11 research outputs found

    Mobile Robot Range Sensing through Visual Looming

    Full text link
    This article describes and evaluates visual looming as a monocular range sensing method for mobile robots. The looming algorithm is based on the relationship between the displacement of a camera relative to an object, and the resulting change in the size of the object's image on the focal plane of the camera. We have carried out systematic experiments to evaluate the ranging accuracy of the looming algorithm using a Pioneer I mobile robot equipped with a color camera. We have also performed noise sensitivity for the looming algorithm, obtaining theoretical error bounds on the range estimates for given levels of odometric and visual noise, which were verified through experimental data. Our results suggest that looming can be used as a robust, inexpensive range sensor as a complement to sonar.Defense Advanced Research Projects Agency; Office of Naval Research; Navy Research Laboratory (00014-96-1-0772, 00014-95-1-0409

    Mobile Robot Range Sensing through Visual Looming

    Get PDF
    This article describes and evaluates visual looming as a monocular range sensing method for mobile robots. The looming algorithm is based on the relationship between the displacement of a camera relative to an object, and the resulting change in the size of the object's image on the focal plane of the camera. We have carried out systematic experiments to evaluate the ranging accuracy of the looming algorithm using a Pioneer I mobile robot equipped with a color camera. We have also performed noise sensitivity for the looming algorithm, obtaining theoretical error bounds on the range estimates for given levels of odometric and visual noise, which were verified through experimental data. Our results suggest that looming can be used as a robust, inexpensive range sensor as a complement to sonar.Defense Advanced Research Projects Agency; Office of Naval Research; Navy Research Laboratory (00014-96-1-0772, 00014-95-1-0409

    Mobile robot range sensing through visual looming

    Get PDF
    This article describes and evaluates visual looming as a monocular range sensing method for mobile robots. The looming algorithm is based on the relationship between the displacement of a camera relative to an object, and the resulting change in the size of the object's image on the focal plane of the camera. We have carried out systematic experiments to evaluate the ranging accuracy of the looming algorithm using a Pioneer 1 mobile robot equipped with a color camera. We have also performed noise sensitivity for the looming algorithm, obtaining theoretical error bounds on the range estimates for given levels of odometric and visual noise, which were verified through experimental data. Our results suggest that looming can be used as a robust, inexpensive range sensor as a complement to sonar

    Multi Robot Intruder Search

    Get PDF
    The aim of this work is the development and analysis of methods and algorithms to allow a multi robot system to cooperatively search a closed, 2-dimensional environment for a human intruder. The underlying problem corresponds to the game-theoretic concept of a classical pursuit evasion game, whereas the focus is set to the generation of plans for the group of pursuers. While the main aspect of of this work lies in the field of probabilistic robotics, concepts and ideas are incorporated from differential game theory, algorithmic geometry and graph theory. The probabilistic basis allows the integration of sensor error as well as nondeterministic robot motion. The main contributions of this work can be divided into three major parts: The first part deals with the development and implementation of probabilistic human models. Depending on the specific behavior of an intruder, ranging from uncooperative to unaware, different classes of intruders are identified. Models are proposed for two of these classes. For the case of a clever and uncooperative intruder who actively evades detection, we propose a model based on the concept of contamination. The second class corresponds to a person who is unaware of the pursuit. We show that simple Markov models, which are often proposed in literature, are not suited for modeling realistic human motion and develop advanced Markov models, which conform to random waypoint motion models. The second part, which is also the most extensive part of this work, deals with the problem of finding an uncooperative and clever intruder. A solution is presented, which projects the problem on a graph structure, which is then searched by a highly optimized A* planner. The solution for the corresponding graph problem is afterwards projected back to the original search space and can be executed by the robotic pursuers. By means of the models proposed in the first part, the performance and correctness of the method is shown. We present experiments in simulation as on real robots to show the practicability and efficiency of the method. The third part deals with the problem of finding an intruder who is unaware of the search. Based on the advanced Markov model previously discussed, a greedy algorithm is proposed, which aims at maximizing the probability to find the intruder in the near future. Experimental results for this method are shown and comparisons to simpler methods are given.Mehrroboter-Eindringlings-Suche Ziel dieser Arbeit ist die Entwicklung und Analyse von Methoden und Algorithmen, die einem kooperativen Mehrrobotersystem erlauben nach einem Eindringling in einer zweidimensionalen, geschlossenen Umgebung zu suchen. Das dem zugrunde liegende Problem entspricht dem spieltheoretischen Konzept eines Suche und Ausweichen Spieles (pursuit evasion game), wobei der Fokus auf der Generierung von Plänen für die Verfolger liegt. Der Hauptaspekt dieser Arbeit liegt dabei im Feld der probabilistischen Robotik, wobei Konzepte und Ideen aus dem Gebiet der differentiellen Spieltheorie, der algorithmischen Geometrie und der Graph Theorie verwendet werden. Die probabilistische Modellierung erlaubt dabei die Integration von Sensorfehlern wie auch nichtdeterministische Roboter-Bewegung. Die Arbeit gliedert sich in drei Hauptteile: Der erste Teil beschäftigt sich mit dem Entwurf und der Implementierung von probabilistischen Modellen für menschliche Bewegung. Abhängig vom angenommenen Verhalten eines Eindringlings, von aktiv ausweichend bis zu ignorant, werden verschiedene Klassen von menschlichem Verhalten unterschieden. Für zwei dieser Klassen stellen wir Modelle auf: Für den Fall einer intelligenten und aktiv ausweichenden Person, generieren wir ein Modell basierend auf dem Konzept von Kontamination. Das zweite Modell entspricht einem Eindringling, der sich der Suche nach ihm nicht bewusst ist. Wir zeigen, dass einfache Markov-Modelle, wie sie in der Vergangenheit oft vorgeschlagen worden sind, ungeeignet sind, um realistische Bewegung zu abzubilden und entwickeln entsprechend erweiterte Markov-Modelle für eine realistischere Modellierung. Der zweite Teil der Arbeit beschäftigt sich mit der Frage, wie man einen intelligente und aktiv ausweichenden Eindringling aufspüren kann. Die vorgestellte Lösung basiert auf der Projektion des Problems auf einen Graphen, der anschließend von einem hoch optimierten A*-Planungsalgorithmus durchsucht werden kann. Diese Lösung kann anschließend auf den ursprünglichen Raum rückprojeziert werden und kann als direkter Plan von den verfolgenden Robotern ausgeführt werden. Mittels der Modelle aus dem ersten Teil wird die Korrektheit und Effizienz der Lösung gezeigt. Der letzte Teil befasst sich mit der Frage, wie ein Eindringling gefunden werden kann, der sich neutral zur Suche verhält. Basierend auf den erweiterten Markov-Modellen aus dem ersten Teil, wird eine Lösung durch gierige Suche präsentiert, die die Wahrscheinlichkeit eine Person im nächsten Zeitschritt aufzuspüren, maximiert. Wie im zweiten Teil werden Experimente diskutiert und diese mit der Proformanz simplerer Methoden verglichen

    Multi-robot cooperative surveillance in unknown environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The exploration of unknown environments by affective agents

    Get PDF
    Tese de doutoramento em Engenharia Informática apresentada à Fac. de Ciências e Tecnologia de CoimbraIn this thesis, we study the problem of the exploration of unknown environments populated with entities by affective autonomous agents. The goal of these agents is twofold: (i) the acquisition of maps of the environment – metric maps – to be stored in memory, where the cells occupied by the entities that populate that environment are represented; (ii) the construction of models of those entities. We examine this problem through simulations because of the various advantages this approach offers, mainly efficiency, more control, and easy focus of the research. Furthermore, the simulation approach can be used because the simplifications that we made do not influence the value of the results. With this end, we have developed a framework to build multi-agent systems comprising affective agents and then, based on this platform, we developed an application for the exploration of unknown environments. This application is a simulated multi-agent environment in which, in addition to inanimate agents (objects), there are agents interacting in a simple way, whose goal is to explore the environment. By relying on an affective component plus ideas from the Belief-Desire-Intention model, our approach to building artificial agents is that of assigning agents mentalistic qualities such as feelings, basic desires, memory/beliefs, desires/goals, and intentions. The inclusion of affect in the agent architecture is supported by the psychological and neuroscience research over the past decades which suggests that emotions and, in general, motivations play a critical role in decision-making, action, and reasoning, by influencing a variety of cognitive processes (e.g., attention, perception, planning, etc.). Reflecting the primacy of those mentalistic qualities, the architecture of an agent includes the following modules: sensors, memory/beliefs (for entities - which comprises both analogical and propositional knowledge representations -, plans, and maps of the environment), desires/goals, intentions, basic desires (basic motivations/motives), feelings, and reasoning. The key components that determine the exhibition of the exploratory behaviour in an agent are the kind of basic desires, feelings, goals and plans with which the agent is equipped. Based on solid, psychological experimental evidence, an agent is equipped in advance with the basic desires for minimal hunger, maximal information gain (maximal reduction of curiosity), and maximal surprise, as well as with the correspondent feelings of hunger, curiosity and surprise. Each one of those basic desires drives the agent to reduce or to maximize a particular feeling. The desire for minimal hunger, maximal information gain and maximal surprise directs the agent, respectively, to reduce the feeling of hunger, to reduce the feeling of curiosity (by maximizing information gain) and to maximize the feeling of surprise. The desire to reduce curiosity does not mean that the agent dislike curiosity. Instead, it means the agent desires selecting actions whose execution maximizes the reduction of curiosity, i.e., actions that are preceded by maximal levels of curiosity and followed by minimal levels of curiosity, which corresponds to maximize information gain. The intensity of these feelings is, therefore, important to compute the degree of satisfaction of the basic desires. For the basic desires of minimal hunger and maximal surprise it is given by the expected intensities of the feelings of hunger and surprise, respectively, after performing an action, while for the desire of maximal information gain it is given by the intensity of the feeling of curiosity before performing the action (this is the expected information gain). The memory of an agent is setup with goals and decision-theoretic, hierarchical task-network plans for visiting entities that populate the environment, regions of the environment, and for going to places where the agent can recharge its battery. New goals are generated for each unvisited entity of the environment, for each place in the frontier of the explored area, and for recharging battery, by adapting past goals and plans to the current world state computed based on sensorial information and on the generation of expectations and assumptions for the gaps in the environment information provided by the sensors. These new goals and respective plans are then ranked according to their Expected Utility which reflects the positive and negative relevance for the basic desires of their accomplishment. The first one, i.e., the one with highest Expected Utility is taken as an intention. Besides evaluating the computational model of surprise, we experimentally investigated through simulations the following issues: the role of the exploration strategy (role of surprise, curiosity, and hunger), environment complexity, and amplitude of the visual field on the performance of the exploration of environments populated with entities; the role of the size or, to some extent, of the diversity of the memory of entities, and environment complexity on map-building by exploitation. The main results show that: the computational model of surprise is a satisfactory model of human surprise; the exploration of unknown environments populated with entities can be robustly and efficiently performed by affective agents (the strategies that rely on hunger combined or not with curiosity or surprise outperform significantly the others, being strong contenders to the classical strategy based on entropy and cost)

    Integrating Exploration and Localization for Mobile Robots

    No full text
    Exploration and localization are two of the capabilities necessary for mobile robots to navigate robustly in unknown environments. A robot needs to explore in order to learn the structure of the world, and a robot needs to know its own location in order to make use of its acquired spatial information. However, a problem arises with the integration of exploration and localization. A robot needs to know its own location in order to add new information to its map, but a robot may also need a map to determine its own location. We have addressed this problem with ARIEL, a mobile robot system that combines frontier-based exploration with continuous localization. ARIEL is capable of exploring and mapping an unknown environment while maintaining an accurate estimate of its position at all times. In this paper, we describe frontierbased exploration and continuous localization, and we explain how ARIEL integrates these techniques. Then we show results from experiments performed in the exploratio..

    Integrating Exploration and Localization for Mobile Robots

    No full text
    Exploration and localization are two of the capabilities necessary for mobile robots to navigate robustly in unknown environments. A robot needs to explore in order to learn the structure of the world, and a robot needs to know its own location in order to make use of its acquired spatial information. However, a problem arises with the integration of exploration and localization. A robot needs to know its own location in order to add new information to its map, but a robot may also need a map to determine its own location. We have addressed this problem with ARIEL, a mobile robot system that combines frontier-based exploration with continuous localization. ARIEL is capable of exploring and mapping an unknown environment while maintaining an accurate estimate of its position at all times. In this paper, we describe frontier-based exploration and continuous localization, and we explain how ARIEL integrates these techniques. Then we show results from experiments performed in the explorati..
    corecore