2 research outputs found

    Set-valued observer-based active fault-tolerant model predictive control

    Get PDF
    This paper proposes an integrated actuator and sensor active fault-tolerant model predictive control scheme. In this scheme, fault detection is implemented by using a set-valued observer, fault isolation (FI) is performed by set manipulations, and fault-tolerant control is carried out through the design of a robust model predictive control law. In this paper, a set-valued observer is used to passively complete the fault detection task, while FI is actively performed by making use of the constraint-handling capability of robust model predictive control. The set-valued observer is chosen to implement fault detection and isolation (FDI) because of its simple mathematical structure that is not affected by the type of faults such as sensor, actuator, and system-structural faults. This means that only one set-valued observer is needed to monitor all considered actuator and sensor statuses (health and fault) and to carry out the fault detection and isolation task instead of using a bank of observers (each observer matching a health/fault status). Furthermore, in the proposed scheme, the advantage of robust model predictive control is that it can effectively deal with system constraints, disturbances, and noises and allow to implement an active FI strategy, which can improve FI sensitivity when compared with the passive FI methods. Finally, a case study based on the well-known two-tank system is used to illustrate the effectiveness of the proposed fault-tolerant model predictive control scheme.Peer ReviewedPostprint (author's final draft

    Integrated sensor and actuator fault-tolerant control

    No full text
    We propose a fault-tolerant control scheme that deals with sensor and actuator faults through the use of a virtual actuator (VA) and a bank of virtual sensors (VSs). A novel feature of the scheme is that the VSs implicitly integrate both fault detection and isolation (FDI) and - in conjunction with the VA - controller reconfiguration tasks. The VA and the bank of VSs operate in closed-loop with an observer-based tracking controller designed for a nominal (fault free) model of the plant. A switching rule that reconfigures the VA and engages the suitable VS from the bank is based on sets defined for measurable residual signals constructed directly from the VS signals. Our method handles abrupt actuator and sensor faults of arbitrary magnitude including complete outage. The overall scheme is shown to guarantee closed-loop boundedness and setpoint tracking under all considered fault situations. Enhancements of the scheme to deal with errors in the fault detection and isolation are also proposed. Applications of the scheme to a winding machine and an interconnected tank system are presented
    corecore