1,507 research outputs found

    Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid

    Get PDF
    We discuss shape (Pomeranchuk) instabilities of the Fermi surface of a two-dimensional Fermi system using bosonization. We consider in detail the quantum critical behavior of the transition of a two dimensional Fermi fluid to a nematic state which breaks spontaneously the rotational invariance of the Fermi liquid. We show that higher dimensional bosonization reproduces the quantum critical behavior expected from the Hertz-Millis analysis, and verify that this theory has dynamic critical exponent z=3z=3. Going beyond this framework, we study the behavior of the fermion degrees of freedom directly, and show that at quantum criticality as well as in the the quantum nematic phase (except along a set of measure zero of symmetry-dictated directions) the quasi-particles of the normal Fermi liquid are generally wiped out. Instead, they exhibit short ranged spatial correlations that decay faster than any power-law, with the law x1exp(const.x1/3)|x|^{-1} \exp(-\textrm{const.} |x|^{1/3}) and we verify explicitely the vanishing of the fermion residue utilizing this expression. In contrast, the fermion auto-correlation function has the behavior t1exp(const.t2/3)|t|^{-1} \exp(-{\rm const}. |t|^{-2/3}). In this regime we also find that, at low frequency, the single-particle fermion density-of-states behaves as N(ω)=N(0)+Bω2/3logω+...N^*(\omega)=N^*(0)+ B \omega^{2/3} \log\omega +..., where N(0)N^*(0) is larger than the free Fermi value, N(0), and BB is a constant. These results confirm the non-Fermi liquid nature of both the quantum critical theory and of the nematic phase.Comment: 20 pages, 2 figures, 1 table; new version with minor changes; new subsection 3C2 added with an explicit calculation of the quasiparticle residue at the nematic transition; minor typos corrected, new references; general beautification of the text and figure

    Renormalization Group Approach to the Normal State of Copper-Oxide Superconductors

    Full text link
    We study by means of renormalization group techniques the effect that on the two-dimensional electron liquid may have the van Hove singularities observed experimentally in the copper-oxide superconductors. We find significant deviations from Fermi liquid behavior, that lead to the appearance of an unstable fixed point in the renormalization group flow of the effective coupling constant. Besides the attenuation of electron quasiparticles already known on phenomenological grounds, our approach is able to explain the reduction in the dispersion of the band as well as the pinning of the Fermi level near the singularity, as observed in the photoemission experiments.Comment: Latex manuscript, 29 pages, 4 postcript figure

    A scattering theory of ultrarelativistic solitons

    Get PDF
    We construct a perturbative framework for understanding the collision of solitons (more precisely, solitary waves) in relativistic scalar field theories. Our perturbative framework is based on the suppression of the space-time interaction area proportional to 1/(γv)1/(\gamma v), where vv is the relative velocity of an incoming solitary wave and γ=1/1v21\gamma = 1/\sqrt{1-v^2} \gg 1. We calculate the leading order results for collisions of (1+1) dimensional kinks in periodic potentials, and provide explicit, closed form expressions for the phase shift and the velocity change after the collisions. We find excellent agreement between our results and detailed numerical simulations. Crucially, our perturbation series is controlled by a kinematic parameter, and hence not restricted to small deviations around integrable cases such as the Sine-Gordon model.Comment: v3: 43 pages, 10 figures, references added, matches version accepted for publication in PR

    Parity Violating Measurements of Neutron Densities

    Get PDF
    Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the Z0Z^0 of the Standard Model couples primarily to neutrons at low Q2Q^2. The data can be interpreted with as much confidence as electromagnetic scattering. After briefly reviewing the present theoretical and experimental knowledge of neutron densities, we discuss possible parity violation measurements, their theoretical interpretation, and applications. The experiments are feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. The quantitative relationship to atomic parity nonconservation observables is examined, and we show that the electron scattering asymmetries can be directly applied to atomic PNC because the observables have approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.

    Classical Dynamics of Vortex Solitons from Perturbative Scattering Amplitudes

    Full text link
    We introduce a novel point-particle effective description of ANO vortex solitons in the critical Abelian Higgs Model (AHM) in d=2+1d=2+1 based on the small winding expansion. Identifying the effective vortices with the elementary quanta of a complex scalar field, relativistic vortex-vortex scattering amplitudes are calculated as a diagrammatic, perturbative expansion in the winding number NN. Making use of powerful techniques recently developed for analyzing the post-Minkowskian two-body problem in general relativity, we efficiently extract the contribution to the loop integrals from the classical potential region, with the resulting velocity expansion subsequently resummed to all orders. The main result of this paper is an analytic expression for the classical, vortex-vortex potential at O(N2)\mathcal{O}\left(N^2\right), or one-loop, with exact velocity dependence. By truncating the resulting effective Hamiltonian at O(p2)\mathcal{O}\left(p^2\right) we derive an analytic, perturbative expression for the metric on the 2-vortex moduli space. Finally, the emergence of the critical AHM from the classical limit of the N=2\mathcal{N}=2 supersymmetric AHM, and the resulting constraints on the point-particle EFT is described in detail using an on-shell superspace construction for BPS states in d=2+1d=2+1.Comment: 40 pages, 8 figure

    Testing Lorentz invariance of dark matter with satellite galaxies

    Full text link
    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.Comment: 27 pages, 11 figures, 2 tables, 1 appendix. Minor corrections in section 4.3.

    Beyond the Cosmological Standard Model

    Full text link
    After a decade and a half of research motivated by the accelerating universe, theory and experiment have a reached a certain level of maturity. The development of theoretical models beyond \Lambda, or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must screen themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in which first derivatives become important, and those for which second derivatives are important. Examples of the first class, such as f(R) gravity, employ the familiar chameleon or symmetron mechanisms, whereas examples of the last class are galileon and massive gravity theories, employing the Vainshtein mechanism. In each case, we describe the theories as effective theories. We describe experimental tests, summarizing laboratory and solar system tests and describing in some detail astrophysical and cosmological tests. We discuss future tests which will be sensitive to different signatures of new physics in the gravitational sector. Parts that are more relevant to theorists vs. observers/experimentalists are clearly indicated, in the hope that this will serve as a useful reference for both audiences, as well as helping those interested in bridging the gap between them.Comment: 175 pages, 24 figures. v2: Minor corrections, added references. Review article, comments welcom

    Precision constraints on radiative neutrino decay with CMB spectral distortion

    Get PDF
    We investigate the radiative decay of the cosmic neutrino background, and its impact on the spectrum of the cosmic microwave background (CMB) that is known to be a nearly perfect black body. We derive exact formulae for the decay of a heavier neutrino into a lighter neutrino and a photon, νjνi+γ\nu_j \to \nu_i + \gamma, and of absorption as its inverse, νi+γνj\nu_i + \gamma \to \nu_j, by accounting for the precise form of the neutrino momentum distribution. Our calculations show that if the neutrinos are heavier than O(0.1)\mathcal O(0.1) eV, the exact formulae give results that differ by \sim50%, compared with approximate ones where neutrinos are assumed to be at rest. We also find that spectral distortion due to absorption is more important for heavy neutrino masses (by a factor of \sim10 going from a neutrino mass of 0.01 eV to 0.1 eV). By analyzing the CMB spectral data measured with COBE-FIRAS, we obtain lower limits on the neutrino lifetime of τ124×1021\tau_{12} \gtrsim 4 \times 10^{21} s (95% C.L.) for the smaller mass splitting and τ13τ231019\tau_{13} \sim \tau_{23} \gtrsim 10^{19} s for the larger mass splitting. These represent up to one order of magnitude improvement over previous CMB constraints. With future CMB experiments such as PIXIE, these limits will improve by roughly 4 orders of magnitude. This translates to a projected upper limit on the neutrino magnetic moment (for certain neutrino masses and decay modes) of μν<3×1011μB\mu_\nu < 3 \times 10^{-11}\, \mu_B, where μB\mu_B is the Bohr magneton. Such constraints would make future precision CMB measurements competitive with lab-based constraints on neutrino magnetic moments.Comment: 14 pages, 9 figures. v2: Added a number of references and clarifications. Matches version published in PR

    Early-Time Energy Loss in a Strongly-Coupled SYM Plasma

    Full text link
    We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T^4 instead of T^2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications. References added. Version to be published in JHE

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft
    corecore