44,822 research outputs found

    Smart grids for rural conditions and e-mobility - Applying power routers, batteries and virtual power plants

    Get PDF
    Significant reductions of greenhouse gas emission by use of renewable energy sources belong to the common targets of the European Union. Smart grids address intelligent use and integration of conventional and renewable generation in combination with controllable loads and storages. Two special aspects have also to be considered for smart grids in future: rural conditions and electric vehicles. Both, the increasing share of renewable energy sources and a rising demand for charging power by electrical vehicles lead to new challenges of network stability (congestion, voltage deviation), especially in rural distribution grids. This paper describes two lighthouse projects in Europe (“Well2Wheel” and “Smart Rural Grid”) dealing with these topics. The link between these projects is the implementation of the same virtual power plant technology and the approach of cellular grid cells. Starting with an approach for the average energy balance in 15 minutes intervals in several grid cells in the first project, the second project even allows the islanded operation of such cells as a microgrid. The integration of renewable energy sources into distribution grids primary takes place in rural areas. The lighthouse project “Smart Rural Grid”, which is founded by the European Union, demonstrates possibilities to use the existing distribution system operator infrastructure more effectively by applying an optimised and scheduled operation of the assets and using intelligent distribution power routers, called IDPR. IDPR are active power electronic devices operating at low voltage in distribution grids aiming to reduce losses due to unbalanced loads and enabling active voltage and reactive power control. This allows a higher penetration of renewable energy sources in existing grids without investing in new lines and transformers. Integrated in a virtual power plant and combined with batteries, the IDPR also allows a temporary islanded mode of grid cells. Both projects show the potential of avoiding or postponing investments in new primary infrastructure like cables, transformers and lines by using a forward-looking operation which controls generators, loads and batteries (mobile and stationary) by using new grid assets like power routers. While primary driven by physical restrictions as voltage-band violations and energy balance, these cells also define and allow local smart markets. In consequence the distribution system operators could avoid direct control access by giving an incentive to the asset owners by local price signals according to the grid situation and forecasted congestions.Peer ReviewedPostprint (published version

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed

    Investing in Sustainable Energy Futures: Multilateral Development Banks' Investments in Energy Policy

    Get PDF
    Analyzes MDB loans for electricity projects and lays out policy reforms, regulations, and institutional capacities needed to enable public and private investment in sustainable energy and ways for MDBs to address them consistently and comprehensively

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK

    Energy and Smart Growth: It's about How and Where We Build

    Get PDF
    By efficiently locating development, smarter growth land use policies and practices offer a viable way to reduce U.S. energy consumption. Moreover, by increasing attention on how we build, in addition to where we build, smart growth could become even more energy smart. The smart growth and energy efficiency movements thus are intrinsically linked, yet these two fields have mostly operated in separate worlds. Through greater use of energy efficient design, and renewable energy resources, the smart growth movement could better achieve its goals of environmental protection, economic security and prosperity, and community livability. In short, green building and smart growth should go hand in hand. Heightened concern about foreign oil dependence, climate change, and other ill effects of fossil fuel usage makes the energy-smart growth collaboration especially important. Strengthening this collaboration will involve overcoming some hurdles, however, and funders can play an important role in assisting these movements to gain strength from each other. This paper contends there is much to be gained by expanding the smart growth movement to include greater attention on energy. It provides a brief background on current energy trends and programs, relevant to smart growth. It then presents a framework for understanding the connections between energy and land use which focuses on two primary issues: how to build, which involves neighborhood and building design, and where to build, meaning that location matters. The final section offers suggestions to funders interesting in helping accelerate the merger of these fields

    Eras of electric vehicles: electric mobility on the Verge. Focus Attention Scale

    Get PDF
    Daily or casual passenger vehicles in cities have negative burden on our finite world. Transport sector has been one of the main contributors to air pollution and energy depletion. Providing alternative means of transport is a promising strategy perceived by motor manufacturers and researchers. The paper presents the battery electric vehicles-BEVs bibliography that starts with the early eras of invention up till 2015 outlook. It gives a broad overview of BEV market and its technology in a chronological classification while sheds light on the stakeholders’ focus attentions in each stage, the so called, Focus-Attention-Scale-FAS. The attention given in each era is projected and parsed in a scale graph, which varies between micro, meso, and macro-scale. BEV-system is on the verge of experiencing massive growth; however, the system entails a variety of substantial challenges. Observations show the main issues of BEVsystem that require more attention followed by the authors’ recommendations towards an emerging market

    Carbon Free Boston: Energy Technical Report

    Full text link
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/INTRODUCTION: The adoption of clean energy in Boston’s buildings and transportation systems will produce sweeping changes in the quantity and composition of the city’s demand for fuel and electricity. The demand for electricity is expected to increase by 2050, while the demand for petroleum-based liquid fuels and natural gas within the city is projected to decline significantly. The city must meet future energy demand with clean energy sources in order to meet its carbon mitigation targets. That clean energy must be procured in a way that supports the City’s goals for economic development, social equity, environmental sustainability, and overall quality of life. This chapter examines the strategies to accomplish these goals. Improved energy efficiency, district energy, and in-boundary generation of clean energy (rooftop PV) will reduce net electric power and natural gas demand substantially, but these measures will not eliminate the need for electricity and gas (or its replacement fuel) delivered into Boston. Broadly speaking, to achieve carbon neutrality by 2050, the city must therefore (1) reduce its use of fossil fuels to heat and cool buildings through cost-effective energy efficiency measures and electrification of building thermal services where feasible; and (2) over time, increase the amount of carbon-free electricity delivered to the city. Reducing energy demand though cost effective energy conservation measures will be necessary to reduce the challenges associated with expanding the electricity delivery system and sustainably sourcing renewable fuels.Published versio
    • …
    corecore