1,051 research outputs found

    Temporal Information Models for Real-Time Microblog Search

    Get PDF
    Real-time search in Twitter and other social media services is often biased towards the most recent results due to the “in the moment” nature of topic trends and their ephemeral relevance to users and media in general. However, “in the moment”, it is often difficult to look at all emerging topics and single-out the important ones from the rest of the social media chatter. This thesis proposes to leverage on external sources to estimate the duration and burstiness of live Twitter topics. It extends preliminary research where itwas shown that temporal re-ranking using external sources could indeed improve the accuracy of results. To further explore this topic we pursued three significant novel approaches: (1) multi-source information analysis that explores behavioral dynamics of users, such as Wikipedia live edits and page view streams, to detect topic trends and estimate the topic interest over time; (2) efficient methods for federated query expansion towards the improvement of query meaning; and (3) exploiting multiple sources towards the detection of temporal query intent. It differs from past approaches in the sense that it will work over real-time queries, leveraging on live user-generated content. This approach contrasts with previous methods that require an offline preprocessing step

    Temporal Context Modeling for Text Streams

    Get PDF
    There is increasing recognition that time plays an essential role in many information seeking tasks. This dissertation explores temporal models on evolving streams of text and the role that such models play in improving information access. I consider two cases: a stream of social media posts by many users for tweet search and a stream of queries by an individual user for voice search. My work explores the relationship between temporal models and context models: for tweet search, the evolution of an event serves as the context of clustering relevant tweets; for voice search, the user's history of queries provides the context for helping understand her true information need. First, I tackle the tweet search problem by modeling the temporal contexts of the underlying collection. The intuition is that an information need in Twitter usually correlates with a breaking news event, thus tweets posted during that event are more likely to be relevant. I explore techniques to model two different types of temporal signals: pseudo trend and query trend. The pseudo trend is estimated through the distribution of timestamps from an initial list of retrieved documents given a query, which I model through continuous hidden Markov approach as well as neural network-based methods for relevance ranking and sequence modeling. As an alternative, the query trend, is directly estimated from the temporal statistics of query terms, obviating the need for an initial retrieval. I propose two different approaches to exploit query trends: a linear feature-based ranking model and a regression-based model that recover the distribution of relevant documents directly from query trends. Extensive experiments on standard Twitter collections demonstrate the superior effectivenesses of my proposed techniques. Second, I introduce the novel problem of voice search on an entertainment platform, where users interact with a voice-enabled remote controller through voice requests to search for TV programs. Such queries range from specific program navigation (i.e., watch a movie) to requests with vague intents and even queries that have nothing to do with watching TV. I present successively richer neural network architectures to tackle this challenge based on two key insights: The first is that session context can be exploited to disambiguate queries and recover from ASR errors, which I operationalize with hierarchical recurrent neural networks. The second insight is that query understanding requires evidence integration across multiple related tasks, which I identify as program prediction, intent classification, and query tagging. I present a novel multi-task neural architecture that jointly learns to accomplish all three tasks. The first model, already deployed in production, serves millions of queries daily with an improved customer experience. The multi-task learning model is evaluated on carefully-controlled laboratory experiments, which demonstrates further gains in effectiveness and increased system capabilities. This work now serves as the core technology in Comcast Xfinity X1 entertainment platform, which won an Emmy award in 2017 for the technical contribution in advancing television technologies. This dissertation presents families of techniques for modeling temporal information as contexts to assist applications with streaming inputs, such as tweet search and voice search. My models not only establish the state-of-the-art effectivenesses on many related tasks, but also reveal insights of how various temporal patterns could impact real information-seeking processes

    Time-Aware Evidence Ranking for Fact-Checking

    Full text link
    Truth can vary over time. Fact-checking decisions on claim veracity should therefore take into account temporal information of both the claim and supporting or refuting evidence. In this work, we investigate the hypothesis that the timestamp of a Web page is crucial to how it should be ranked for a given claim. We delineate four temporal ranking methods that constrain evidence ranking differently and simulate hypothesis-specific evidence rankings given the evidence timestamps as gold standard. Evidence ranking in three fact-checking models is ultimately optimized using a learning-to-rank loss function. Our study reveals that time-aware evidence ranking not only surpasses relevance assumptions based purely on semantic similarity or position in a search results list, but also improves veracity predictions of time-sensitive claims in particular.Comment: 16 pages, accepted for publication in Journal of Web Semantics - Special Issue on Content Credibilit

    A history and theory of textual event detection and recognition

    Get PDF
    • …
    corecore