7,145 research outputs found

    MADServer: An Architecture for Opportunistic Mobile Advanced Delivery

    Get PDF
    Rapid increases in cellular data traffic demand creative alternative delivery vectors for data. Despite the conceptual attractiveness of mobile data offloading, no concrete web server architectures integrate intelligent offloading in a production-ready and easily deployable manner without relying on vast infrastructural changes to carriers’ networks. Delay-tolerant networking technology offers the means to do just this. We introduce MADServer, a novel DTN-based architecture for mobile data offloading that splits web con- tent among multiple independent delivery vectors based on user and data context. It enables intelligent data offload- ing, caching, and querying solutions which can be incorporated in a manner that still satisfies user expectations for timely delivery. At the same time, it allows for users who have poor or expensive connections to the cellular network to leverage multi-hop opportunistic routing to send and receive data. We also present a preliminary implementation of MADServer and provide real-world performance evaluations

    Techno-economic viability of integrating satellite communication in 4G networks to bridge the broadband digital divide

    Get PDF
    Bridging the broadband digital divide between urban and rural areas in Europe is one of the main targets of the Digital Agenda for Europe. Though many technological options are proposed in literature, satellite communication has been identified as the only possible solution for the most rural areas, due to its global coverage. However, deploying an end-to-end satellite solution might, in some cases, not be cost-effective. The aim of this study is to give insights into the economic effectiveness of integrating satellite communications into 4G networks in order to connect the most rural areas (also referred to as white areas) in Europe. To this end, this paper proposes a converged solution that combines satellite communication as a backhaul network with 4G as a fronthaul network to bring enhanced broadband connectivity to European rural areas, along with a techno-economic model to analyse the economic viability of this integration. The model is based on a Total Cost of Ownership (TCO) model for 5 years, taking into account both capital and operational expenditures, and aims to calculate the TCO as well as the Average Cost Per User (ACPU) for the studied scenarios. We evaluate the suggested model by simulating a hypothetical use case for two scenarios. The first scenario is based on a radio access network connecting to the 4G core network via a satellite link. Results for this scenario show high operational costs. In order to reduce these costs, we propose a second scenario, consisting of caching the popular content on the edge to reduce the traffic carried over the satellite link. This scenario demonstrates a significant operational cost decrease (more than 60%), which also means a significant ACPU decrease. We evaluate the robustness of the results by simulating for a range of population densities, hereby also providing an indication of the economic viability of our proposed solution across a wider range of areas

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Modeling and Analysis of Content Caching in Wireless Small Cell Networks

    Full text link
    Network densification with small cell base stations is a promising solution to satisfy future data traffic demands. However, increasing small cell base station density alone does not ensure better users quality-of-experience and incurs high operational expenditures. Therefore, content caching on different network elements has been proposed as a mean of offloading he backhaul by caching strategic contents at the network edge, thereby reducing latency. In this paper, we investigate cache-enabled small cells in which we model and characterize the outage probability, defined as the probability of not satisfying users requests over a given coverage area. We analytically derive a closed form expression of the outage probability as a function of signal-to-interference ratio, cache size, small cell base station density and threshold distance. By assuming the distribution of base stations as a Poisson point process, we derive the probability of finding a specific content within a threshold distance and the optimal small cell base station density that achieves a given target cache hit probability. Furthermore, simulation results are performed to validate the analytical model.Comment: accepted for publication, IEEE ISWCS 201
    • …
    corecore