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Abstract. We consider probabilistic timed automata (PTA) in which
probabilities can be parameters, i.e. symbolic constants. They are use-
ful to model randomised real-time systems where exact probabilities are
unknown, or where the probability values should be optimised. We prove
that existing techniques to transform probabilistic timed automata into
equivalent finite-state Markov decision processes (MDPs) remain correct
in the parametric setting, using a systematic proof pattern. We imple-
mented two of these parameter-preserving transformations—using digi-
tal clocks and backwards reachability—in the Modest Toolset. Using
Storm’s parameter space partitioning approach, parameter values can
be efficiently synthesized in the resulting parametric MDPs. We use sev-
eral case studies from the literature of varying state and parameter space
sizes to experimentally evaluate the performance and scalability of this
novel analysis trajectory for parametric PTA.

1 Introduction

Probabilistic timed automata (PTA) [25,45] combine the features of timed
automata (TA) [2], to capture hard continuous real-time behaviour with
nondeterministic time and choices, with those of Markov decision processes
(MDP) [50], to model discrete random decisions. PTA are well-equipped for the
study of randomised algorithms interacting with an environment where actions
with uncertain outcomes complete after (upper- and lower-bounded) delays.
They have been fruitfully applied to verify performance and reliability aspects
of communication protocols and networked systems, see e.g. [22–24,39].

Building a PTA model requires knowledge of the precise probabilities of all
random events. While unproblematic for a randomised algorithm such as the
binary exponential backoff procedure in a CSMA/CA wireless network by itself,
uncertainty about the operating environment often means that we do not know,
say, the precise probability p of message loss once we decide to send. In such cases,
we may turn the verification question around: Instead of computing whether the
probability of an eventual successful transmission is above the required threshold
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given a concrete p, we determine the set of values of p for which the requirement
is satisfied. We can then judge whether the network’s setup or protocols are
sufficiently robust for the intended environments.

In this paper, we focus on parametric PTA (pPTA), where the probabil-
ities of some events are unknown and specified as polynomials over a finite
set of parameters like p above. We consider the analysis of (time-bounded)
probabilistic reachability properties, i.e. statements of the form “is the max-
imum/minimum probability of eventually/within t time units reaching a goal
location above/below v ∈ (0, 1)?”, but instead of a yes/no answer we want to
compute an (approximation of) the set of parameter valuations under which the
property is satisfied.

Several approaches have been developed over the past two decades to verify
PTA with known probabilities. Most approaches compute a finite abstraction
of the continuous-time behaviour, turning the PTA into an equivalent MDP on
which the property of interest can be verified using standard MDP model check-
ing [10,11]. This includes using the region graph [45], backwards reachability [46],
and digital clocks [34,44]. The latter two are implemented in the Prism [43] tool
while the Modest Toolset’s [28] mcsta model checker uses digital clocks.
The stochastic games approach [42], implemented in Prism, employs games
in place of MDP to iteratively refine the abstraction up to the desired preci-
sion. Uppaal smc [21] applies statistical model checking (SMC) [1] to possibly
non-deterministic PTA by interpreting nondeterminism probabilistically. It thus
delivers some probability between minimum and maximum. Using extensions
of lightweight scheduler sampling [47] to PTA [20,31], the Modest Toolset’s
modes simulator [15] can deliver upper (lower) bounds on min. (max.) via SMC.

Our contribution is to extend the reach of model checking to pPTA:
we lift the PTA-to-MDP abstraction techniques to pPTA, then apply parameter
space partitioning [14,51] on the resulting MDP to approximate the set of satisfy-
ing valuations. We prove that the abstractions remain correct in the parametric
setting (Sect. 3), provide an implementation using digital clocks and backwards
reachability in the Modest Toolset followed by parameter space partitioning
in Storm [33] (Sect. 4), and use it to experimentally evaluate the performance
and scalability of our approach (Sect. 5). For the evaluation, we extend all suit-
able PTA from the Quantitative Verification Benchmark Set (QVBS) [30] with
parameters, and additionally study pPTA models of the AODV wireless routing
protocol [39]. The latter solves a critical open problem the previous study of
the protocol, which had to resort to “testing” by model checking a finite set of
selected values for probabilities that are actually unknown.

Related Work. [41] provide a tool to model-check interval PTA. An interval PTA
is a special case of pPTA in which no parameter occurs at multiple states. We
are not aware of any other work tackling the problem of model-checking pPTA.
Instead of parametrising the probabilities, however, one may parametrise the
delays [3]. Where the guard of an edge in a TA with clock c may be the clock
constraint c ≥ 3, it may be c ≥ 2 · p in such a constraint-parametric TA (cpTA)
with p a parameter. For this model, even basic problems like the existence of a
parameter valuation under which a goal state is reachable are undecidable [3,4],
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except in restricted cases such as bounded integer values [37] or L/U TA [35].
Research on cpTA remains active to this day; recent work, for example, proposes
a semi-algorithm for liveness [5]. The inverse method for cpTA [6] extends one
parameter valuation v0 to a set of valuations V ⊇ { v0 } such that all v ∈ V satisfy
the same given reachability properties. In its adaptation to cpPTA [8], all v ∈ V
must result in the same reachability probabilities. Parametric interval proba-
bilistic timed automata [7] combine cpPTA with interval Markov chains [36],
i.e. compared to cpPTA, the concrete probabilities are replaced by intervals of
possible probabilities. In contrast to parametric probabilities, intervals cannot
express dependencies between the probabilities of different events (such as one
event being twice as likely as another). For this model, research currently remains
focused on the question of consistency [7].

2 Preliminaries

We now introduce TA, PTA, and pPTA in order, highlighting the differences.

2.1 Timed Automata

A timed automaton [2] is a labelled transition system (LTS) [12] extended with
a finite set X of clocks taking non-negative real values and all increasing at rate
1 over time. A clock valuation is a function v : X → R≥0. We denote the set
of all clock valuations by R

X
≥0. For v ∈ R

X
≥0 and t ∈ R≥0, the valuation v + t

is defined by (v + t)(x) = v(x) + t for all x ∈ X . For X ⊆ X , v[X := 0] is
the clock valuation where v[X := 0](x) = 0 if x ∈ X and v[X := 0](x) = v(x)
otherwise. Finally, 0 is the zero valuation, i.e. 0(x) = 0 for all x ∈ X . The set
CC(X ) of clock constraints over X contains all expressions defined by

X ::= x < c | x ≤ c | x > c | x ≥ c | X ∧ X
where x ∈ X and c ∈ N. To keep the presentation simple, w.l.o.g. we omit
diagonal and disjunctive clock constraints. Valuation v satisfies clock constraint
X , denoted v |= X , iff the expression X evaluates to true after replacing each
x ∈ X with v(x). The semantics of clock constraint X is the zone ζX := {v ∈
R

X
≥0 | v |= X}. Let Zones(X ) denote the set of zones over the constraints X .

Definition 1. A timed automaton (TA) is a tuple B = (Loc, �0,Act ,X , ↪→,
inv) where Loc, Act and X are finite sets of locations, actions, and clocks,
respectively, with initial location �0 ∈ Loc, the transition relation is

↪→ ⊆ Loc × CC(X ) × Act × 2X × Loc,

and inv : Loc → CC(X ) assigns an invariant to each location.

An edge from � to �′ is a tuple (�, g, a,X, �′) ∈ ↪→ where guard g must be satisfied
in order to take the edge, and X contains the clocks to be reset. We assume that
every edge is uniquely identified by its source location and action.
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Fig. 1. TA B Fig. 2. PTA A Fig. 3. pPTA P

Example 1. Figure 1 shows TA B with four locations (labelled by the location
name and its invariant) and two clocks x and y. Initially, the system is in location
init. It can remain there as long as x ≤ 2∧y ≤ 24; after one time unit, the edges
to done and lost become enabled. In lost, the system remains as long as x ≤ 8.
The edge back to init is enabled when x = 8; when taken, clock x is reset. If 18
time units passed, and we are (still or again) in init, the edge to fail is enabled.

Formally, the semantics of a TA is defined in terms of a timed transition system
where transitions are labelled with either an action or a time duration.

Definition 2. The semantics of a TA B is the timed transition system
�B�ts = (S, s0,Act ′,→) where S = {(�, v) ∈ Loc×R

X
≥0 | v |= inv(�)} is the set of

states with initial state s0 = (�0,0), the action labels are in Act ′ = Act ∪ R≥0,
and the transition relation → is the smallest relation satisfying inference rules

(�, g, a,X, �′) ∈ ↪→ v |= g v[X := 0] |= inv(�′)

(�, v)
a−→ (�′, v[X := 0])

v + d |= inv(�) d ∈ R≥0

(�, v)
d−→ (�, v + d)

We refer to transitions due to the left inference rule as jumps with action a and
to the others as delays of duration d. Observe that �B�ts has uncountably many
states in general. Infinite paths of �B�ts are of the form s0

a0−→ s1
a1−→ s2 · · ·

with the si ∈ S and ai ∈ Act ′. Finite paths are defined similarly. Let PathsB
inf

(PathsB
fin) denote the set of all infinite (finite) paths of �B�ts. W.l.o.g. we can

assume that the first transition of a path is a delay and that delays and jumps
alternate. �B�ts may contain non-divergent paths [45], i.e. paths along which
infinitely many jumps happen in a finite amount of time.

Definition 3. The path π ∈ PathsB
inf is divergent if the sum of the durations

of its delays—its elapsed time—is ∞.

2.2 Probabilistic Timed Automata

A probability distribution over a countable set X is a function μ : X → [0, 1] ⊆
R with

∑
x∈X μ(x) = 1. Let Distr(X) denote the set of distributions on X.

Probabilistic timed automata [25,45] extend TA with probabilistic transitions.
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Definition 4. A probabilistic timed automaton (PTA) is a tuple A = (Loc,
�0,Act ,X , prob, inv) as in Definition 1 except that prob : Loc×CC(X )×Act →
Distr(2X × Loc) is the probabilistic transition function.

If prob(�, g, a)(X, �′) > 0 then (�, g, a,X, �′) is an edge of the PTA.

Example 2. Consider TA B and PTA A from Fig. 2. Whereas B has two send
edges (one for successful, one for failed transmissions), A has one probabilistic
edge, where the probability of successful transmission is 0.9.

A TA is a PTA with probability 1 for all edges. We use MDP for their semantics:

Definition 5. A Markov decision process (MDP) M is a timed transition
system with probabilistic transition function prob : S × Act ′ → Distr(S).

If prob(s, a, μ) with μ(s′) = p, we write prob(s, a, s′) = p. Finite and infinite
paths for MDPs are defined as for timed transition systems, with the difference
that for path s0

a0−→ s1
a1−→ s2 · · · we require that prob(si, ai, si+1) > 0. To be

able to reason about the probabilities of certain events in (timed) MDPs, we use
schedulers. A scheduler maps finite paths to an available duration if the path
has an even number of transitions and to an available action in Act otherwise.

Definition 6. A (history-dependent) scheduler for a timed MDP M is a func-
tion σ : PathsM

fin → (Act � R≥0) where, for π̂ = s0
a0−→ s1 . . .

an−1−−−→ sn, we have
σ(π̂) ∈ Act if n is odd and σ(π̂) ∈ R≥0 otherwise.

Applying scheduler σ to MDP M yields the Markov chain Mσ. For a fixed
scheduler σ and state s, a probability measure PrM

σ

s can be defined over the
infinite paths starting in s induced by σ using the standard cylinder set con-
struction (see e.g. [12, Ch. 10]). We restrict to almost-sure divergent schedulers,
which are those schedulers σ where

PrM
σ

s {π ∈ PathsMσ
inf | π is divergent } = 1.

Let Scheddiv(M) denote the set of almost-sure divergent schedulers of M.
The notions of (almost-sure divergent) schedulers can be lifted to PTA A in
a straightforward manner by considering the corresponding notion on the dense-
time semantics of a PTA, which is an uncountably large MDP:

Definition 7. The dense-time semantics of a PTA A is the MDP

�A�dense = (S, s0,Act ′, prob′)

where S, s0, and Act ′ are as in Definition 2, and if prob(l, g, a, ·, ·) is defined,
then prob′((�, v), a, (�′, v′)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

X⊆X :
v′=v[X:=0]

prob(�, g, a,X, �′) if a ∈ Act ∧ v |= g

1 if a ∈ R≥0 ∧ � = �′ ∧ v′ = v + a |= inv(�)
0 otherwise.



44 A. Hartmanns et al.

We assume PTA to be well-formed : if prob′((�, v), a, (�′, v′)) > 0 then v′ |=
inv(�′), for all reachable (�, v). We lift the notion of a scheduler to PTA A using
the above semantics, i.e. Sched(A) := Sched(�A�dense) and Aσ := �A�σ

dense.

2.3 Parametric Probabilistic Timed Automata

Let V be a set of n real-valued parameters (or variables) p1, . . . , pn. Let Q(V )
denote the set of multivariate polynomials over V . We write p ∈ f if parameter p
occurs in polynomial f . A parameter instantiation is a function u : V → R. The
parameter space for V is the hyper-rectangle over the lower/upper bounds for
the parameter in V . A polynomial f can be interpreted as a function f : Rn → R

where f(u) is obtained by substitution, i.e. in f(u) each occurrence of pi in f
is replaced by u(pi). To make it clear where substitution occurs, we write f [u]
instead of f(u) from now on. Let DistrQ(V )(X) denote the set of parametric prob-
ability distributions over X induced by the polynomials in Q(V ), i.e. of functions
μ : X → Q(V ) such that

∑
x∈X μ(x)[u] = 1 for all u within the parameter space.

A parametric PTA is a PTA in which the transitions use parametric distributions
to select the clocks to reset and the successor location.

Definition 8. A parametric PTA (pPTA) is a tuple P = (Loc, �0,Act ,X ,V,
prob, inv) where Loc, �0, Act,X and inv are as in Definition 1, V is a finite set
of parameters, and the parametric probabilistic transition function is

prob : Loc × CC(X ) × Act → DistrQ(V )(2X × Loc).

Applying a parameter instantiation u to the pPTA P yields the PTA P[u] by
replacing each f ∈ Q(V ) in the function prob of P by f [u]; we write the resulting
function as prob[u]. Observe that prob[u](�, g, a,X, �′) = prob(�, g, a,X, �′)[u] for
all �, �′ ∈ Loc, guard g, a ∈ Act, X ⊆ X .

Example 3. Consider pPTA P in Fig. 3 where the probability of successful trans-
mission is p. Applying instantiation u = { p �→ 0.9 } to P yields PTA A of Fig. 2.

A region R ⊆ R
n is a fragment of the parameter space1. A region R is graph-

preserving for pPTA P if for all u ∈ R and polynomials f in prob of P f [u] > 0,
that is, none of the edges contains a probability 0. A region is thus graph-
preserving if all its valuations induce the same topology. We define parametric
MDPs as an extension of MDPs and use them for the semantics of pPTA.

Example 4. Consider pPTA P again. Region R = [0.1, 0.9] is graph-preserving
while [0, 0.9] is not. For both, all probability distributions in P are well-defined.

Definition 9. A parametric MDP (pMDP) M is an MDP over a finite set
V of variables, and prob : S × Act ′ → DistrQ(V )(S).

1 Parameter regions should not be confused with the regions of clock valuations as in
the classic region graph construction for a (P)TA.
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Definition 10. The semantics of a pPTA P over V is the pMDP �P�dense
over V defined analogously to Definition 7.

The definition of prob′ includes sums of polynomials, which remain polynomi-
als. Since the transition functions are equivalent, i.e. we have prob′[u] = prob′′

for �P�dense[u] = (S, s0,Act , V, prob′[u]) and �P[u]�dense = (S, s0,Act , V, prob′′),
parameter instantiation and the dense-time semantics commute.

Properties. We consider time-bounded and unbounded reachability properties
on PTAs, i.e. the probability of eventually or within a time bound reaching a
target set T ⊆ Loc × Zones(X ). Specification ϕ = P≤λ(♦T ) asserts that the
probability of eventually reaching T from the initial state (�0,0) is at most λ,
where λ ∈ Q ∩ [0, 1]. That is, for PTA A,

A |= P∼λ(♦T ) iff for all σ ∈ Sched(A) we have PrA
σ

(♦T ) ∼ λ,

where PrA
σ

(♦T ) is the probability mass of all infinite paths in A that start in
(�0,0) and visit some pair (�, ζ) ∈ T . To support time-bounded reachability,
we assume that each PTA A has a clock z ∈ X , which does not occur in any
invariant or guard of A and is never reset. We then check that z does not exceed
bound n ∈ N. We reduce this to the unbounded case and focus on that in the
remainder of this paper:

A |= P∼λ(♦≤n T ) iff A |= P∼λ(♦T≤n)

where T≤n := {(�, ζ ∩ ζz≤n) | (�, ζ) ∈ T}. The definition for strict bounds < is
analogous. Negation is defined by

A |= ¬P∼λ(♦T ) iff A |= P(¬ ∼)λ(♦T )

and similar for P∼λ(♦≤n T ). These notions are lifted to pPTA by considering
properties relative to ranges of parameter values, i.e. regions.

Definition 11. Given region R and pPTA P, let

P, R |= P∼λ(♦T ) iff ∀σ ∈ Sched(P[u]), u ∈ R. PrP[u]σ (♦T ) ∼ λ (1)

P, R |= ¬P∼λ(♦T ) iff ∀σ ∈ Sched(P[u]), u ∈ R. PrP[u]σ (♦T ) (¬ ∼) λ. (2)

We call a region accepting (rejecting), denoted Ra (Rr), if 1 (2) holds. If a region
is neither accepting nor rejecting, it is called inconsistent (denoted Ri).

Example 5. Reconsider P from Fig. 3. Let ϕ = P≥0.75(♦{(done, ζtrue)}). Region
Rr := [0.2, 0.4] is rejecting; Ra := [0.6, 0.8] is accepting, and Ri := [0.4, 0.6] is
inconsistent, as property ϕ is violated for p = 0.4 but satisfied for p = 0.6.

Furthermore, we define the minimal probability in pPTA P of eventually reaching
a state in T on region R as follows:

PrP,R
min (♦T ) = min{PrP[u]σ (♦T ) | ∀u ∈ R, σ ∈ Sched(P)}.

The maximal probability is defined analogously. The definition can be applied to
PTA A with any region, as there are no parameters; we then omit R: PrAmin(♦T ).
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2.4 Problem Statement

This paper focuses on parameter space partitioning [14,51] for pPTA. The key
idea is to partition a graph-preserving parameter space into accepting and reject-
ing regions w.r.t. a property ϕ. As obtaining a complete partitioning is practi-
cally infeasible, the aim is to cover at least c% of the parameter space.

Approximate synthesis problem for pPTA. Given pPTA P, specification ϕ,
percentage c and region R, partition R into regions Ra, Rr, and Ri such
that P, Ra |= ϕ and P, Rr |= ¬ϕ where Ra ∪ Rr covers at least c% of R.

To solve this problem, we consider techniques to obtain a finite-state pMDP
for the semantics of the pPTA in the next section. We then solve the approxi-
mate synthesis on the resulting pMDP. Note that this is a computationally hard
problem: finding parameter values for a pMDP that satisfy a reachability prop-
erty is ETR-complete [38]2. To check whether a region is accepting or rejecting,
we apply parameter lifting [51] on this pMDP. Parameter lifting first drops all
dependencies between parameters in a pMDP. It then transforms the pMDP
into a 2-player stochastic game to obtain upper and lower bounds for the given
property ϕ. It applies to finite-state pMDPs and graph-preserving regions. In
Sect. 5 we experimentally show this approach’s feasibility.

3 PPTA to pMDP Methods

The main question is now whether existing techniques that verify PTA by obtain-
ing finite-state MDPs carry over to the parametric setting. We will answer this
question affirmatively for the digital clocks and backwards reachability tech-
niques. The correctness criterion is, as we will show, that they preserve reach-
ability probabilities as defined on the dense-time semantics. The presentation
below is along the lines of [49] adapted to the case with parameters.

3.1 Digital Clocks

The digital clocks approach for TA [9,34] and its adaptation to PTA [44] only
consider integer clock valuations, i.e. valuations in N

X , and delays of 1 time unit.
By capping the clock valuation for clock x to kx + 1, where kx is the maximal
constant to which x is compared in the PTA, digital clocks give rise to a finite
MDP. To that end, let (v ⊕ t)(x) = min{v(x) + t,kx + 1} for each x ∈ X . The
digital clock approach requires the PTA to be closed, i.e. all clock constraints
must only contain non-strict comparisons such as x ≤ c and x ≥ c.

Definition 12. The digital clocks semantics of a closed pPTA P is the
pMDP �P�dc = (S, s0,Act ′, V, prob′) with S = { (�, v) ∈ Loc×N

X | v |= inv(�) }
and s0, Act ′, and prob′ are as in Definition 7 (restricted to S), except that for
time delays we use

prob′((�, v), a, (�′, v′)) = 1 if a = 1 ∧ � = �′ ∧ v′ = v ⊕ 1 |= inv(�′).
2 Existential Theory of the Reals. ETR problems are between NP and PSPACE, and

ETR-hard problems are as hard as finding the roots of a multi-variate polynomial.
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Correctness. To prove the correctness of the digital clocks semantics for pPTA
we first show that parameter instantiation and digital clocks semantics commute.

Lemma 1. For pPTA P and parameter valuation u: �P[u]�dc = �P�dc[u].

Proof. By Definition 12, we need to prove that the transition functions are equiv-
alent, i.e. prob′((�, v), a, (�′, v′))[u] = prob′[u]((�, v), a, (�′, v′)). From Definition 7
this follows for all cases except a = 1 ∧ � = �′ ∧ v′ = v ⊕ 1 |= inv(�′). For this
case, prob′((�, v), a, (�′, v′)) = 1. As no parameters occur in this case, equivalence
follows trivially. Therefore the transition functions are equivalent. ��
Furthermore, similar as for PTA, the following lemma holds:

Lemma 2. For any closed pPTA P, closed target T , and region R, we have

PrP,R
min (♦T ) = Pr

�P�dc,R
min (♦T ) and PrP,R

max(♦T ) = Pr�P�dc,R
max (♦T ).

Proof. For minimal reachability, take an arbitrary but fixed u ∈ R. Then P[u]
is a PTA. Thus, PrP[u]

min (♦T ) = Pr
�P[u]�dc
min (♦T ) [44]. Using Lemma 1, we conclude

Pr
P[u]
min (♦T ) = Pr

�P�dc[u]
min (♦T ). Maximal reachability is proven analogously.

This yields the following result on preserving rejecting and accepting regions:

Theorem 1 (correctness of digital clocks). For region R, closed target T
and closed pPTA P:

P, R |= P∼λ(♦T ) ⇐⇒ �P�dc, R |= P∼λ(♦T ).
P, R |= ¬P∼λ(♦T ) ⇐⇒ �P�dc, R |= ¬P∼λ(♦T )

Proof. We show the case of preserving an accepting region for � ∈ {<,≤}:

P, R |= P�λ(♦T ) Def. 11⇔ ∀u ∈ R. P[u] |= P�λ(♦T )

⇔ PrP,R
max(♦T ) � λ

Lem. 2⇔ Pr�P�dc,R
max (♦T ) � λ

⇔ ∀u ∈ R. �P�dc[u] |= P�λ(♦T )

Def. 11⇔ �P�dc, R |= P�λ(♦T ).

The proofs for preserving rejecting regions for � and accepting/rejecting regions
for �∈ {>,≥} are analogous using PrP,R

min(♦T ) rather than PrP,R
max(♦T ).

From Theorem 1 it follows that accepting/rejecting regions are preserved under
the digital clocks semantics. Therefore, the inconsistent regions are preserved,
too. Note that region R does not need to be closed. This is only necessary for
clock constraints, and they are not influenced by parameters in our setting.

Complexity. An upper bound on the number of states in the digital clocks seman-
tics is |Loc| · ∏

x∈X (kx+1). This means that the runtime for parameter region
verification as used in Theorem 1 is exponential in the number of clocks. In
Sect. 5, we will report on the practical feasibility of digital clocks for pPTA.
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3.2 Backwards Reachability

To tackle the state space explosion of digital clocks, we consider backwards reach-
ability [46]. Instead of using explicit states (i.e. pairs of locations and valuations),
it computes a finite set of symbolic states—all that can reach the target T .

As in [46], a symbolic state is a pair (�, ζ) ∈ Loc × Zones(X ). For a set of
symbolic states U ⊆ Loc × Zones(X ), let ζ�

U =
⋃{ζ | (�, ζ) ∈ U} be all zones in

U that are paired with location �. To determine the reachable symbolic states,
we use time (tpreU) and discrete (dpre) predecessor operations. Let V be the set
of symbolic states explored so far; initially V = {T}. Then tpreU determines the
symbolic states that can reach a state in V by delays, all the while staying in U;
dpre are those that can do so via jumps.

Definition 13. Given a pPTA P = (Loc, �0,Act ,X ,V, prob, inv), sets of sym-
bolic states U and V , let:

tpreU(V) := {(�,↙ζ�
U ∩ζinv(�)

(ζ�
V) ∩ ζinv(�))}

where ↙ζ′ (ζ) := {v | ∃t ≥ 0. (v + t |= ζ ∧ ∀t′ ≤ t. (v + t′ |= ζ ∪ ζ ′))} which
denotes the zone that can reach ζ by delays while staying in ζ ′.

The function dpre is adopted from [46] and is omitted here. Backwards reach-
ability iteratively applies tpreU and dpre to V until it reaches a fixed point. It
returns an initial symbolic state z0, a set Z of symbolic states, and a probability
function prob′ on symbolic states that is based on the probability function prob
of P. For more details, we refer the interested reader to the MaxU algorithm
in [46]. Most important for us is the fact that we input a pPTA and a set of
symbolic target states and that it returns a pMDP.

Definition 14. For the initial symbolic state z0, set Z of symbolic states and
probability function prob′, the backwards reachability semantics of P =
(Loc, �0,Act ,X ,V, prob, inv) is the pMDP �P�br(T ) = (Z, z0,Act , V, prob′).

Correctness. To prove the correctness of the backwards reachability semantics of
a pPTA, we first show that parameter instantiation and the semantics commute
similarly to the case for digital clocks.

Lemma 3. For pPTA P, target T , and valuation u: �P�br(T )[u] = �P[u]�br(T ).

The proof is analogous to the proof of Lemma 1.
Let T C = Loc × Zones(X )\T and let AT be the set of symbolic states from

which there exists a scheduler that almost surely never reaches T , then:

Lemma 4. For pPTA P, region R, and target T , with �true�=Loc×Zones(X ):

PrP,R
max(♦T ) = Pr

�P�br(T ),R
max (♦tpre�true�(T )).

PrP,R
min (♦T ) = 1 − Pr

�P�br(T ),R
max (♦tpreT C (AT )).
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The proof for maximal probabilities is analogous to that of Lemma 2, using
Lemma 3 and that PrAmax(♦T ) = Pr

�A�br(T )
max (♦tpre�true�(T )) for PTA A [46]. The

proof cannot generally be applied to minimal probabilities since the backwards
reachability semantics only preserves upper-bounded properties. Therefore, we
have to convert lower-bounded properties to such. The idea behind the conver-
sion is the following: Instead of calculating whether we reach T , we calculate the
opposite, i.e. whether we never reach T . This is achieved by ending up in AT .
However, before reaching AT , we must not visit T beforehand. This is encoded in
the semantics by MaxU ; paths through T cannot reach AT . For the correctness
of this conversion we refer to [40,46].

Theorem 2 (correctness of backwards reachability). Given a region R,
target T , and pPTA P, we have

P, R |= P�λ(♦T ) ⇐⇒ �P�br(T ), R |= P�λ(♦tpre�true�(T )).

P, R |= P�λ(♦T ) ⇐⇒ �P�br(T ), R |= P�1−λ(♦tpreT C (AT ))

The proof is analogous to that of Theorem 1 using Lemma 4 instead of Lemma 2.
From Theorem 2 it follows that accepting regions are preserved under the

backwards reachability semantics. The proof for rejecting regions is analogous.
Therefore, the inconsistent regions are preserved, too.

Complexity. In the worst case, running the algorithm on a PTA P generates an
MDP in which the set of symbolic states is the set Loc × Zones(X ), which is
doubly exponential in the number of clocks for PTA [46]. This is the same for
pPTA as parameters do not affect the size of the result. However, case stud-
ies have shown that for PTA the state space is significantly smaller than the
worst case [46]. It is claimed that the algorithm is feasible for most practical
applications. In Sect. 5, we will report on the practical feasibility of backwards
reachability for pPTA.

3.3 Other Methods

Digital clocks are only compatible with a limited class of pPTAs and backwards
reachability only calculates reachability properties. However, other methods are
established for model checking PTAs that do not restrict the PTA and properties.
We briefly discuss whether these techniques can be applied to pPTA.

Region Graph. In the region graph [45], clock equivalence classes are considered.
All clock valuations that satisfy the same constraints are grouped and used
to build a clock region. This is equivalent to the symbolic states of backwards
reachability, where the clock regions are minimal in the most basic variant.
This leads to a relatively large state space, although this problem is tackled by
other variants, like probabilistic time-abstract bisimulation [17]. The algorithm
is applicable to pPTA and the proof is similar to that of digital clocks and
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Fig. 4. Our toolchain for pPTA parameter space partitioning

backwards reachability: The substitution of parameters before/after obtaining
the region graph semantics is equivalent and minimal/maximal reachability is
preserved, which means accepting and rejecting regions are preserved.

Forwards Reachability. As for backwards reachability, forwards reachability [45]
only considers relevant symbolic states. However, this method performs a for-
ward search from the initial state to the target states. The complexity of forwards
reachability is exponential in the number of clocks. However, the forwards algo-
rithm is generally faster than its backwards equivalent [46], but it only provides
upper (lower) bounds on the maximal (minimal) probability [22]. This makes
forward reachability unsuited for parameter synthesis as regions may be falsely
classified as accepting/rejecting. For example, we might have a region that is
inconsistent for some upper bounded property. This means that there are both
valuations that satisfy and violate the property. As forwards reachability gives
bounds on the probability, it might push this probability beyond the bound of
the property, resulting in a rejecting region where this is not the case.

Stochastic Games. The stochastic game abstraction [42] transforms the PTA
into a 2-player stochastic game. It is usually faster than both digital clocks and
backwards reachability in practice [42]. We conjecture that the method can be
directly applied on pPTA, resulting in parametric stochastic games. However,
as parameter synthesis is not implemented for this type of model in Storm or
other tools, we would currently not be able to obtain an implementation in the
same manner as for the MDP-based approaches.

4 Implementation

We implemented a parameter synthesis pipeline for pPTA by combining the
Modest Toolset and the Storm model checker as outlined in Fig. 4. The
former has long had support for PTA model checking via digital clocks [27]. Since
digital clocks are a syntax-level transformation, the toolset’s moconv converter
can turn closed PTA models specified in the Modest modelling language [13,26]
or the Jani model interchange format [16] into digital clocks MDP, in either of
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these languages. The implementation is agnostic to the presence of parameters
and thus readily works for pPTA, too, exporting pMDP models. Models are
usually specified compositionally as a network of multiple pPTA extended with
discrete (Boolean and bounded integer) variables. The conversion preserves this
high-level structure without a blowup in (syntactical) model size. By exporting to
Jani, the compositional pMDP can be read back by Storm, which implements
parameter space partitioning to deliver the desired set of regions. The actual
state space exploration—flattening the composition of variable-extended pMDP
into one large pMDP—is performed by Storm in this setup.

For this work, we added an implementation of backwards reachability for
maximum probabilities to the Modest Toolset for PTA and pPTA. As shown
in the upper branch in Fig. 4, we first turn the compositional pPTA into a
single automaton where only clock variables remain. To this we apply backwards
reachability using our own implementation of difference-bound matrices. The
resulting flat pMDP is then exported to a Jani file, which is usually much larger
than the original input. Again, this file can be subsequently be read and regions
computed via Storm. For minimum probabilities, backwards reachability would
generate non-convex zones, for which we do not have an implementation yet.

5 Evaluation

To evaluate the feasibility of our approach as well as the relative scalability and
performance of the two methods, we performed an experimental comparison
using our implementation on parametric adaptations of existing PTA bench-
marks as well as of the industrial AODV case study.

Table 1. Model characteristics

model params clocks max.kx

AODV(-n) 1-5 2 4

BRP 1-2 4 16-1657

RM 3 2 5

RH 1 2 5

ZC 1 2 20

FW 1 1 1670

Benchmarks. As we provide the first
tool support for pPTA, there are
no existing pPTA benchmarks for
us to use. We thus turned existing
PTA models into pPTA. Among the
9 PTA models in QVBS [30], 5 could
be parametrised in a sensible way:
those of the bounded retransmission
protocol (BRP) [27,32], the repu-
diation protocol with honest (RH)
and malicious receiver (RM) [48],
the Zeroconf protocol (ZC) [18], and the IEEE 1394 Firewire protocol (FW) [54].
We consider two variants of BRP: one with equal and one with different loss prob-
abilities for the data and acknowledgement channels. Furthermore, we vary the
constants used in the clock constraints to obtain one “small” (S) and one “large”
(L) variant of BRP. In RH, we make the probability that a certain message is
the last one parametric, and in RM additionally the probability to decode a mes-
sage. The original repudiation pPTA are not closed and thus only suitable for
backwards reachability. We created non-strict (nstr in Fig. 7) variants of these



52 A. Hartmanns et al.

Fig. 5. Runtime up to state space exploration (left) and number of states (right)

Fig. 6. Parameter space partitioning time (s), 90% (left), 99% (right) coverage

models to enable a comparison. We use two parameters in ZC: the probability
to correctly receive a message and the probability that an occupied IP-address
is selected. In FW, the parameter is the probability to select between the slow
and the fast path.

Additionally, we consider the probabilistic version of the AODV routing pro-
tocol [39], which so far had been analysed for selected concrete message loss
probabilities only. It comes in two variants, one with routing error (AODV) and
one without (AODV-n). For each node, we make the probability to lose an incom-
ing message parametric. By using the same parameter across different subsets of
nodes, excluding symmetric cases, we obtain 5 models with 1 (all probabilities
are p vs. 1 − p) to 5 (every node has its own parameter pi) parameters. Table 1
summarises the characteristics of our benchmarks.
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Fig. 7. Runtime for parameter space partitioning with 90% coverage

Setup. We did all experiments on an Intel Core i5-8300H (2.3–4.0 GHz) system
with 8 GB of memory running 64-bit Ubuntu 20.04. The timeout was one hour.

Results. In Fig. 5, we compare digital clocks and backwards reachability in terms
of the runtime (left) without the parameter space partitioning phase and the
number of states of the pMDP (right). Note that for digital clocks, the run-
time for the syntactical conversion is negligible. In these scatter plots, a point
(x, y) indicates that digital clocks took x seconds or caused x states compared
to y seconds/states for backwards reachability, for one specific combination of
benchmark, variant (where applicable), and property to check. The dotted lines
indicate differences of a factor of 10 and 100. Figure 6 similarly shows the runtime
for parameter space partitioning for 90 and 99% coverage.

We observe that digital clocks generate larger state spaces than backwards
reachability, just like it does for PTA [46]. We note that the number of transi-
tions per state, however, is often larger with backwards reachability. Ultimately,
performance also depends on the topology of the state space, and backwards
reachability needs to perform a sometimes expensive symbolic reachability com-
putation, explaining why digital clocks still often manage to be faster as far as
obtaining the flat pMDP is concerned (Fig. 5 left). In Fig. 6, however, we can see
that backwards reachability is mostly faster in the partitioning phase.

Figure 7 plots the partitioning runtime for those benchmarks where we can
vary the number of parameters or the property time bound. On top, we indicate
the respective benchmark and property being checked (in case multiple are avail-
able). We observe an exponential increase in runtime as we increase the number
of parameters for AODV; AODV-n showed similar behaviour. A similar pattern
occurs for BRP. Runtime increases mostly linearly with the time bound.
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Another important observation is the difference between digital clocks and
backwards reachability for property P4 of BRP with 2 parameters. Not only
did backwards reachability produce a state space that is orders of magnitude
smaller, but it was also able to completely remove a parameter by realising that
it does not influence the probability for this particular property. This is due
to the symbolic backwards exploration generating a property-dependent pMDP
since it starts from the property’s target set. Digital clocks, on the other hand,
syntactically preserve all behaviour, and Storm then explores all states reach-
able from the initial state, including states that do not influence the probability
for property P4. One parameter however happens to only occur on transitions
out of such states in this very case. Consequently, on the backward reachabil-
ity pMDP for P4, Storm generates a partitioning within a millisecond while
it takes much longer on the digital clocks pMDP for the small BRP model (S).
For the large BRP model (L), Storm generates a partitioning with backwards
reachability within milliseconds while it runs out of memory when building the
state space for digital clocks.

6 Conclusion

We presented an approach to tackle the approximate synthesis problem for para-
metric PTA, that is, to partition the parameter space into accepting and rejecting
regions for a given property such that c% of the parameter space is covered. The
idea is to first obtain a finite pMDP that is equivalent to the pPTA for the prop-
erty at hand, and to then apply parameter space partitioning on the pMDP. In
the application to AODV, a real-world case study [39], our experiments showed
encouraging results, thereby highlighting the usefulness of parametric PTA, our
approach, and its implementation.

Beyond this Paper. In this paper, we focused on unbounded and time-bounded
probabilistic reachability. The overall approach, however, also works with
expected accumulated reachability reward properties when we use digital clocks
for the abstraction step [40]. In our case studies, we did not include lower-
bounded reachability properties, as those refer to minimal probabilities and are
thus affected by divergence. We did not take divergence into account in this
paper, but solutions are available in the form of fairness and end-component anal-
ysis [40,52]. While backwards reachability calculates probabilities under diver-
gence out of the box, it generates non-convex zones for minimum probabilities,
for which we do not (yet) have an efficient implementation. The digital clock and
backwards reachability approach can also be used to other parameter synthesis
questions for pPTA such as feasibility checking (“does there exist a parameter
valuation for which a specification holds?”). The resulting pMDPs can then be
analysed using quadratic programming [19].

Outlook. Now that a toolchain for pPTA exists, we would like to study more
pPTA case studies; the authors would be happy to assist application experts
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(e.g. in wireless networks [39]) in modelling and by tuning the tools. Interesting
future directions to extend our work are to combine parametrised probabilities
with parameters in clock constraints (likely focusing on decidable subclasses as
mentioned in Sect. 1), and to consider pPTA in which transition probabilities can
depend on clocks [53]. Currently, the stochastic games abstraction is the most
competitive technique for PTA. However, parameter space partitioning is not
available for parametric stochastic games in Storm or related tools. Developing
this would enable the use of the stochastic games abstraction for pPTA.

Data Availability. The tools used and data generated in our experimental eval-
uation are archived at DOI 10.4121/14910426 [29].
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