
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111371

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16195819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111371

ar
X

iv
:1

10
9.

06
16

v2
 [

cs
.D

L
]

 9
 O

ct
 2

01
2

Noname manuscript No.

(will be inserted by the editor)

ATP and Presentation Service for Mizar Formalizations

Josef Urban · Piotr Rudnicki · Geoff Sutcliffe

the date of receipt and acceptance should be inserted later

Abstract This paper describes the Automated Reasoning for Mizar (MizAR) service,
which integrates several automated reasoning, artificial intelligence, and presen-
tation tools with Mizar and its authoring environment. The service provides ATP
assistance to Mizar authors in finding and explaining proofs, and offers generation
of Mizar problems as challenges to ATP systems. The service is based on a sound
translation from the Mizar language to that of first-order ATP systems, and relies
on the recent progress in application of ATP systems in large theories containing
tens of thousands of available facts. We present the main features of MizAR ser-
vices, followed by an account of initial experiments in finding proofs with the ATP
assistance. Our initial experience indicates that the tool offers substantial help in
exploring the Mizar library and in preparing new Mizar articles.

1 Motivation and System Overview

Computer supported formal mathematics [6] is becoming better known, widely
used and experimented with. Projects like FlySpeck [5] and verification of tiny
(but real) operating systems [10] are stimulating the development of interactive
verification tools and interactive theorem provers (ITPs). Linked to this is the
development of strong automated theorem proving (ATP) systems, used either
independently to solve hard problems in suitable domains, or integrated with in-
teractive tools. Such integrations have motivated recent research in the context of
automated reasoning in large theories [11,14,24].

TheMizar project1 is a long-term effort to collaboratively develop a formal com-
puterized system representing important mathematical knowledge. The project is

Josef Urban, funded by NWO grants MathWiki and Knowledge-based Automated Reasoning
Radboud University, Nijmegen

Piotr Rudnicki, supported by a NSERC grant
University of Alberta

Geoff Sutcliffe
University of Miami

1 http://mizar.org . See [1] for introductory information on Mizar. For the rest of the paper
we assume at least superficial familiarity with Mizar.

http://arxiv.org/abs/1109.0616v2

2 Josef Urban et al.

focused on building theMizar Mathematical Library (MML) – a collection of mathe-
matical ‘articles’ formalized and mechanically verified with the Mizar system. MML

is the largest such library among similar projects.
This paper introduces the Automated Reasoning for Mizar (MizAR) service,

which attaches several automated reasoning and presentation tools to the Mizar

system. MizAR runs in the context of the MML expressed in the Mizar language – a
language oriented toward mathematicians. An inspiration for MizAR is the estab-
lished SystemOnTPTP ATP service [16], which uses the simpler TPTP language for
expressing proving tasks. SystemOnTPTP provides a framework for finding proofs
with many first-order ATP systems, offers various forms of proof presentation,
supports discovery of new lemmas and independent proof verification. The MizAR

service links to and re-uses parts of SystemOnTPTP. MizAR comprises the following
main functionalities:

– Fast server-based verification of Mizar articles, and their HTML-based disam-
biguation linked to the whole cross-linked HTMLized MML– see Section 2.

– Generation of ATP problems in TPTP format for theorems and inferences in
a given article, and invoking automated provers on them – see Sections 3, 4.

– Searching for useful premises for Mizar lemmas and inference steps – see Sec-
tions 5, 6.

The first version of the MizAR service was deployed in 2008 on a server of the
Automated Reasoning Group in Prague. As of 2011 the service is independently
hosted on twomid-range multi-core servers in Nijmegen2 and in Edmonton3. A way
for newcomers to explore MizAR is to use a web browser with an existing simple
MML article, e.g., the CARD 1 article4 about cardinal numbers [3] from the MML.
More experienced Mizar users will typically interact with the service by launching
commands from the Mizar Emacs authoring interface [18]. Some of the commands
keep the communication fully in the Emacs session, while other commands offer a
browser-based interaction.

2 Server-based Verification and HTMLization

The Mizar verifier acts as a compiler-like batch processor, verifying an entire article
in one pass and reporting errors. The process of checking a whole article can be
quite time-consuming for longer and more complex articles. In the omni-presence
of the fast internet, there are several advantages of remote server-based verifica-
tion of Mizar articles: (i) no need for a local installation of the entire system; (ii)
browser-based access for simple tasks; (iii) large numbers of faster CPUs on the
servers, offering great speedups through parallelization [20]. A dedicated server-
based installation can also support modified, enhanced, or experimental versions
of the verifier. For instance, an enhanced version of the verifier is useful when
translating Mizar to ATP formats, and the Mizar parallelizer requires some Linux
tools that might not be available on other platforms.5 An online service can also

2 http://mws.cs.ru.nl/~mptp/MizAR.html
3 http://mizar.cs.ualberta.ca/~mptp/MizAR.html
4 http://mws.cs.ru.nl/~mptp/mml/mml/card_1.miz
5 As of 2011, Mizar is distributed for eight architectures, some of them targeted at PDAs.

ATP and Presentation Service for Mizar Formalizations 3

easily include multiple versions of the Mizar library. This opens a path toward a
wiki-like collaborative environment for formalizing mathematics in Mizar [21].

Mizar articles are written as text files according to the Mizar syntax, but their
semantics is defined by the verifier in the context of the MML. Discovering all se-
mantic details of such a formal article by hand from its raw textual form can be a
challenging task, because of overloaded notation that is so common in mathemat-
ical practice. Fortunately, the internal format of MML is XML based [17], which
can be automatically turned into an annotated HTML presentation. The HTML
presentation, while close to the original text of the Mizar article, offers assistance
in semantic browsing both through the MML as well as displaying semantics of an
article still in development. Such assistance includes displaying the current goal
(thesis) computed by the verifier at each point of a proof, disambiguation of over-
loaded mathematical symbols through hyperlinks, and explicit display of formulae
hidden behind certain keywords announcing properties (such as projectivity, com-
mutativity, antisymmetry, etc.) of constructors. The HTML presentation of Mizar

texts forms the backbone to which other MizAR services are linked.

3 Translation to ATP Formats and Integrating ATP systems

MizAR provides access to ATP systems in the context of the large body of mathe-
matics in the MML. The library is first translated into the MPTP (Mizar Problems
for Theorem Provers) intermediate format [19], and then translated into the TPTP
format that is the standard for many ATP systems. Complete static versions of
the MML in the MPTP and TPTP formats are also stored on the MizAR server,
and used for on-demand conversion of MML items (theorems, definitions, formulae
encoding implicit Mizar type, etc.) into ATP problems in various usage scenarios.
The conversion of MML items into MPTP and then into TPTP format requires
a quite complex installation and setup (including SWI Prolog, Unix utilities, spe-
cial XSL style sheets, the MML in the MPTP format, etc.) and therefore is better
suited for processing on a dedicated server.

The HTMLization of an article and the generation of ATP problems are inde-
pendent processes, and they constitute separate services that can run in parallel in
different CPUs. For example, a call for ATP help issued from the Emacs interface
would trigger only fast ATP processing, responding directly to Emacs. Notation
disambiguation and proof explanation tasks would typically also trigger HTML
processing, possibly linking additional ATP and explanation services (running on
the translated article) to the HTML presentation.

The first version of MizAR used the E and SPASS provers by default, with an
option to export the generated problems to the dozens of ATP systems and model
finders available through the SystemOnTPTP interface. In 2010, the default ATP
was changed to Vampire, motivated by its improved behavior on Mizar/MPTP
problems, by its general compliance with the TPTP format, and particularly be-
cause of the direct integration of the SInE premise selection method [8].6 A recent
comparison [22] of Vampire with the E and SPASS ATP systems on the set of all
theorems from MML version 1011 is summarized in Table 1. This comparison is
based on the SMALL versions of the MML problems, in which only the premises

6 This changes quickly: a fast SInE algorithm has been recently added also to the E prover.

4 Josef Urban et al.

explicitly provided by Mizar authors (plus some general implicit background facts)
are used for constructing the problems. In this mode Vampire solves 20109 prob-
lems out of 51424 within a 30s CPU time limit per problem, which is significantly
better than (untuned) E, solving 16191 of the problems. For more details and
statistics of other usage scenarios, see [22]. The ATP systems are typically run
(possibly in parallel) with different premise selections (even if some of them do
their own premise selection internally), depending on the usage scenario. Some of
the scenarios are explained below.

Table 1 Evaluation of E, SPASS, and Vampire on all MML SMALL problems in 30s

description proved countersatisfiable timeout or memory out total
E 1.1-004 16191 4 35229 51424
SPASS 3.7 17550 12 33862 51424
Vampire 0.6 20109 0 31315 51424
together 22607 12 28817 51424

4 Solving Problems with the Use of the Whole MML

An obvious use-case of MizAR is when a new conjecture is attacked with the
help of the whole MML library, containing about a hundred thousand premises.
While there are several complementary AI approaches to premise selection, and
experimenting with them is interesting and potentially very rewarding, the default
method for this use-case is the Mizar-tuned Vampire/SInE system, which is capable
of loading the whole translated MML and selecting promising premises in seconds.

When a user asks the service to solve a problem using the whole MML, the
service creates a TPTP problem for the task by including the file containing the
whole translated MML (available statically on the server in TPTP format), and
adding all the propositions from the current article that are available before the
proposition for which a proof is sought. Other (typically leaner) premise selections
can be created in parallel by analogous mechanisms, producing several versions
of the problem that are handed over to the ATP systems in parallel. The current
implementation uses four different premise selections: (i) using the full library, (ii)
using only premises from the articles imported by the current one, (iii) using only
premises from the current article, and (iv) using only the premises explicitly given
by the user for the problem. As noted above, the current choice is to use only
Vampire/SInE, and parallelize with respect to the different premise selections.
This is rather accidental: arbitrary (parallel) combinations of ATP systems and
premise selection methods are possible, and limited only by the time limit and the
number of free CPUs on the server.

As soon as a proof is found by at least one of the methods in the current pool,
the TPTP output is searched for the necessary axioms, and they are presented to
the user either in HTML or in Emacs (see below).

5 ATP-supported Authoring in Emacs

Even though MizAR is a web-based service in the spirit of SystemOnTPTP, this
does not mean that it requires a browser to use. The above mentioned whole-library

ATP and Presentation Service for Mizar Formalizations 5

solving functionality is available directly from the Emacs authoring environment
for Mizar [18], providing fast authoring support without any need for switching to
a browser. The implementation uses the Emacs Lisp url module and a http-post

request sent directly to the MizAR server. This communication channel also allows
other remote functions, in particular it is possible to call MizAR only for remote
(parallelized) verification using the raw speed of the server.

A basic use of MizAR is illustrated by the following example. Inference steps
are presented to the Mizar-verifier by stating the goal followed by the keyword ‘by’
with a list of premises. For example,

A: x in L ...

...

D: {x} c= L by A, ZFMISC_1:37;

where the label ZFMISC 1:37 refers to a fact imported from MML.7 Finding the
necessary references requires detailed knowledge of MML, and in more complicated
cases it is a time-consuming process. With MizAR available, is is possible to try
find sufficient premises (like ZFMISC 1:37) by invoking the service with typing ‘by;’
after the goal for which assistance is desired. The query is posted to the MizAR

server while the Emacs buffer changes to

A: x in L ...
...

D: {x} c= L ; :: ATP asked ...

This communication is asynchronous, allowing multiple queries. The ATP answer
is provided within seconds, depending on preset time limits and the server’s load.
The premises used in the ATP solution are used to replace the original “by;’’ (or
a failure is reported). In this example the result is

A: x in L ...

...

D: {x} c= L by A,ENUMSET1:69,ZFMISC_1:37;

after which (still in Emacs) the standard Mizar utility relprem that detects unneces-
sary premises in an inference can be invoked. In this example relprem detects that
ENUMSET1:69 is unnecessary, and its removal yields the inference step that started
this example.

The above example is an inference step taken from a proof of a very simple
theorem in the SCMYCIEL article [15]

theorem Sub3:
for G being SimpleGraph, L being set, x being set

st x in L & x in Vertices G

holds x in Vertices (G SubgraphInducedBy L)

Proving the whole theorem is too hard for the ATP service at the moment, and
calling MizAR fails with the message: Sub3: ... Unsolved. As an alternative, the
following obvious intermediate proof steps can be tried.

7 See http://mizar.uwb.edu.pl/version/7.11.07_4.160.1126/html/zfmisc_1.html#T37

for the exact statement of ZFMISC 1:37 in MML version 7.11.07 4.160.1126 . For other
theorems cited in this paper, replace the article name and theorem number accordingly. For
definitions, replace ‘T’ by ‘D’.

6 Josef Urban et al.

proof

let G be SimpleGraph, L be set, x be set such that

A: x in L and

B: x in Vertices G;

C: {x} in G ;
D: {x} c= L ;

E: {x} in (G SubgraphInducedBy L) ;

thus x in Vertices (G SubgraphInducedBy L) ;

end;

None of the sentences labeled C, D, E or the proof conclusion are obvious to Mizar.
Again, ATP systems can be used by replacing semicolons with ‘by;’. The replies
from ATP come almost immediately, with the final result as follows.

C: {x} in G by B,SCMYCIEL:5;
D: {x} c= L by A,ENUMSET1:69,ZFMISC_1:37;

E: {x} in (G SubgraphInducedBy L) by C,D,BOOLE:7,SCMYCIEL:14;

thus x in Vertices (G SubgraphInducedBy L) by SCMYCIEL:func 5,E,BOOLE:7,SCMYCIEL:5;

Such replies from the ATP often need some post-editing to satisfy the Mizar

checker:

– Some references returned by the ATP service, like SCMYCIEL:func 5, mention
typing items, which are implicit8 to Mizar and cannot be explicitly referred to.

– Some references, like BOOLE:7, encode Mizar automations (called requirements),
i.e., theorems added automatically to proof search by Mizar. They typically do
not have to be used explicitly in Mizar because their automated use is switched
on by a global directive.

– Some references are spurious for theMizar verifier (caused by the non-minimized
ATP proof search) and they can be removed, e.g. ENUMSET1:69 above. Some
reference minimization can be done with the relprem utility.

– The article is named SCMYCIEL, and references to lemmas from this article use
this name. These references have to be renamed to the corresponding local
names.

Most of this post-editing can be automated. Note that studying the references
found by the ATP is instructive as the automated service sometimes (particularly
with a large library) finds solutions quite different from what the author had in
mind. After the post-editing, the final result accepted by the Mizar verifier is:

C: {x} in G by B,Vertices0;

D: {x} c= L by A,ZFMISC_1:37;

E: {x} in (G SubgraphInducedBy L) by C,D;

thus x in Vertices (G SubgraphInducedBy L) by E,Vertices0;

An initial evaluation of this authoring assistance is provided below, in Section 7.

6 Access from HTML

ATP and other services can be called from the MizAR web interface, which is
similar to that of SystemOnTPTP. The services can be invoked also from the HTML
presentation of the user’s article, created either through the web interface or by

8 The rich Mizar type system becomes explicit when translated to untyped first-order logic.

ATP and Presentation Service for Mizar Formalizations 7

launching a web browser directly from Emacs. The HTML presentation contains
links to the ATP services that are associated with the Mizar keywords ‘by’ and
‘from’, indicating logical justification in Mizar. Consider for example, the Mizar

justification

hence (f is one-to-one & proj1 f = X & proj2 f = A)

by A1, A2, WELLORD1:def 7, WELLORD2:16, WELLORD2:def 1;

in the last line of the proof of theorem Th4 in the CARD 1 article. Such justifications
may involve many implicit Mizar facts and mechanisms that make the raw Mizar

text hard to understand. The process of translation to TPTP reveals all this
implicit information and the ATP proofs can show explicitly how this information
is used. For the Mizar justification above, clicking on the ‘by’ keyword calls the
default ATP system on the corresponding ATP problem. If a proof is found, the
interface is refreshed with an explanation box that includes a list of the references
used in the proof. In this case the references shown to the user are

dt_c2_6__mtest_1, dt_k2_wellord1, dt_k1_wellord2, dt_c5_6__mtest_1,

e7_6__mtest_1, e2_6__mtest_1, t16_wellord2, d1_wellord2, e8_6__mtest_1,

e6_6__mtest_1, d7_wellord1,

These references are reported using the MPTP syntax and are linked dynamically
to the corresponding places in the article’s HTML or in the HTML-izedMML. Note
that the ATP proof reports more references than in the original Mizar inference.
The extra references are mainly typing statements used implicitly by Mizar.

A byproduct of this ATP explanation feature is the cross-verification of Mizar

atomic inferences. With a recent version of MPTP and the strong ATP sys-
tems available at the time, over 99% of Mizar atomic inferences could be cross-
verified [23]. Such functionality is valuable as a debugging tool forMizar developers,
and also for the developers of the MPTP translation layer.

Another interactive mode of use is for generating problems and finding proofs
that are too hard for the Mizar checker, and experimenting with the ATP strength
in the mathematician-oriented Mizar language instead of having to encode the
problems directly in the low-level TPTP language. Users can do this within MizAR

by providing a set of premises on the right-hand side of the ‘by’ keyword and letting
ATP systems try to find a proof. If the default ATP systems are not successful,
the user can use the links and icons in the explanation box to inspect the ATP
problem, and launch the SystemOnTPTP interface to try the ATP systems available
there. In a similar way, one can use ATP systems and model finders for detecting
countersatisfiability of Mizar-formulated problems.

It is hard to enumerate all the ITP-ATP use-cases that are possible through
MizAR. For instance, the user might prefer to use a SAT solver (for attacking propo-
sitional problems), instantiation-based systems like iProver (strong in effectively
propositional problems), or to experiment with SMT solvers. A reliable ITP-to-
ATP translation saves the developers of ITPs a large amount of work by allowing
them to be always on top of the state-of-the-art in ATP research. Similarly, a link
from the ITP user interface to an ATP user interface saves the developers of ITP
user interfaces (in this case the first author) years of work done by the developers
of ATP user interfaces. While a basic direct implementation makes sense in both of
these cases, fully reimplementing every new ATP method (or user interface to it)
inside ITPs and their interfaces can hardly catch up with the rapid development
of ATP systems and their interfaces.

8 Josef Urban et al.

A special kind of service that is particular to ITPs with large libraries is premise
selection based on (possibly expensive) AI-based preprocessing of the libraries. If
no ATP system can find a proof for a MizAR-generated ATP problem, finding
relevant premises from MML can help. When ATP fails to find a proof, the ‘Suggest
hints’ link can be used to ask MizAR to suggest a set of potential premises. This
invokes a Bayesian advisor that has been trained on the whole MML (i.e., on all of
the proofs in it). See [24,2] for the details of how such machine learning is organized
in the context of a large deductive repository like MML, and for detailed statistics
on how it improves existing premise selection methods. This service is very fast,
taking typically less than a second. The hints are again HTML-ized and inserted
into an explanation box, as shown in Figure 1. A similar hint function is accessible
also from the Emacs mode.

Fig. 1 Explanation box offering hints

7 Initial evaluation of the ATP-supported authoring

In January 2011 the second author was developing a new formalization of simple
graphs as 1-dimensional simplicial complexes. The goal of the article was to de-
velop enough theory to prove the construction of the Mycielskian of a graph. This
construction was used by Mycielski [12] to prove existence of triangle-free graphs
with arbitrarily large chromatic number.

7.1 Axiom debugging

The MizAR service was used on a Mizar article that was in an early stage of
development, such that even the formalization of basic definitions was still not
ironed out. Only very basic notions of set theory are used in the article: empty
set, singleton, ordered and unordered pairs, union of a family of sets, subset, finite
set, cardinality of a finite set, partition of a set, Cartesian product, basic properties

ATP and Presentation Service for Mizar Formalizations 9

of relations and functions, and not much more. It was of interest to see how the
MizAR service performs under such conditions, since the Mizar library contains
thousands of facts using only these basic notions.

An initial surprise came when the ATP was able to prove almost anything. It
turned out that the following statement:

theorem SG1:

for G being SimpleGraph holds {} in G @proof end;

was to blame.9 While developing a new formalization we frequently state similar,
simple facts in a top-down manner, and leave them unproven while focusing on
more interesting pieces. We had carelessly stated that {} is in every simple graph,
even in an empty graph. With an easy contradiction derivable from the axioms, a
(refutational) ATP can justify anything. After correcting this to:

theorem SG1:

for G being non empty SimpleGraph holds {} in G @proof end;

the ATP was still surprisingly successful. A similar unproven statement

theorem SG0:

for G being SimpleGraph holds G = { {} } \/ Vertices G \/ Edges G @proof end;

turns out to be false, as it fails when G is empty. The presence of this unproven
fact allowed the ATP to prove many other facts in a rather unexpected way. This
was again corrected by requiring G in SG0 to be nonempty and later led us to revise
the definition of SimpleGraph. Thus, the ATP helped to straighten out the basic
definitions before we did more proofs that we deemed interesting, but which would
have been based on unproven, contradictory lemmas about empty graphs.

7.2 Deciphering ATP proofs

There are times when ATP manages to find a proof for a fact that is worth includ-
ing in the MML as an exportable (reusable) item. Such items are marked theorem

in Mizar. Here is an example

theorem Aux1a:

for x, X being set holds not [x,X] in X

for which the ATP returns the following list of premises:

by ENUMSET1:69,ZFMISC_1:12,ZFMISC_1:38,TARSKI:def 5,ORDINAL1:3;

Even though this is very far from deep ATP proofs, the example shows that
it may be a bit of a challenge to convert the resolution proof found by ATP into
a sequence of inference steps that are understandable to humans and acceptable
by the Mizar verifier. After examining the ATP proof we constructed a detailed
justification by hand, using the proof construct.

theorem Aux1a:

for x, X being set holds not [x,X] in X
proof

let x, X be set such that

A: [x,X] in X;

B: [x,X] = { {x,X}, {x} } by TARSKI:def 5;

C: {x,X} in { {x,X}, {x} } by ZFMISC_1:38;
D: X in {x,X} by ZFMISC_1:38;

thus contradiction by A, B, C, D, ORDINAL1:3;

end;

9 The @proof syntax tells Mizar to skip checking of such proof block.

10 Josef Urban et al.

Later a more natural proof of this little fact was found, directly using the
definition of an unordered pair. Directing the ATP to use premises prefered by the
user would be an interesting future research.

7.3 Overall ATP efficiency and experience

Of the few hundred non-trivial inferences that were tried in the SCMYCIEL article,
ATP managed to solve around 40%, which, is surprisingly close to the success
rate of Sledgehammer on non-trivial goals [13]. On the other hand, ATP can re-
prove 86% of the inferences if it is told which premises were used by humans.
This means that more precise narrowing of potential premises is a vital issue for
the ATP service, which could particularly benefit from learning from the large
number of previous proofs [2]. As mentioned in Section 6, an earlier experiment
using several ATP systems has shown that with smarter premise selection more
than 99% of atomic inferences can be re-proved [23].10 The interactive ATP service
helped in several ways:

– ATP managed to directly prove some lemmas that require a structured proof
for the Mizar verifier. This is not a big surprise, as the Mizar verifier uses only
pattern matching and very limited resolution. The feedback from the ATP
system was quite helpful, as it is much easier to write a detailed proof when
one knows the facts that suffice for the proof.

– ATP turned out to be a search tool in a rather unexpected way. More than
once the ATP system indicated that a local lemma had been formed, from
which the given formula followed in one step, while we were about to write
several inference steps.

– ATP systems found proofs quite different from what the user had in mind.
Sometimes it found large sets of premises when some small collection of premises
sufficed. The converse also happened.

– When the ATP system finds a proof, it returns all Mizar items that it used. The
feedback also includes those Mizar items that are tacitly processed by the veri-
fier, and they cannot be referenced in a Mizar text. This feedback information
led us to a better understanding of the task at hand.

8 Conclusions, Related and Future Work

The MizAR service allows authors to use a number of auxiliary tools on Mizar ar-
ticles. The use-cases range from using HTMLization to disambiguate complicated
Mizar texts, using ATP systems to find new proofs, explaining Mizar inferences,
and finding counterexamples, to using AI-based techniques for proof advice. The
system features both a web and an Emacs interface, allowing flexible switching
between reading and exploration mode and authoring mode.

Related work goes back at least to Dahn’s [4] work in 90’s on ILF and its Mizar-
to-ATP bridge, Harrison’s and Hurd’s work on Meson [7] and Metis [9] used in
HOL (Light), and the recent work by Paulson et al. [13] on linking Isabelle/HOL

10 Precisely, 99.8% atomic inferences (6751 out of 6765) were re-proved automatically. The
14 remaining problems were also proved by ATPs after manual premise selection.

ATP and Presentation Service for Mizar Formalizations 11

with ATP systems. A detailed comparison of systems bridging ITP with ATP
systems is beyond the scope of this paper.

There are many directions for future work in this setting, some of them men-
tioned above. Several versions of the MML are now present on the servers in text,
HTML, MPTP, and TPTP formats, but are not directly editable by the users.
Giving the user the ability to edit the supporting MML leads in the direction of
formal mathematical wikis, with all the interesting persistence, versioning, link-
ing, user-authentication, and dependency problems to solve. Merging the current
Mizar wiki development with the services presented here is obvious future work.
This should form a rich collaborative platform for formal mathematics, with a
large number of services providing strong automated support, and exposing the
functionalities that make formal mathematics so interesting. We foresee a large
amount of work on making the system stronger, more attractive and responsive.

– We would like to speed up all MizAR services through more parallel processing
once the necessary hardware is available.

– There seems to be no end to improving techniques for hint selection in large
libraries. We consider such techniques crucial to the success of bridging ITP
and ATP systems.

– There is an urgent need for converting the very verbose (typically refutational)
proofs found by ATP systems into structured and simple to check proofs.11

As ATP systems are getting stronger and more useful for finding proofs, this
problem is becoming more pressing.

Our initial experience with the interactive ATP service for Mizar authors is
encouraging. Despite very large library context, we get decent automated help
both in finding justification for proof steps, as well as in ‘debugging’ the conceptual
framework of a new formalization.

References

1. Grabowski A., Kornilowicz A., and Naumowicz A. Mizar in a Nutshell. Journal of For-
malized Reasoning, 3(2):153–245, 2010.

2. J. Alama, D. Kühlwein, E. Tsivtsivadze, J. Urban, and T. Heskes. Premise Selection for
Mathematics by Corpus Analysis and Kernel Methods. ArXiv e-prints, August 2011.

3. G. Bancerek. The Ordinal Numbers. Journal of Formalized Mathematics, 1(1):91–96,
1990.

4. Ingo Dahn and Christoph Wernhard. First-order Proof Problems Extracted from an Article
in the MIZAR Mathematical Library. In M.P. Bonacina and U. Furbach, editors, Int.
Workshop on First-Order Theorem Proving (FTP’97), pages 58–62, 1997.

5. T. Hales. A Proof of the Kepler Conjecture. Annals of Mathematics, 162(3):1065–1185,
2005.

6. T. Hales, editor. A Special Issue on Formal Proof of Notices of the AMS, volume 55(11).
American Mathematical Society, 2008.

7. J. Harrison. Optimizing Proof Search in Model Elimination. In M. McRobbie and J.K.
Slaney, editors, Proceedings of the 13th International Conference on Automated Deduc-
tion, number 1104 in Lecture Notes in Artificial Intelligence, pages 313–327. Springer-
Verlag, 1996.

11 We consider it a good feature that Mizar does not allow complicated, fragile, and slow proof
finding procedures as a part of the core proof checking. The twenty years of experience with
daily large-scale theory refactoring of MML has taught the Mizar community that such fragility
and slowness should be avoided. We strongly believe that the way from automatically found
proofs to proofs in the MML leads through suitable semi-automated refactoring into structured
proofs which are perceived as obvious by humans. A related recent effort is described in [25].

12 Josef Urban et al.

8. K. Hoder and A. Voronkov. Sine Qua Non for Large Theory Reasoning. In V. Sofronie-
Stokkermans and N. Bjœrner, editors, Proceedings of the 23rd International Conference
on Automated Deduction, number 6803 in Lecture Notes in Artificial Intelligence, pages
299–314. Springer-Verlag, 2011.

9. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer,
Ben Di Vito, and César Muñoz, editors, Design and Application of Strategies/Tactics in
Higher Order Logics (STRATA 2003), number NASA/CP-2003-212448 in NASA Techni-
cal Reports, pages 56–68, September 2003.

10. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In T. Anderson, editor, Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, pages 207–220. ACM Press, 2009.

11. Jia Meng and Lawrence C. Paulson. Lightweight Relevance Filtering for Machine-
generated Resolution Problems. Journal of Applied Logic, 7(1):41–57, 2009.

12. Jan Mycielski. Sur le coloriage des graphes. Colloquium Mathematicum, 3:161–162, 1955.
13. Lawrence C. Paulson and Jasmin C. Blanchette. Three Years of Experience with Sledge-

hammer, a Practical Link between Automated and Interactive Theorem Provers. In 8th
IWIL, 2010. Invited talk.

14. A. Pease and G. Sutcliffe. First Order Reasoning on a Large Ontology. In J. Urban,
G. Sutcliffe, and S. Schulz, editors, Proceedings of the CADE-21 Workshop on Empiri-
cally Successful Automated Reasoning in Large Theories, number 257 in CEUR Workshop
Proceedings, pages 59–69, 2007.

15. Piotr Rudnicki and Lorna Stewart. Simple graphs as simplicial complexes: the Mycielskian
of a graph. Formalized Mathematics, 20(2):169–183, 2012.

16. G. Sutcliffe. SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th Interna-
tional Conference on Automated Deduction, number 1831 in Lecture Notes in Artificial
Intelligence, pages 406–410. Springer-Verlag, 2000.

17. J. Urban. XML-izing Mizar: Making Semantic Processing and Presentaion of MML Easy.
In M. Kohlhase, editor, Proceedings of the 4th International Conference on Mathematical
Knowledge Management, number 3863 in Lecture Notes in Computer Science, pages 346–
360, 2005.

18. J. Urban. MizarMode - An Integrated Proof Assistance Tool for the Mizar Way of For-
malizing Mathematics. Journal of Applied Logic, 4(4):414–427, 2006.

19. Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. Journal of
Automated Reasoning, 37(1-2):21–43, 2006.

20. Josef Urban. Parallelizing Mizar. CoRR, abs/1206.0141, 2012.
21. Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A Wiki for Mizar:

Motivation, Considerations, and Initial Prototype. In AISC/MKM/Calculemus, volume
6167 of LNCS, pages 455–469, 2010.

22. Josef Urban, Kryštof Hoder, and Andrei Voronkov. Evaluation of automated theorem
proving on the Mizar mathematical library. In ICMS, volume 6327 of LNCS, pages 155–
166, 2010.

23. Josef Urban and Geoff Sutcliffe. ATP-based cross-verification of Mizar proofs: Method,
systems, and first experiments. Mathematics in Computer Science, 2(2):231–251, 2008.

24. Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiŕı Vyskocil. MaLARea SG1- machine
learner for automated reasoning with semantic guidance. In IJCAR, volume 5195 of
LNCS, pages 441–456, 2008.

25. Jiŕı Vyskocil, David Stanovský, and Josef Urban. Automated proof compression by in-
vention of new definitions. In Edmund M. Clarke and Andrei Voronkov, editors, LPAR
(Dakar), volume 6355 of Lecture Notes in Computer Science, pages 447–462. Springer,
2010.

