52,069 research outputs found

    On Termination of Integer Linear Loops

    Full text link
    A fundamental problem in program verification concerns the termination of simple linear loops of the form x := u ; while Bx >= b do {x := Ax + a} where x is a vector of variables, u, a, and c are integer vectors, and A and B are integer matrices. Assuming the matrix A is diagonalisable, we give a decision procedure for the problem of whether, for all initial integer vectors u, such a loop terminates. The correctness of our algorithm relies on sophisticated tools from algebraic and analytic number theory, Diophantine geometry, and real algebraic geometry. To the best of our knowledge, this is the first substantial advance on a 10-year-old open problem of Tiwari (2004) and Braverman (2006).Comment: Accepted to SODA1

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3

    Open Diophantine Problems

    Full text link
    We collect a number of open questions concerning Diophantine equations, Diophantine Approximation and transcendental numbers. Revised version: corrected typos and added references.Comment: 58 pages. to appear in the Moscow Mathematical Journal vo. 4 N.1 (2004) dedicated to Pierre Cartie

    Frobenius difference equations and algebraic independence of zeta values in positive equal characteristic

    Full text link
    In analogy with the Riemann zeta function at positive integers, for each finite field F_p^r with fixed characteristic p we consider Carlitz zeta values zeta_r(n) at positive integers n. Our theorem asserts that among the zeta values in {zeta_r(1), zeta_r(2), zeta_r(3), ... | r = 1, 2, 3, ...}, all the algebraic relations are those algebraic relations within each individual family {zeta_r(1), zeta_r(2), zeta_r(3), ...}. These are the algebraic relations coming from the Euler-Carlitz relations and the Frobenius relations. To prove this, a motivic method for extracting algebraic independence results from systems of Frobenius difference equations is developed.Comment: 14 page
    • …
    corecore