32 research outputs found

    An Adaptive Approach for Planning in Dynamic Environments

    Get PDF
    Planning in a dynamic environment is a complex task that requires several issues to be investigated in order to manage the associated search complexity. In this paper, an adaptive behavior that integrates planning with learning is presented. The former is performed adopting a hierarchical approach, interleaved with execution. The latter, devised to identify new abstract operators, adopts a chunking technique on successful plans. Integration between planning and learning is also promoted by an agent architecture explicitly designed for supporting abstraction

    FLECS: Planning with a Flexible Commitment Strategy

    Full text link
    There has been evidence that least-commitment planners can efficiently handle planning problems that involve difficult goal interactions. This evidence has led to the common belief that delayed-commitment is the "best" possible planning strategy. However, we recently found evidence that eager-commitment planners can handle a variety of planning problems more efficiently, in particular those with difficult operator choices. Resigned to the futility of trying to find a universally successful planning strategy, we devised a planner that can be used to study which domains and problems are best for which planning strategies. In this article we introduce this new planning algorithm, FLECS, which uses a FLExible Commitment Strategy with respect to plan-step orderings. It is able to use any strategy from delayed-commitment to eager-commitment. The combination of delayed and eager operator-ordering commitments allows FLECS to take advantage of the benefits of explicitly using a simulated execution state and reasoning about planning constraints. FLECS can vary its commitment strategy across different problems and domains, and also during the course of a single planning problem. FLECS represents a novel contribution to planning in that it explicitly provides the choice of which commitment strategy to use while planning. FLECS provides a framework to investigate the mapping from planning domains and problems to efficient planning strategies.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Efficient Open World Reasoning for Planning

    Full text link
    We consider the problem of reasoning and planning with incomplete knowledge and deterministic actions. We introduce a knowledge representation scheme called PSIPLAN that can effectively represent incompleteness of an agent's knowledge while allowing for sound, complete and tractable entailment in domains where the set of all objects is either unknown or infinite. We present a procedure for state update resulting from taking an action in PSIPLAN that is correct, complete and has only polynomial complexity. State update is performed without considering the set of all possible worlds corresponding to the knowledge state. As a result, planning with PSIPLAN is done without direct manipulation of possible worlds. PSIPLAN representation underlies the PSIPOP planning algorithm that handles quantified goals with or without exceptions that no other domain independent planner has been shown to achieve. PSIPLAN has been implemented in Common Lisp and used in an application on planning in a collaborative interface.Comment: 39 pages, 13 figures. to appear in Logical Methods in Computer Scienc

    2Planning for Contingencies: A Decision-based Approach

    Full text link
    A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.Comment: See http://www.jair.org/ for any accompanying file

    An Abstract Framework for Non-Cooperative Multi-Agent Planning

    Full text link
    [EN] In non-cooperative multi-agent planning environments, it is essential to have a system that enables the agents¿ strategic behavior. It is also important to consider all planning phases, i.e., goal allocation, strategic planning, and plan execution, in order to solve a complete problem. Currently, we have no evidence of the existence of any framework that brings together all these phases for non-cooperative multi-agent planning environments. In this work, an exhaustive study is made to identify existing approaches for the different phases as well as frameworks and different applicable techniques in each phase. Thus, an abstract framework that covers all the necessary phases to solve these types of problems is proposed. In addition, we provide a concrete instantiation of the abstract framework using different techniques to promote all the advantages that the framework can offer. A case study is also carried out to show an illustrative example of how to solve a non-cooperative multi-agent planning problem with the presented framework. This work aims to establish a base on which to implement all the necessary phases using the appropriate technologies in each of them and to solve complex problems in different domains of application for non-cooperative multi-agent planning settings.This work was partially funded by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish government. Jaume Jordan and Vicent Botti are funded by Universitat Politecnica de Valencia (UPV) PAID-06-18 project. Jaume Jordan is also funded by grant APOSTD/2018/010 of Generalitat Valenciana Fondo Social Europeo.Jordán, J.; Bajo, J.; Botti, V.; Julian Inglada, VJ. (2019). An Abstract Framework for Non-Cooperative Multi-Agent Planning. Applied Sciences. 9(23):1-18. https://doi.org/10.3390/app9235180S118923De Weerdt, M., & Clement, B. (2009). Introduction to planning in multiagent systems. Multiagent and Grid Systems, 5(4), 345-355. doi:10.3233/mgs-2009-0133Dunne, P. E., Kraus, S., Manisterski, E., & Wooldridge, M. (2010). Solving coalitional resource games. Artificial Intelligence, 174(1), 20-50. doi:10.1016/j.artint.2009.09.005Torreño, A., Onaindia, E., Komenda, A., & Štolba, M. (2018). Cooperative Multi-Agent Planning. ACM Computing Surveys, 50(6), 1-32. doi:10.1145/3128584Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(3-4), 189-208. doi:10.1016/0004-3702(71)90010-5Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research, 14, 253-302. doi:10.1613/jair.855Dukeman, A., & Adams, J. A. (2017). Hybrid mission planning with coalition formation. Autonomous Agents and Multi-Agent Systems, 31(6), 1424-1466. doi:10.1007/s10458-017-9367-7Hadad, M., Kraus, S., Ben-Arroyo Hartman, I., & Rosenfeld, A. (2013). Group planning with time constraints. Annals of Mathematics and Artificial Intelligence, 69(3), 243-291. doi:10.1007/s10472-013-9363-9Guo, Y., Pan, Q., Sun, Q., Zhao, C., Wang, D., & Feng, M. (2019). Cooperative Game-based Multi-Agent Path Planning with Obstacle Avoidance*. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). doi:10.1109/isie.2019.8781205v. Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100(1), 295-320. doi:10.1007/bf01448847Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game. Games and Economic Behavior, 7(1), 62-91. doi:10.1006/game.1994.1037Ochs, J. (1995). Games with Unique, Mixed Strategy Equilibria: An Experimental Study. Games and Economic Behavior, 10(1), 202-217. doi:10.1006/game.1995.1030Applegate, C., Elsaesser, C., & Sanborn, J. (1990). An architecture for adversarial planning. IEEE Transactions on Systems, Man, and Cybernetics, 20(1), 186-194. doi:10.1109/21.47820Sailer, F., Buro, M., & Lanctot, M. (2007). Adversarial Planning Through Strategy Simulation. 2007 IEEE Symposium on Computational Intelligence and Games. doi:10.1109/cig.2007.368082Willmott, S., Richardson, J., Bundy, A., & Levine, J. (2001). Applying adversarial planning techniques to Go. Theoretical Computer Science, 252(1-2), 45-82. doi:10.1016/s0304-3975(00)00076-1Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research, 20, 379-404. doi:10.1613/jair.1141Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial Intelligence, 6(4), 293-326. doi:10.1016/0004-3702(75)90019-3Vickrey, W. (1961). COUNTERSPECULATION, AUCTIONS, AND COMPETITIVE SEALED TENDERS. The Journal of Finance, 16(1), 8-37. doi:10.1111/j.1540-6261.1961.tb02789.xClarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1), 17-33. doi:10.1007/bf01726210Groves, T. (1973). Incentives in Teams. Econometrica, 41(4), 617. doi:10.2307/1914085Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., … Silaghi, M. (2016). DisCSPs with Privacy Recast as Planning Problems for Self-Interested Agents. 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI). doi:10.1109/wi.2016.0057Buzing, P., Mors, A. ter, Valk, J., & Witteveen, C. (2006). Coordinating Self-interested Planning Agents. Autonomous Agents and Multi-Agent Systems, 12(2), 199-218. doi:10.1007/s10458-005-6104-4Ter Mors, A., & Witteveen, C. (s. f.). Coordinating Non Cooperative Planning Agents: Complexity Results. IEEE/WIC/ACM International Conference on Intelligent Agent Technology. doi:10.1109/iat.2005.60Hrnčíř, J., Rovatsos, M., & Jakob, M. (2015). Ridesharing on Timetabled Transport Services: A Multiagent Planning Approach. Journal of Intelligent Transportation Systems, 19(1), 89-105. doi:10.1080/15472450.2014.941759Galuszka, A., & Swierniak, A. (2009). Planning in Multi-agent Environment Using Strips Representation and Non-cooperative Equilibrium Strategy. Journal of Intelligent and Robotic Systems, 58(3-4), 239-251. doi:10.1007/s10846-009-9364-4Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2(1), 65-67. doi:10.1007/bf01737559Jordán, J., Torreño, A., de Weerdt, M., & Onaindia, E. (2017). A better-response strategy for self-interested planning agents. Applied Intelligence, 48(4), 1020-1040. doi:10.1007/s10489-017-1046-5Veloso, M., Muñoz-Avila, H., & Bergmann, R. (1996). Case-based planning: selected methods and systems. AI Communications, 9(3), 128-137. doi:10.3233/aic-1996-9305VOORNEVELD, M., BORM, P., VAN MEGEN, F., TIJS, S., & FACCHINI, G. (1999). CONGESTION GAMES AND POTENTIALS RECONSIDERED. International Game Theory Review, 01(03n04), 283-299. doi:10.1142/s0219198999000219Han-Lim Choi, Brunet, L., & How, J. P. (2009). Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Transactions on Robotics, 25(4), 912-926. doi:10.1109/tro.2009.2022423Monderer, D., & Shapley, L. S. (1996). Potential Games. Games and Economic Behavior, 14(1), 124-143. doi:10.1006/game.1996.0044Friedman, J. W., & Mezzetti, C. (2001). Learning in Games by Random Sampling. Journal of Economic Theory, 98(1), 55-84. doi:10.1006/jeth.2000.2694Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1), 39-59. doi:10.3233/aic-1994-7104Bertsekas, D. P. (1988). The auction algorithm: A distributed relaxation method for the assignment problem. Annals of Operations Research, 14(1), 105-123. doi:10.1007/bf02186476Bertsekas, D. P., & Castanon, D. A. (1989). The auction algorithm for the transportation problem. Annals of Operations Research, 20(1), 67-96. doi:10.1007/bf0221692

    I-Rescue: A Coalition Based System to Support Disaster Relief Operations

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.I-Rescue is a research programme that aims to develop knowledge-based tools for disaster relief domains. One important aspect of the I-Rescue development is to highlight the requirements regarding the collaborative activities of planning and execution, considering a hierarchical structure of decision-making and a mixed initiative style of interaction between users and systems. This paper discusses the design and implementation of I-Rescue and its use in a search and rescue domain where joint users, assisted by customised agents, are able to perform complementary tasks

    A BDI agent programming language with failure handling, declarative goals, and planning

    Get PDF
    Agents are an important technology that have the potential to take over contemporary methods for analysing, designing, and implementing complex software. The Belief- Desire-Intention (BDI) agent paradigm has proven to be one of the major approaches to intelligent agent systems, both in academia and in industry. Typical BDI agent-oriented programming languages rely on user-provided ''plan libraries'' to achieve goals, and online context sensitive subgoal selection and expansion. These allow for the development of systems that are extremely flexible and responsive to the environment, and as a result, well suited for complex applications with (soft) real-time reasoning and control requirements. Nonetheless, complex decision making that goes beyond, but is compatible with, run-time context-dependent plan selection is one of the most natural and important next steps within this technology. In this paper we develop a typical BDI-style agent-oriented programming language that enhances usual BDI programming style with three distinguished features: declarative goals, look-ahead planning, and failure handling. First, an account that mixes both procedural and declarative aspects of goals is necessary in order to reason about important properties of goals and to decouple plans from what these plans are meant to achieve. Second, lookahead deliberation about the effects of one choice of expansion over another is clearly desirable or even mandatory in many circumstances so as to guarantee goal achievability and to avoid undesired situations. Finally, a failure handling mechanism, suitably integrated with both declarative goals and planning, is required in order to model an adequate level of commitment to goals, as well as to be consistent with most real BDI implemented systems
    corecore