101 research outputs found

    Coverage and Connectivity Issue in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks

    Some Target Coverage Issues of Wireless Sensor Network

    Get PDF
    Wireless Sensor Network is an emerging field that is achieving much importance due to its immense contribution in varieties of target specific applications. One of the active issues is Target Coverage that deals with the coverage of a specific set of targets. Static sensor nodes are being deployed in a random manner to monitor the required targets and collect as much information as possible. In this Paper we have presented an overview of WSN and some of the strategies of the Target Coverage Problem

    Impact of Next Generation Cognitive Radio Network on the Wireless Green Eco system through Signal and Interference Level based K Coverage Probability

    Get PDF
    Land mobile communication is burdened with typical propagation constraints due to the channel characteristics in radio systems.Also,the propagation characteristics vary form place to place and also as the mobile unit moves,from time to time.Hence,the tramsmission path between transmitter and receiver varies from simple direct LOS to the one which is severely obstructed by buildings, foliage and terrain. Multipath propagation and shadow fading effects affect the signal strength of an arbitrary Transmitter-Receiver due to the rapid fluctuations in the phase and amplitude of signal which also determines the average power over an area of tens or hundreds of meters. Shadowing introduces additional fluctuations, so the received local mean power varies around the area –mean. The present paper deals with the performance analysis of impact of next generation wireless cognitive radio network on wireless green eco system through signal and interference level based k coverage probability under the shadow fading effects

    Stationary and Mobile Target Detection using Mobile Wireless Sensor Networks

    Full text link
    In this work, we study the target detection and tracking problem in mobile sensor networks, where the performance metrics of interest are probability of detection and tracking coverage, when the target can be stationary or mobile and its duration is finite. We propose a physical coverage-based mobility model, where the mobile sensor nodes move such that the overlap between the covered areas by different mobile nodes is small. It is shown that for stationary target scenario the proposed mobility model can achieve a desired detection probability with a significantly lower number of mobile nodes especially when the detection requirements are highly stringent. Similarly, when the target is mobile the coverage-based mobility model produces a consistently higher detection probability compared to other models under investigation.Comment: 7 pages, 12 figures, appeared in INFOCOM 201

    Limit laws for k-coverage of paths by a Markov-Poisson-Boolean model

    Full text link
    Let P := {X_i,i >= 1} be a stationary Poisson point process in R^d, {C_i,i >= 1} be a sequence of i.i.d. random sets in R^d, and {Y_i^t; t \geq 0, i >= 1} be i.i.d. {0,1}-valued continuous time stationary Markov chains. We define the Markov-Poisson-Boolean model C_t := {Y_i^t(X_i + C_i), i >= 1}. C_t represents the coverage process at time t. We first obtain limit laws for k-coverage of an area at an arbitrary instant. We then obtain the limit laws for the k-coverage seen by a particle as it moves along a one-dimensional path.Comment: 1 figure. 24 Pages. Accepted at Stochastic Models. Theorems 6 and 7 corrected. Theorem 9 and Appendix adde

    Coverage and Connectivity in Three-Dimensional Networks

    Full text link
    Most wireless terrestrial networks are designed based on the assumption that the nodes are deployed on a two-dimensional (2D) plane. However, this 2D assumption is not valid in underwater, atmospheric, or space communications. In fact, recent interest in underwater acoustic ad hoc and sensor networks hints at the need to understand how to design networks in 3D. Unfortunately, the design of 3D networks is surprisingly more difficult than the design of 2D networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture required centuries of research to achieve breakthroughs, whereas their 2D counterparts are trivial to solve. In this paper, we consider the coverage and connectivity issues of 3D networks, where the goal is to find a node placement strategy with 100% sensing coverage of a 3D space, while minimizing the number of nodes required for surveillance. Our results indicate that the use of the Voronoi tessellation of 3D space to create truncated octahedral cells results in the best strategy. In this truncated octahedron placement strategy, the transmission range must be at least 1.7889 times the sensing range in order to maintain connectivity among nodes. If the transmission range is between 1.4142 and 1.7889 times the sensing range, then a hexagonal prism placement strategy or a rhombic dodecahedron placement strategy should be used. Although the required number of nodes in the hexagonal prism and the rhombic dodecahedron placement strategies is the same, this number is 43.25% higher than the number of nodes required by the truncated octahedron placement strategy. We verify by simulation that our placement strategies indeed guarantee ubiquitous coverage. We believe that our approach and our results presented in this paper could be used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200
    corecore