3,298 research outputs found

    Extending and Implementing the Self-adaptive Virtual Processor for Distributed Memory Architectures

    Get PDF
    Many-core architectures of the future are likely to have distributed memory organizations and need fine grained concurrency management to be used effectively. The Self-adaptive Virtual Processor (SVP) is an abstract concurrent programming model which can provide this, but the model and its current implementations assume a single address space shared memory. We investigate and extend SVP to handle distributed environments, and discuss a prototype SVP implementation which transparently supports execution on heterogeneous distributed memory clusters over TCP/IP connections, while retaining the original SVP programming model

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory

    Get PDF
    In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE

    A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

    Get PDF
    We present a multi-word atomic (1,N) register for multi-core machines exploiting Read-Modify-Write (RMW) instructions to coordinate the writer and the readers in a wait-free manner. Our proposal, called Anonymous Readers Counting (ARC), enables large-scale data sharing by admitting up to 232−22^{32}-2 concurrent readers on off-the-shelf 64-bits machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers. Further, ARC avoids multiple copies of the register content when accessing it---this affects classical register's algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces improves performance via a proper limitation of RMW instructions in case of read operations, and by supporting constant time for read operations and amortized constant time for write operations. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of more modern paradigms such as cloud computing.Comment: non

    Energy-efficient and high-performance lock speculation hardware for embedded multicore systems

    Full text link
    Embedded systems are becoming increasingly common in everyday life and like their general-purpose counterparts, they have shifted towards shared memory multicore architectures. However, they are much more resource constrained, and as they often run on batteries, energy efficiency becomes critically important. In such systems, achieving high concurrency is a key demand for delivering satisfactory performance at low energy cost. In order to achieve this high concurrency, consistency across the shared memory hierarchy must be accomplished in a cost-effective manner in terms of performance, energy, and implementation complexity. In this article, we propose Embedded-Spec, a hardware solution for supporting transparent lock speculation, without the requirement for special supporting instructions. Using this approach, we evaluate the energy consumption and performance of a suite of benchmarks, exploring a range of contention management and retry policies. We conclude that for resource-constrained platforms, lock speculation can provide real benefits in terms of improved concurrency and energy efficiency, as long as the underlying hardware support is carefully configured.This work is supported in part by NSF under Grants CCF-0903384, CCF-0903295, CNS-1319495, and CNS-1319095 as well the Semiconductor Research Corporation under grant number 1983.001. (CCF-0903384 - NSF; CCF-0903295 - NSF; CNS-1319495 - NSF; CNS-1319095 - NSF; 1983.001 - Semiconductor Research Corporation

    HaTS: Hardware-Assisted Transaction Scheduler

    Get PDF
    In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques
    • …
    corecore