795 research outputs found

    Dense Integer-Complete Synthesis for Bounded Parametric Timed Automata

    Full text link
    Ensuring the correctness of critical real-time systems, involving concurrent behaviors and timing requirements, is crucial. Timed automata extend finite-state automata with clocks, compared in guards and invariants with integer constants. Parametric timed automata (PTAs) extend timed automata with timing parameters. Parameter synthesis aims at computing dense sets of valuations for the timing parameters, guaranteeing a good behavior. However, in most cases, the emptiness problem for reachability (i.e., whether the emptiness of the parameter valuations set for which some location is reachable) is undecidable for PTAs and, as a consequence, synthesis procedures do not terminate in general, even for bounded parameters. In this paper, we introduce a parametric extrapolation, that allows us to derive an underapproximation in the form of linear constraints containing not only all the integer points ensuring reachability, but also all the (non-necessarily integer) convex combinations of these integer points, for general PTAs with a bounded parameter domain. We also propose two further algorithms synthesizing parameter valuations guaranteeing unavoidability, and preservation of the untimed behavior w.r.t. a reference parameter valuation, respectively. Our algorithms terminate and can output constraints arbitrarily close to the complete result. We demonstrate their applicability and efficiency using the tool Rom\'eo on two classical benchmarks.Comment: This is an extended version of the paper by the same authors published in the proceedings of the 9th International Workshop on Reachability Problems (RP 2015

    LTL Parameter Synthesis of Parametric Timed Automata

    Full text link
    The parameter synthesis problem for parametric timed automata is undecidable in general even for very simple reachability properties. In this paper we introduce restrictions on parameter valuations under which the parameter synthesis problem is decidable for LTL properties. The investigated bounded integer parameter synthesis problem could be solved using an explicit enumeration of all possible parameter valuations. We propose an alternative symbolic zone-based method for this problem which results in a faster computation. Our technique extends the ideas of the automata-based approach to LTL model checking of timed automata. To justify the usefulness of our approach, we provide experimental evaluation and compare our method with explicit enumeration technique.Comment: 23 pages, extended versio

    IMITATOR II: A Tool for Solving the Good Parameters Problem in Timed Automata

    Full text link
    We present here Imitator II, a new version of Imitator, a tool implementing the "inverse method" for parametric timed automata: given a reference valuation of the parameters, it synthesizes a constraint such that, for any valuation satisfying this constraint, the system behaves the same as under the reference valuation in terms of traces, i.e., alternating sequences of locations and actions. Imitator II also implements the "behavioral cartography algorithm", allowing us to solve the following good parameters problem: find a set of valuations within a given bounded parametric domain for which the system behaves well. We present new features and optimizations of the tool, and give results of applications to various examples of asynchronous circuits and communication protocols.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Language Emptiness of Continuous-Time Parametric Timed Automata

    Full text link
    Parametric timed automata extend the standard timed automata with the possibility to use parameters in the clock guards. In general, if the parameters are real-valued, the problem of language emptiness of such automata is undecidable even for various restricted subclasses. We thus focus on the case where parameters are assumed to be integer-valued, while the time still remains continuous. On the one hand, we show that the problem remains undecidable for parametric timed automata with three clocks and one parameter. On the other hand, for the case with arbitrary many clocks where only one of these clocks is compared with (an arbitrary number of) parameters, we show that the parametric language emptiness is decidable. The undecidability result tightens the bounds of a previous result which assumed six parameters, while the decidability result extends the existing approaches that deal with discrete-time semantics only. To the best of our knowledge, this is the first positive result in the case of continuous-time and unbounded integer parameters, except for the rather simple case of single-clock automata

    Modeling a distributed Heterogeneous Communication System using Parametric Timed Automata

    Get PDF
    In this report, we study the application of the Parametric Timed Automata(PTA) tool to a concrete case of a distributed Heterogeneous Communication System (HCS). The description and requirements of HCS are presented and the system modeling is explained carefully. The system models are developed in UPPAAL and validated by different test cases. Part of the system models are then converted into parametric timed automata and the schedulability checking is run to produce the schedulability regions

    Classification-based parameter synthesis for parametric timed automata

    Get PDF
    National Research Foundation (NRF) Singapor

    Configuring Timing Parameters to Ensure Execution-Time Opacity in Timed Automata

    Full text link
    Timing information leakage occurs whenever an attacker successfully deduces confidential internal information by observing some timed information such as events with timestamps. Timed automata are an extension of finite-state automata with a set of clocks evolving linearly and that can be tested or reset, making this formalism able to reason on systems involving concurrency and timing constraints. In this paper, we summarize a recent line of works using timed automata as the input formalism, in which we assume that the attacker has access (only) to the system execution time. First, we address the following execution-time opacity problem: given a timed system modeled by a timed automaton, given a secret location and a final location, synthesize the execution times from the initial location to the final location for which one cannot deduce whether the secret location was visited. This means that for any such execution time, the system is opaque: either the final location is not reachable, or it is reachable with that execution time for both a run visiting and a run not visiting the secret location. We also address the full execution-time opacity problem, asking whether the system is opaque for all execution times; we also study a weak counterpart. Second, we add timing parameters, which are a way to configure a system: we identify a subclass of parametric timed automata with some decidability results. In addition, we devise a semi-algorithm for synthesizing timing parameter valuations guaranteeing that the resulting system is opaque. Third, we report on problems when the secret has itself an expiration date, thus defining expiring execution-time opacity problems. We finally show that our method can also apply to program analysis with configurable internal timings.Comment: In Proceedings TiCSA 2023, arXiv:2310.18720. This invited paper mainly summarizes results on opacity from two recent works published in ToSEM (2022) and at ICECCS 2023, providing unified notations and concept names for the sake of consistency. In addition, we prove a few original results absent from these work
    • …
    corecore