3,839 research outputs found

    Bayesian analysis of multivariate stable distributions using one-dimensional projections

    Get PDF
    In this paper we take up Bayesian inference in general multivariate stable distributions. We exploit the representation of Matsui and Takemura (2009) for univariate projections, and the representation of the distributions in terms of their spectral measure. We present efficient MCMC schemes to perform the computations when the spectral measure is approximated discretely or, as we propose, by a normal distribution. Appropriate latent variables are introduced to implement MCMC. In relation to the discrete approximation, we propose efficient computational schemes based on the characteristic function

    Hilbert C*-modules and related subjects - a guided reference overview I

    Full text link
    The overview contains 450 references of books, chapters of monographs, papers, preprints and Ph.~D.~thesises which are concerned with the theory and/or various applications of Hilbert C*-modules. To show a way through this amount of literature a four pages guide is added clustering sources around major research problems and research fields, and giving information on the historical background. Two smaller separate parts list references treating Hilbert modules over Hilbert*-algebras and Hilbert modules over (non-self-adjoint) operator algebras. Any additions, corrections and forthcoming information are welcome.Comment: LaTeX 2.09, 23 page

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    Full text link
    In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares (S-NNLS) problem. We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R- GSM) to model the sparsity enforcing prior distribution for the solution. The R-GSM prior encompasses a variety of heavy-tailed densities such as the rectified Laplacian and rectified Student- t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM based method, we estimate the hyper-parameters and obtain a point estimate for the solution. We refer to the proposed method as rectified sparse Bayesian learning (R-SBL). We provide four R- SBL variants that offer a range of options for computational complexity and the quality of the E-step computation. These methods include the Markov chain Monte Carlo EM, linear minimum mean-square-error estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery performance, and is also very robust against the structure of the design matrix.Comment: Under Review by IEEE Transactions on Signal Processin

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches
    corecore