.

<CD xmlns ="http://www.openmath.org/OpenMathCD">

<CDName> mathlang

<CDDate> 2007 -04 -29

<CDVersion> 0.1

<CDRevision> 1

<CDStatus> experimental

<Description>

This CD contains symbols expressing CGa types.

<!-- CGa types -->

<CDDefinition> <Name> CGa -term

<Description> This symbol represents CGa type "term".
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<CDDefinition> <Name> CGa -set

<Description> This symbol represents CGa type "set".

<CDDefinition> <Name> CGa -noun

<Description> This symbol represents CGa type "noun".

<CDDefinition> <Name> CGa -adjective

<Description> This symbol represents CGa type "adjective".

<CDDefinition> <Name> CGa -statement

<Description> This symbol represents CGa type "statement".

<CDDefinition> <Name> CGa -declaration

<Description> This symbol represents CGa type "declaration".

<!-- CGa signature -->

<CDDefinition> <Name> CGa -type

<Role>semantic -attribution

<Description> A symbol to be used within an OpenMath attribute

to specify the CGa type of the object.

<CDDefinition> <Name> CGa -in

<Description> Sub element of "type" listing a symbol’s

input types.

<CDDefinition> <Name> CGa -out

<Description> Sub element of "type" containing a symbol ’s

output type.

Listing 7.1: MathLang-CGa OMCD

For readability and brevity, we show only the opening tag of each XML element; instead

we use indentation to express nesting.

Using the symbol type one can indicate the type signature of an OpenMath object

with the attribution <OMATTR>. As an example we give here the OpenMath signa-

ture of the symbol plus of arith1 using respectively ECC, STS and CGa. In the

current state of the OpenMath public Content Directories no signatures (either in

ECC or STS) are provided. Also there is no generic way to write signature. A

signature is simply an OpenMath object.

Example 26 (OpenMath arith1 plus with ECC attributes) The type of

plus given as an example in [CC99] is Πx : integer.(Πy : integer.integer).

<Signature name="plus">

<OMOBJ>

<OMBIND>

<OMS cd="ecc" name=" PiType">

<OMBVAR>

<OMATTR>

<OMATP>
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<OMS cd="ecc" name="type">

<OMS cd="ecc" name="integer">

<OMV name="x">

<OMATTR>

<OMATP>

<OMS cd="ecc" name="type">

<OMS cd="ecc" name="integer">

<OMV name="y">

<OMS cd="ecc" name=" integer">

Example 27 (OpenMath arith1 plus with STS attributes) The type of

plus given as an example in [Dav99] is an associative application. The arguments

are elements of an abelian semi group, so is the result.

<Signature name="plus">

<OMOBJ>

<OMA>

<OMS cd="sts" name=" mapsto">

<OMA>

<OMS cd="sts" name="nassoc">

<OMV name="AbelianSemiGroup">

<OMV name=" AbelianSemiGroup">

In the draft description of STS, three type constructors are described. mapsto for

applications, nassoc and nary for n-arguments of associative and non-associative

functions. In STS a function could have a fixed number of arguments.

<Signature name="minus">

<OMOBJ>

<OMA>

<OMS cd="sts" name=" mapsto">

<OMV name=" AbelianSemiGroup">

<OMV name=" AbelianSemiGroup">

<OMV name=" AbelianSemiGroup">

Simple types in STS are encoded as variables.

Example 28 (OpenMath arith1 plus with CGa attributes) The CGa type

signature of the plus symbol of the Content Dictionary arith1 will be written as

follow in OpenMath.

<Signature name="plus">

<OMOBJ>

<OMA>
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<OMS name="cga -type" cd="mathlang">

<OMA>

<OMS name="cga -in" cd="mathlang">

<OMS name="cga -term" cd=" mathlang">

<OMS name="cga -term" cd=" mathlang">

<OMA>

<OMS name="cga -out" cd="mathlang">

<OMS name="cga -term" cd=" mathlang">

7.2.1.2 Translation from OpenMath to CGa

We do not intend here to define a proper translation between OpenMath and CGa

but simply to give some hints for such translation. For a CGa of an OpenMath

formula we need to specify some translations. The target domain of this translation

is CGa’s abstract syntax.

• The OpenMath application construction corresponds to CGa’s instance in

most cases. Due to CGa’s weak typing (see Section 4.3.2.2), some Open-

Math application would need to be represented in CGa with a specific n-ary

application operator.

• The OpenMath attribution with <OMS cd="mathlang" name="type"> at-

tribute symbol will be translated, depending on the situation, into a dec-

laration.

• OpenMath bindings would represented by CGa’s declaration arguments

passed to binder-identifiers.

7.2.2 Editing

OMDoc, is aimed to become a universal medium for communicating mathematical

documents. As OMDoc is mainly intended for machine consumption, it remains

human-user unfriendly due to the omnipresence of its XML syntax. There exists

several OMDoc editors [GP03, Act03, Pro] but they always constrain the author

to a rigid structure driven by OMDoc’s grammar. We believe that CGa/TSa can

help by offering a mathematician-oriented editor for OMDoc.
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7.3 Towards a Comprehensible Literate Proving

The TEXmacs plugin environment and method of editing causes TSa to be a visual

language. Using visual languages for knowledge representation is becoming more

popular, and its benefits are obvious. By displaying and editing the logical struc-

ture of a mathematical document, the categorisation of various portions of text is

made more clear and the structure more lucid. This could certainly lead to a new

generation of literate programming [Knu84b]. The perspective of a collaborative

framework for the edition of formal documents in a manner merging literate prov-

ing and Mathematical Semantic Web is giving hope for the emergence of a new

motto “What You Edit Is What You Mean”.

It is quite conceivable that MV, or variations of it, can have an im-

pact on computing science. A thing that comes at once into mind, is

the use of MV as an intermediate language in “expert systems”. An-

other possible use might be formal or informal specification language

for computer programs. [dB87, §1.3]

7.4 Conclusion

This PhD thesis is in keeping with the general goal of the MathLang project:

faithful computerisation of mathematics such that one can combine the efficiency

of formal systems with the expressiveness of traditional mathematical authoring.

We demonstrate in this thesis the relevance of a low-level encoding concerned

only with the grammatical structure of mathematical argumentation. Such encod-

ing does not attenuate the value of a computerisation if it comes with a validation

system. The benefit is a clear identification of one aspect of the computerisation/

formalisation process on which further computerisations can be based. We apply

well-established techniques in type theory to define a formal language and its type

system. Additionally, we provide a full implementation of this system.

We also demonstrate in this thesis the feasibility of restoring natural language as

the primary input for mathematical authoring on computers. This method, which

combines text annotations and syntax souring, will be beneficial for mathemati-

cians as it permits the use of computer-assisted authoring without requiring skills

in computer-based formalisation. Thus, this method will benefit the mathematical

knowledge community as it makes the bridge between traditional and computerised
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mathematics. We formally define the syntax souring rewriting system and imple-

ment a prototype editor for this system.

This thesis provides a practical solution for representing mathematical knowl-

edge and for connecting this knowledge with corresponding common mathematical

text pieces. Understanding the essence of mathematical writings via its computer-

isation ensures progress in leaning, teaching, exploring and inventing mathematics.

194



Appendix A

MathLang’s CGa and TSa,

Summary

A.1 CGa’s Abstract Syntax

Summary of MathLang-CGa’s abstract syntax as defined in Section 4.1.

Vocabulary level

cident, ci ::= ident Identifier

| exp.ident Character

Category level

category, c ::= term(exp) Term category

| set(exp) Set category

| noun(exp) Noun category

| adj(exp, exp) Adjective category

| stat Statement category

| dec(category) Declaration category

| cvar Category variable

Expression level

exp, e ::= cident(−→exp) Instance

| ident(
−−−−−−−−−−→
category | expr) : exp Elementhood declaration

| ident(
−−−−−−−−−−→
category | expr) : category Declaration

| Noun {step} Noun description

| Adj(exp) {step} Adjective description

| exp exp Refinement

| self Self
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| ref label Step reference

Phrase level

phrase, p ::= exp Statement phrase

| cident(
−−−→
ident) := exp Definition

| cident(−→exp) := exp Case definition

| ident ≪ exp Sub refinement

Discourse level

step, s ::= phrase Basic step

| step ⊲ step Local scoping

| {−−→step} Block

| label label step Step label

A.2 CGa’s Type System

Summary of MathLang-CGa’s typing rules as defined in Section 4.2.

A.2.1 Rules for the vocabulary level

{−→s } ⊢ p •

• Dec(t) dI (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-dec

{−→s } ⊢ p •

• Def (t) DI (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-def

{−→s } ⊢ p •

• Sub(t) I (p) = {i}
{−→s ; p} ⊢ i •

• t
ident-sub

s ⊢ e •

• Term(m) i ∈ dom(m)

s ⊢ e.i •

• m(i)
character
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{−→s } ⊢ i •

• t i 6∈ I (p)

{−→s ; p} ⊢ i •

• t
ident-basic

{−→s ; s′; s′′} ⊢ i •

• t i ∈ I (s′′)

{−→s ; s′ ⊲ s′′} ⊢ i •

• t
ident-local-scoping

{−→s1 ; −→s2} ⊢ i •

• t

{−→s1 ; {−→s2}} ⊢ i •

• t
ident-block

{−→s ; s′} ⊢ i •

• t

{−→s ; label l s′} ⊢ i •

• t
ident-label

⊢ s •

• Step s ⊢ e •

• Noun(m)

s ⊢ term(e)/set(e)/noun(e) •

• Categ(Term(m)/Set(m)/Noun(m))
categ-

term/

set/

noun

⊢ s •

• Step s ⊢ e •

• Noun(m) s ⊢ e′ •

• Noun(m ′) m 4 m ′

s ⊢ adj(e, e′) •

• Categ(Adj (m,m ′))
categ-adj

⊢ s •

• Step

s ⊢ stat •

• Categ(Stat)
categ-stat

⊢ s •

• Step s ⊢ c •

• Categ(a)

s ⊢ dec(c) •

• Categ(Dec(() → a))
categ-dec

⊢ s •

• Step

s ⊢ v •

• Categ(v)
categ-var

A.2.2 Rules for the expression level

⊢ s •

• Step s ⊢ ci •

• (a1, . . . , an) → a

∀j ∈ {1 . . . n}, f = enum({q | 1 < q < j and dI (eq) 6= ∅})

and {s; ef(1); . . . ; ef(j−1)} ⊢ ej
•

• a ′
j

a ′ 6∈ V (a1, . . . , an) → a4̄(a ′
1, . . . , a

′
n) → a ′

s ⊢ ci(e1, . . . , en) •

• a ′
instance
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⊢ s •

• Step i 6∈ I (s) ∀j ∈ {1 . . . n}, if cej = cj then s ⊢ cj
•

• Categ(aj)

∀j ∈ {1 . . . n}, if cej = ej then s ⊢ ej
•

• Noun(mj)/Set(mj) and aj = Term(mj)

if ce = c then s ⊢ c •

• Categ(a)

if ce = e then s ⊢ e •

• Noun(m)/Set(m) and a = Term(m)

s ⊢ i(c1, . . . , cn) : e •

• Dec((a1, . . . , an) → a)
dec

⊢ s •

• Step {s; self : term} ⊢ s′ •

• Step

∀i ∈ dI (s′) ∪ DI (s′), {s; self : term; s′} ⊢ i •

• m(i)

s ⊢ Noun {s′} •

• Noun(m)
noun

⊢ s •

• Step s ⊢ e •

• Noun(m)

{s; self : e} ⊢ s′ •

• Step ∀i ∈ I (s′), {s; self : e; s′} ⊢ i •

• m ′(i)

s ⊢ Adj (e) {s′} •

• Adj (m,m ′)
adj

⊢ s •

• Step s ⊢ e1
•

• Adj (m1,m
′
1)

s ⊢ e2
•

• Noun(m2)/Set(m2)/Term(m2) m1 4 m2

∀i ∈ (dom(m ′
1) \ dom(m1)) ∩ dom(m2), m2(i)4̄m ′

1(i)

s ⊢ e1 e2
•

• Noun(m ′
1 ⊎ m2)/Set(m ′

1 ⊎ m2)/Term(m ′
1 ⊎ m2)

term/

set/

noun

-refinement

⊢ s •

• Step

s ⊢ e1
•

• Adj (m1,m
′
1) s ⊢ e2

•

• Adj (m2,m
′
2) m1 4 m ′

2

∀i ∈ (dom(m ′
1) \ dom(m1)) ∩ (dom(m ′

2) \ dom(m2)), m ′
2(i)4̄m ′

1(i)

s ⊢ e1 e2
•

• Adj (m2,m
′
2 ⊎ m ′

1)
adj-refinement

⊢ {−→s } •

• Step

{−→s ; self : term} ⊢ self •

• Term(∅)
self-noun

⊢ {−→s } •

• Step {−→s } ⊢ e •

• Noun(m)

{−→s ; self : e} ⊢ self •

• Term(m)
self-adj

⊢ {−→s } •

• Step

{−→s } ⊢ self •

• Term(m) i ∈ I (p) {−→s ; p} ⊢ i •

• t

{−→s ; p} ⊢ self •

• Term((i , t) ⊎ m)
self-character
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{−→s } ⊢ self •

• a I (s′) = ∅
{−→s ; p} ⊢ self •

• a
self-basic

{−→s ; s2} ⊢ self •

• a

{−→s ; s1 ⊲ s2} ⊢ self •

• a
self-local-scoping

{−→s1 ;−→s2} ⊢ self •

• a

{−→s1 ; {−→s2}} ⊢ self •

• a
self-block

{−→s ; s′} ⊢ self •

• a

{−→s ; label l s′} ⊢ self •

• a
self-label

⊢ s •

• Step l ∈ L(s)

s ⊢ ref l •

• Stat
ref

A.2.3 Rules for the phrase level

⊢ s •

• Step i 6∈ DI (s)

∀j, k ∈ {1 . . . n}, j 6= k ⇒ ij 6= ik ∀j ∈ {1 . . . n}, s ⊢ ij •

• () → aj

s ⊢ e •

• a if i ∈ dI (s) then s ⊢ i •

• (a1, . . . , an) → a

s ⊢ i(i1, . . . , in) := e •

• Def ((a1, . . . , an) → a)
def

⊢ s •

• Step if i ∈ I (s) then s ⊢ i •

• (a1, . . . , an) → a

∀j ∈ {1 . . . n}, s ⊢ ej
•

• aj s ⊢ e •

• a

s ⊢ i(e1, . . . , en) := e •

• Def ((a1, . . . , an) → a)
def-case

⊢ s •

• Step s ⊢ i •

• Term(m1)/Set(m1)/Noun(m1)

s ⊢ e •

• Noun(m2) ∀i ′ ∈ dom(m1) ∩ dom(m2), m1(i
′)4̄m2(i

′)

s ⊢ i ≪ e •

• Sub(Term(m1 ⊎ m2)/Noun(m1 ⊎ m2)/Set(m1 ⊎ m2))
sub-noun

⊢ s •

• Step s ⊢ i •

• Term(m1)

s ⊢ e •

• Adj (m2,m
′
2) ∀i ′ ∈ dom(m1) ∩ dom(m ′

2), m1(i
′)4̄m ′

2(i
′)

s ⊢ i ≪ e •

• Sub(Term(m1 ⊎ m ′
2)/Noun(m1 ⊎ m ′

2)/Set(m1 ⊎ m ′
2))

sub-adj

A.2.4 Rules for the discourse level

⊢ s •

• Step s ⊢ p •

• Stat/Dec(t)/Def (t)/Sub(t)

s ⊢ p •

• Step
basic-step
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⊢ s1
•

• Step s1 ⊢ s2
•

• Step {s1; s2} ⊢ s3
•

• Step

s1 ⊢ s2 ⊲ s3
•

• Step
local-scoping

⊢ s1
•

• Step s1 ⊢ {−→s } •

• Step {s1; {−→s }} ⊢ s2
•

• Step

s1 ⊢ {−→s ; s2} •

• Step
block

⊢ {} •

• Step
empty-step

⊢ s •

• Step

s ⊢ self : term/e •

• Step
self-marker

⊢ s1
•

• Step l 6∈ L(s1) s1 ⊢ s2
•

• Step

s1 ⊢ label l s2
•

• Step
label

A.3 TSa’s Souring Transformations

Summary of MathLang-TSa’s souring transformations as defined in Section 5.2.3.

A.3.1 Reordering

T




<position 1>T1

...

<position n>Tn




souring−−−−→ T (T1, . . . , Tn)

A.3.2 Sharing

<G1>T1
<shared>T <G2>T2

souring−−−−→ <G1>T1 T <G2>T T2

A.3.3 Chaining

T




<hook>T ′

<loop>



 souring−−−−→ T

(
T ′

T ′

)
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A.3.4 Right folding

<fold-right> Tf



 b : <base> Tb

l : <list> T1 . . . Tk



 souring−−−−→

Tf




b : Tf




b : Tf

[
· · ·Tf

[
b : Tb

l : Tk

]
· · ·
]

l : T2




l : T1




A.3.5 Left folding

<fold-left> Tf


 b : <base> Tb

l : <list> T1 . . . Tk


 souring−−−−→

Tf




b : Tf




b : Tf

[
· · ·Tf

[
b : Tb

l : T1

]
· · ·
]

l : Tk−1




l : Tk




A.3.6 Mapping

<map> Tf

(
<list> T1 . . . Tn

)
souring−−−−→ Tf(T1) . . . Tf (Tn)

A.4 TSa’s Souring Rewriting Rules

Summary of MathLang-TSa’s souring rewriting rules as defined in Section 6.4.

201



Chapter A. MathLang’s CGa and TSa, Summary

A.4.1 Reordering

positioni〈d1〉, positionj〈d2〉 →pos position
j〈d2〉, positioni〈d1〉 (P1)

where j < i

ℓ〈position1〈d1〉, d2〉 →pos ℓ〈d1, cursor
1, d2〉 (P2)

cursori, positioni+1〈d1〉, d2 →pos d1, cursor
i+1, d2 (P3)

ℓ〈d, cursori〉 →pos ℓ〈d〉 (P4)

A.4.2 Sharing

g1 〈d1〉 , shared 〈d〉 , g2 〈d2〉 →share g1 〈d1, d〉 , g2 〈d, d2〉 (S1)

A.4.3 Chaining

hook 〈d〉 →chain d, hook-travel 〈d〉 (C1)

hook-travel 〈d〉 , loop →chain d (C2)

hook-travel 〈d0〉 , d1, d2 →chain d1, hook-travel 〈d0〉 , d2 where loop ˜6∈G d1

(C3)

hook-travel 〈d0〉 , g 〈d1〉 →chain g 〈hook-travel 〈d0〉 , d1〉 (C4)

g 〈d1, hook-travel 〈d0〉〉 →chain g 〈d1〉 , hook-travel 〈d0〉 (C5)

A.4.4 Right folding

fold-right〈d0〉 →fold right-travel〈d2〉, d1 (F1)

where d0 ։souring d′
0, head〈d′

0〉 ։list d1 and tail〈d′
0〉 ։list d2

right-travel〈d1, d2〉 →fold d1, right-travel〈d2〉 (F2)

where base ˜6∈G d1

right-travel〈g〈d1〉, d2〉 →fold g〈right-travel〈d1〉〉, d2 (F3)

where base ∈̃G d1

right-travel〈d1〉, base〈d2〉 →fold d2 where list ⊏G d1 (F4)

right-travel〈d1〉, base〈d2〉 →fold fold-right〈d1〉 (F5)
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A.4.5 Left folding

fold-left〈d0〉 →fold left-travel〈d2〉, d1 (F6)

where d0 ։souring d′
0, daeh〈d′

0〉 ։list d1 and liat〈d′
0〉 ։list d2

left-travel〈d1, d2〉 →fold d1, left-travel〈d2〉 (F7)

where base ˜6∈G d1

left-travel〈g〈d1〉, d2〉 →fold g〈left-travel〈d1〉〉, d2 (F8)

where base ∈̃G d1

left-travel〈d1〉, base〈d2〉 →fold d2 where list ⊏G d1 (F9)

left-travel〈d1〉, base〈d2〉 →fold fold-left〈d1〉 (F10)

A.4.6 Mapping

map〈d〉 →map [] where list ⊏G d (M1)

map〈d0〉 →map d1, map〈d2〉 where d0 ։souring d′
0,

head〈d′
0〉 ։list d1

and tail〈d′
0〉 ։list d2

(M2)
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CGa XML syntax

B.1 CGa XML syntax Error Elements

Abstract syntax for errors and XML representation.

Namespace URI (usual prefix: cga-meta)

http://www.macs.hw.ac.uk/ultra/mathlang/grammatical-core-meta

For readability, we show only the opening tag of each XML element; instead we

use indentation to express nesting.

• Multiple declarations of an identifier

<cga-meta:Multiple_declarations>

[ xml:id of the identifier]

• Multiple definitions of an identifier

<cga-meta:Multiple_definitions>

[ xml:ids of the identifier’s components]

• Post-instance declaration of an identifier

<cga-meta:Post_instance_declaration>

[ xml:id of the identifier]

• Post-definition declaration of an identifier

<cga-meta:Post_definition_declaration>

[ xml:id of the identifier]

• Non matching status for an identifier

<cga-meta:Status_mismatch>

[ xml:id of the identifier]

[expected status]

[effective status]
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• Non matching types for an identifier

<cga-meta:Types_mismatch>

[ xml:id of the identifier]

[expected type]

[effective type]

• Non matching nouns

<cga-meta:Nouns_mismatch>

[first noun description]

[second noun description]

• Nouns overlapping

<cga-meta:Nouns_overlap>

[first noun description]

[second noun description]

• Non matching categories for an expression

<cga-meta:Categories_mismatch>

[ xml:id of the expression]

[expected category]

[effective category]

• Non matching type for declaration ([xml:id] of declaration, type of expression)

<cga-meta:Declaration_type_mismatch>

[ xml:id of the declaration]

[effective type]

• Instance before declaration or definition

<cga-meta:Anticipated_instance>

[ xml:id of the identifier]

• Unbound variable

<cga-meta:Unbound_identifier>

[ xml:id of the identifier]

• Unknown field’s name (of complex identifier)

<cga-meta:Unknown_field_name>

[name’s xml:id]

• Invalid parameter status (variable and status)

<cga-meta:Invalid_parameter_status>

[identifier’s xml:id]

[effective status]
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• Parameter itself with parameters

<cga-meta:Parameter_not_parameterless>

[identifier’s xml:id]

• Invalid instance

<cga-meta:Invalid_instance>

[instance’s xml:id]

• Invalid declaration

<cga-meta:Invalid_declaration>

[declaration’s xml:id]

• Invalid refinement

<cga-meta:Invalid_refinement>

[refinement’s xml:id]

• Invalid phrase

<cga-meta:Invalid_phrase>

[phrase’s xml:id]

• Invalid local scoping

<cga-meta:Invalid_local>

[Local scoping’s xml:id]

• Invalid step

<cga-meta:Invalid_step>

[step’s xml:id]
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationUsing MathLang menu and icon barText & Symbol aspectAfter the installation of the MathLang plugin, a MathLang menu should appearas part of the header menu, a MathLang help menu should be append to the mainHelp menu, and a set of MathLang icons should appear on the User provided bar(View!User provided icons to display this icon bar). Be aware that theMathLangTEXMACS style is not automatically loaded by the plugin. Use Document! Addpackage!mathlang to load the MathLang style for your document. The MathLangmenu is divided in �ve parts.Annotations. Editing a MathLang's Text & Symbol aspect (TSa) � TEXMACSdocument di�ers from a normal TEXMACS editing by the annotation of textelements with their grammatical categories or with syntax souring informa-tion.The grammatical categories of the MathLang Core Grammatical aspect(CGa) are: term, set, noun, adjective, declaration, de�nition, statement, con-text and step. Due to rendering issues, each annotation action is providedtwice. Once for in-line annotation: MathLang ! In-line, and one for para-graph annotation: MathLang! Paragraph. One can either create an emptyannotation or annotate a selected piece of text. If no text is selected then,performing an annotation action will create an empty annotation. If a pieceof text is selected, performing an annotation action will wrap this text inthe annotation. In both cases, one is required to provide an argument forthe annotation (see Grammatical and Syntax Souring Annotations for moredetails about annotation arguments). These annotation actions (for examplethe term annotation) can be accessed via the menu for in-line annotations(MathLang! In-line! Term) and for paragraph annotations (MathLang!Paragraph ! Term). They can also be accessed via key shortcuts for in-line annotations: C-G T for a term, C-G S for a set, C-G N for a noun,C-G A for an adjective, C-G Z for a declaration, C-G D for a de�nition,C-G P for a statement, C-G C for a context and C-G B for a step, and forparagraph annotations: C-G P T for a term, C-G P S for a set, C-G P N fora noun, C-G P A for an adjective, C-G P Z for a declaration, C-G P D fora de�nition, C-G P P for a statement, C-G P C for a context and C-G P Bfor a step. An annotation is rendered as a box with a particular backgroundcolour. For example here the word 'hypothesis' is annotated as a statement.[...] the hypothesis that [...]
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationHere is the colour scheme: term , set , noun , adjective , declaration ,de�nition , statement , context and step (the MathLang icons arecoloured following this scheme). Here is the greyscale scheme (for black& white printing purposes): term , set , noun , adjective , declaration ,de�nition , statement , context and step . See Grammatical and SyntaxSouring Annotations for more details on the meaning of these annotations.The syntax souring annotation actions can be accessed via the menu (Math-Lang! Souring) or via key shortcuts: C-S P for a position, C-S F L fora left folding, C-S F R for a right folding, C-S M for a map, C-S B for afolding base, C-S L for a list, C-S S for a share, C-S C H for a hook andC-S C L for a loop. See Grammatical and Syntax Souring Annotations formore details on the meaning of these souring annotations.Checking and feedback. The grammatical and souring annotation of piecesof text gives essential clues about the role of each text element in the rea-soning expressed in the document. The MathLang plugin for TEXMACS canact as a client for a MathLang-CGa server (see Launching MathLang serverto learn more about MathLang server). The uploading action can be accessedvia the menu MathLang!Send document or via the key shortcut C-U . Thisaction sends the entire document to a MathLang server at 127.0.0.1:9933(to customize this address and port see below the Customizing section).Warning. It is highly recommended to save the TEXMACS �le before usingthis command. MathLang server is still in development and therefore mighthang up unexpectedly which would make TEXMACS to freeze.After receiving the document, the MathLang-CGa server analyses it andreturns a list of errors encountered in the document. In a perfect situation,no errors would be found which should result in an empty menu MathLang!Errors' descriptions. In an unlikely case, the descriptions of the errors found inthe document will appear in this menu MathLang! Errors' descriptions. Anerror description is a tuple of an error identi�er and a short phrase describingthe error. For example, the following text in the menu is the description ofthe error e-3.e-3: Anticipated instance of 'h'This should correspond to one or more occurrences of the e-3 error label inthe document. The border's width of an erroneous annotation will automat-ically be increased to 1pt. Here is an example of such occurrence (here, thegreen box representing a statement named 'h' in the MathLang annotationargument).[...] the *e-3* hypothesis that [...]
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationNote that there exist two kinds of errors. The �rst one consists of gram-matical errors that the MathLang-CGa checker has cought. The labels, corre-sponding to this kind of error, look like: e-n with n being a number. Theerrors in the second category are identi�ed during the Text & Symbol aspect'stransformations which consist roughly of a transformation from an anno-tated document to a CGa'abstract syntax document. Their labels look likesour-n where n is a number.For cleanliness during editing, it is possible to hide the appearance of theseerror labels. WhenMathLang!Display Error feedback is unchecked, the errorswill not be displayed. In this way, the appearance of the document is lesscluttered for further editing and annotation. When the document is sent tothe server again, this setting is automatically turned o� so that the new setof errors (if any) are displayed.Views. A set of actions are provided to change the way MathLang plugin shouldrender the annotations.MathLang!Annotation BordersWhen checked, TEXMACS displays the borders of annotations. This doesnot a�ect the behaviour of MathLang!Display Error feedback.MathLang!ColoursWhen checked, TEXMACS displays the background colors of annotations.MathLang! InterpretationsWhen checked, TEXMACS displays the MathLang interpretation of eachannotation.MathLang!Greyscale colour schemeChanges the displayed background color of annotations. When notchecked (the default setting), TEXMACS employs the default MathLangcolour scheme. When this menu item is checked, the colour schemeis altered to use only shades of grey for annotation backgrounds. IfMathLang! Colours is unchecked, this will change the setting but haveno immediate visual impact. Useful for checking the appearance of adocument when printed on a black-and-white printer.Customizing. A set of actions are provided to customize MathLang plugin.MathLang!Set server addressThis action provides a prompt to set the address to which to connect toa MathLang server. The default value is 127.0.0.1. New address arestored in TEXMACS �le.MathLang!Set server portThis action provides a prompt to set the port to which to connect to aMathLang server. The default value is 9933. New ports are stored inTEXMACS �le.
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationHelp. One can access this MathLang plugin help and documentation via Math-Lang!Documentation and Help!MathLang help.© 2006 by The MathLang Project � Manuel MaarekHeriot-Watt University, ULTRA group.$Id: mathlang-man-server.en.tm 1813 2006-09-20 19:07:29Z mm20 $
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationGrammatical and syntax souring annotationswith MathLang's Text & Symbol aspectThe editing of MathLang using TEXMACS is a straightforward process. It consist ina normal TEXMACS editing with an extra task of annotating pieces of text accordingto their grammatical categories. The choice of annotation does not require strongknowledge in Mathematics, linguistics, computation, set theory or type theory butmainly require some familiarities with mathematical discourse and to be aware ofwhat the MathLang's Core Grammatical aspect (CGa) and Text & Symbol aspect(TSa) are capable and not capable of analysing. It is important to mention here thatMathLang is an ongoing project still under development. In an attempt to clarifythe annotation process, we explain here the way one can annotate some commonphrasing.Be aware that MathLang TEXMACS style is not automatically loaded by theplugin. Use Document ! Add package ! mathlang to use MathLang style for thecurrent �le.Expressing facts and constructing formulas. Mathematical facts and for-mulas are built by composing assertions and symbols. In TSa we o�er simpleannotations to highlight the role of each piece of text. One might be con-fused by the reunion of facts and symbols under a unique consideration, thisexample attempts to show the reason why. Our example is the following.gcd(a; b)= 1Here we can identify 1, a, b. They are annotated as terms (MathLang! In-line!Term or C-G T ) in the text with respectively 1, a and b as annotation'sargument.gcd( a ; b )= 1We can also identify that gcd(a; b) is a term itself, build from the applicationof the gcd function on the terms a and b. gcd(a; b) is therefore annotated asterm with gcd as annotation's argument.gcd( a ; b ) = 1Similarly we can identify the adjunction of gcd(a; b) and 1 with the operator= . This is a fact and is therefore annotated as statement (MathLang! In-line!Statement or C-G P ) with = as annotation's argument.gcd( a ; b ) = 1
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationHere we dealt with a formula but the annotation would have been identicalif the formula was expressed in natural language.The greatest common divisor of a and b is 1The annotations presented here highlight the instantiation of an identi�er(operator, function, constant or variable). This identi�er is the annotation'sargument. The result of this instantiation belongs to a speci�c grammaticalcategory (here it was either terms or statements), the annotation indicatesit. If the instantiation requires arguments (this was the case for gcd and= ), these should be located under the constructor's annotation. From theseannotations, MathLang's TSa interprets this phrase as: (= (gcd a b) 1),using a lisp-like syntax. Here the arguments' order in the texts follows thecomputerised one. It might not always be the case. Extra annotations canbe added to the grammatical annotations to explain the manner to reshu�ethe text for interpretation. This is done using syntax souring annotations.For example, one can use the position reordering annotation (MathLang!Souring! Position) to indicate how a sequence of grammatical annotationsshould be reordered. The argument for this annotation is a number n whichis the relative position of the annotation in the computerised interpretation.For example, the phrases �A�B� and �B contains A� which one would liketo interpret as (subset A B), would be annotated as follows.A � B(where A, B and � are annotated with arguments A, B and subset respec-tively) B contains A(where B, A and �contains� are annotated with arguments 2 then B, 1 thenA, and subset respectively)Declaring variables and notions, de�ning functions, operators and notions. Toannotate that a piece of text is declaring an identi�er or de�ning its meaning,one can use the declaration and de�nition annotations. Our example is the�rst mention in a text of a certain integer a.[...] in integer a [...]We �rst annotate the overall as a declaration (MathLang! In-line!Declara-tion or C-G Z ) with the variable's name as annotation's argument.[...] in integer a [...]
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Chapter C. TSa-CGa TEXmacs Plugin DocumentationThen we need to annotate the variable itself to indicate its grammaticalcategory. In this example we also annotate �integer� which is the family towhich a belongs. Therefore a is annotated as a term (MathLang! In-line!Term or C-G T ) with annotation's argument a and �integer� is annotated asa noun (MathLang! In-line!Noun or C-G N ) with annotation's argumentinteger. [...] in integer a [...]The MathLang interpretation is a:integer. Often, declarations come ingroup or even are hidden. It is required to make them explicit with anno-tations.Contexts and sequences of steps. In our previous examples we mainly sawhow to compose annotations to express the meaning of a formula or a phrase.We need now to annotate their combinations.If 2p is irrational, then the equation a2 = 2b2 is soluble inintegers a, b with (a; b)= 1.The overall sentence is a step. We annotate it (MathLang! In-line!Step orC-G B ).If 2p is irrational, then the equation a2=2b2 is soluble inintegers a, b with (a; b)= 1.We can identify that several pieces of this sentence compose its context. Theassumption �If 2p is irrational�, the declarations �in integers a, b� and thecondition �(a; b)=1� form the context of this sentence, we therefore annotatethem as such (MathLang! In-line! Context or C-G C ). The phrase on theresolvability of the equation is the statement (MathLang! In-line!Statementor C-G P ) brought by this sentence.If 2p is irrational , then the equation a2=2b2 is solublein integers a, b with (a; b)= 1 .MathLang plugin interprets it by grouping the contextual and non-contextualbits together.© 2006 by The MathLang Project � Manuel MaarekHeriot-Watt University, ULTRA group.$Id: mathlang-man-server.en.tm 1813 2006-09-20 19:07:29Z mm20 $
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ématique [Bou39]. Actualités Scientifiques et Industrielles, no. 934.

Hermann & Cie, Paris, 1942.
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