426 research outputs found

    Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes.

    Get PDF
    Activity level and gait parameters during daily life are important indicators for clinicians because they can provide critical insights into modifications of mobility and function over time. Wearable activity monitoring has been gaining momentum in daily life health assessment. Consequently, this study seeks to validate an algorithm for the classification of daily life activities and to provide a detailed gait analysis in older adults. A system consisting of an inertial sensor combined with a pressure sensing insole has been developed. Using an algorithm that we previously validated during a semi structured protocol, activities in 10 healthy elderly participants were recorded and compared to a wearable reference system over a 4 h recording period at home. Detailed gait parameters were calculated from inertial sensors. Dynamics of physical behavior were characterized using barcodes that express the measure of behavioral complexity. Activity classification based on the algorithm led to a 93% accuracy in classifying basic activities of daily life, i.e., sitting, standing, and walking. Gait analysis emphasizes the importance of metrics such as foot clearance in daily life assessment. Results also underline that measures of physical behavior and gait performance are complementary, especially since gait parameters were not correlated to complexity. Participants gave positive feedback regarding the use of the instrumented shoes. These results extend previous observations in showing the concurrent validity of the instrumented shoes compared to a body-worn reference system for daily-life physical behavior monitoring in older adults

    Assessment of Foot Signature Using Wearable Sensors for Clinical Gait Analysis and Real-Time Activity Recognition

    Get PDF
    Locomotion is one of the most important abilities of humans. Actually, gait locomotion provides mobility, and symbolizes freedom and independence. However, gait can be affected by several pathologies, due to aging, neurodegenerative disease, or trauma. The evaluation and treatment of mobility diseases thus requires clinical gait assessment, which is commonly done by using either qualitative analysis based on subjective observations and questionnaires, or expensive analysis established in complex motion laboratories settings. This thesis presents a new wearable system and algorithmic methods for gait assessment in natural conditions, addressing the limitations of existing methods. The proposed system provides quantitative assessment of gait performance through simple and precise outcome measures. The system includes wireless inertial sensors worn on the foot, that record data unobtrusively over long periods of time without interfering with subject's walking. Signal processing algorithms are presented for the automatic calibration and online virtual alignment of sensor signals, the detection of temporal parameters and gait phases, and the estimation of 3D foot kinematics during gait based on fusion methods and biomechanical assumptions. The resulting 3D foot trajectory during one gait cycle is defined as Foot Signature, by analogy with hand-written signature. Spatio-temporal parameters of interest in clinical assessment are derived from foot signature, including commonly parameters, such as stride velocity and gait cycle time, as well as original parameters describing inner-stance phases of gait, foot clearance, and turning. Algorithms based on expert and machine learning methods have been also adapted and implemented in real-time to provide input features to recognize locomotion activities including level walking, stairs, and ramp locomotion. Technical validation of the presented methods against gold standard systems was carried out using experimental protocols on subjects with normal and abnormal gait. Temporal aspects and quantitative estimation of foot-flat were evaluated against pressure insoles in subjects with ankle treatments during long-term gait. Furthermore, spatial parameters and foot clearance were compared in young and elderly persons to data obtained from an optical motion capture system during forward gait trials at various speeds. Finally, turning was evaluated in children with cerebral palsy and people with Parkinson's disease against optical motion capture data captured during timed up and go and figure-of-8 tests. Overall, the results demonstrated that the presently proposed system and methods were precise and accurate, and showed agreement with reference systems as well as with clinical evaluations of subjects' mobility disease using classical scores. Currently, no other methods based on wearable sensors have been validated with such precision to measure foot signature and subsequent parameters during unconstrained walking. Finally, we have used the proposed system in a large-scale clinical application involving more than 1800 subjects from age 7 to 77. This analysis provides reference data of common and original gait parameters, as well as their relationship with walking speed, and allows comparisons between different groups of subjects with normal and abnormal gait. Since the presented methods can be used with any foot-worn inertial sensors, or even combined with other systems, we believe our work to open the door to objective and quantitative routine gait evaluations in clinical settings for supporting diagnosis. Furthermore, the present studies have high potential for further research related to rehabilitation based on real-time devices, the investigation of new parameters' significance and their association with various mobility diseases, as well as for the evaluation of clinical interventions

    An in-shoe gait analysis device to measure the maximum shear stresses at the first metatarsal head

    Get PDF
    Bibliography: leaf 107.Recent research indicates that the shear stresses acting on a diabetic's foot are one of the major mechanical contributors to the high incidence of ulceration experienced by these patients. These stresses together with direct pressure are thought to have an effect on blood flow occlusion elsewhere in the body. The reduced blood flow may relate in moderation to reduced tissue tolerance or repair capability or even in more severe cases to cell death. Repeated vascular occlusion in a normal person would produce a minor blister or a swollen area, but with a diabetic patient it has the ability to create large incisions and ulcers. This is because diabetic patients are unable to redistribute the load on their feet due to the lack of sensation in their lower extremities. This results in diabetes being the number one cause of all lower limb amputations and accounting for 50 to 70 % of all non-traumatic amputations in the U.S. In the same country, it accounts for $200 million a year in treatment costs directly related to diabetic foot infections. Quantifying the magnitude and duration of these shear stresses therefore has the potential to play a crucial role in assisting podiatrists and clinicians in their diagnosis and treatment of these patients. However these stresses have not been widely evaluated due to lack of suitable instrumentation for their measurement. A technique which has proven to be the most successful in measuring these stresses involves placing a discrete transducer inside a customised insole and fitting it to a patient's shoe. This report sets out to design a similar technique but with the use of a differently designed transducer. The validity of and confidence in the proposed transducer was established by assessing and comparing the results of the transducer under a series of controlled tests with the results of other transducers presented in the literature. To allow an accurate assessment of the transducer to be made, the tests which were performed on the transducer were controlled and conducted at a fixed walking speed. The computational theory used was based on the assumptions and equations of two dimensional plane strain for linear elastic isotropic homogeneous materials. The transducer is based on the principle that a shear angle is induced on a plane when a shear stress is applied to a plane continuous and orthogonal to it. This principle was adapted into the design of the transducer in the form of a square block of material, whose two orthogonal lateral surfaces were used to measure the shear stress applied to its top surface. The design of the transducer consists of a block of material, two laterally positioned rectangular strain rosettes and a circular base. The first series of tests conducted on the transducer were intended to verify and establish its material properties and characteristics. A model of the transducer was then constructed using the finite element package ABAQUS. Two Shape Factors – one for calibration purposes and the other for in-shoe testing - were generated for the transducer to allow for the effects of the geometrical inconsistencies present in its design to be accounted for. Without these Shape Factors the equations and assumptions of linear elasticity would not have been appropriate. A series of controlled pilot and analysis tests were then performed using the custom designed insole and transducer fitted to a diabetic shoe. The diabetic shoe was worn by a subject who performed the tests on a treadmill at a laboratory in the Sports Institute of South Africa

    Instrumented shoes for daily activity monitoring in healthy and at risk populations

    Get PDF
    Daily activity reflects the health status of an individual. Ageing and disease drastically affect all dimensions of mobility, from the number of active bouts to their duration and intensity. Performing less activity leads to muscle deterioration and further weakness that could lead to increased fall risk. Gait performance is also affected by ageing and could be detrimental for daily mobility. Therefore, activity monitoring in older adults and at risk persons is crucial to obtain relevant quantitative information about daily life performance. Activity evaluation has mainly been established through questionnaires or daily logs. These methods are simple but not sufficiently accurate and are prone to errors. With the advent of microelectromechanical systems (MEMS), the availability of wearable sensors has shifted activity analysis towards ambulatory monitoring. In particular, inertial measurement units consisting of accelerometers and gyroscopes have shown to be extremely relevant for characterizing human movement. However, monitoring daily activity requires comfortable and easy to use systems that are strategically placed on the body or integrated in clothing to avoid movement hindrance. Several research based systems have employed multiple sensors placed at different locations, capable of recognizing activity types with high accuracy, but not comfortable for daily use. Single sensor systems have also been used but revealed inaccuracies in activity recognition. To this end, we propose an instrumented shoe system consisting of an inertial measurement unit and a pressure sensing insole with all the sensors placed at the shoe/foot level. By measuring the foot movement and loading, the recognition of locomotion and load bearing activities would be appropriate for activity classification. Furthermore, inertial measurement units placed on the foot can perform detailed gait analysis, providing the possibility of characterizing locomotion. The system and dedicated activity classification algorithms were first designed, tested and validated during the first part of the thesis. Their application to clinical rehabilitation of at risk persons was demonstrated over the second part. In the first part of the thesis, the designed instrumented shoes system was tested in standardized conditions with healthy elderly subjects performing a sequence of structured activities. An algorithm based on movement biomechanics was built to identify each activity, namely sitting, standing, level walking, stairs, ramps, and elevators. The rich array of sensors present in the system included a 3D accelerometer, 3D gyroscope, 8 force sensors, and a barometer allowing the algorithm to reach a high accuracy in classifying different activity types. The tuning parameters of the algorithm were shown to be robust to small changes, demonstrating the suitability of the algorithm to activity classification in older adults. Next, the system was tested in daily life conditions on the same elderly participants. Using a wearable reference system, the concurrent validity of the instrumented shoes in classifying daily activity was shown. Additionally, daily gait metrics were obtained and compared to the literature. Further insight into the relationship between some gait parameters as well as a global activity metric, the activity âcomplexityâ, was discussed. Participants positively rated their comfort while using the system... (Please refer to thesis for full abstract

    Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice

    Get PDF
    Background: Gait analysis using foot-mounted IMUs is a promising method to acquire gait parameters outside of laboratory settings and in everyday clinical practice. However, the need for precise sensor attachment or calibration, the requirement of environments with a homogeneous magnetic field, and the limited applicability to pathological gait patterns still pose challenges. Furthermore, in previously published work, the measurement accuracy of such systems is often only validated for specific points in time or in a single plane. Research question: This study investigates the measurement accuracy of a gait analysis method based on foot-mounted IMUs in the acquisition of the foot motion, i.e., position and angle trajectories of the foot in the sagittal, frontal, and transversal plane over the entire gait cycle. Results: A comparison of the proposed method with an optical motion capture system showed an average RMSE of 0.67° for pitch, 0.63° for roll and 1.17° for yaw. For position trajectories, an average RMSE of 0.51 cm for vertical lift and 0.34 cm for lateral shift was found. The measurement error of the IMU-based method is found to be much smaller than the deviations caused by the shoes. Significance: The proposed method is found to be sufficiently accurate for clinical practice. It does not require precise mounting, special calibration movements, or magnetometer data, and shows no difference in measurement accuracy between normal and pathological gait. Therefore, it provides an easy-to-use alternative to optical motion capture and facilitates gait analysis independent of laboratory settings

    Best practice statement : use of ankle-foot orthoses following stroke

    Get PDF
    NHS Quality Improvement Scotland (NHSQIS) leads the use of knowledge to promote improvement in the quality of health care for the people of Scotland and performs three key functions. It provides advice and guidance on effective clinical practice, including setting standards; drives and supports implementation of improvements in quality, and assessing the performance of the NHS, reporting and publishing findings

    Functional Comparison of Conventional AFOs with the Dynamic Response AFO

    Get PDF
    Ankle foot orthoses (AFOs) are commonly prescribed to provide stability and foot clearance for patients with weakened or injured musculature. The Dynamic Response AFO (DRAFO) was designed to improve proprioception at heel strike. The design includes a rigid outer shell with a cut out heel and a soft inner lining; it is typically aligned in plantarflexion and may incorporate external heel wedges. The objective of this study was to investigate the effects of the DRAFO design features and contrast its biomechanical function with that of conventional locked and articulating AFOs. The research hypotheses were: 1) DRAFO-assisted gait parameters (e.g. ankle plantarflexion during early stance, cross-over times of the shank and thigh vertical angles during stance, step width, dorsi activity duration during stance, and center of pressure progression during loading response) will approximate the no AFO condition and 2) DRAFO-assisted gait parameters (e.g. ankle and knee kinematics, cross-over times of the shank and thigh vertical angles during stance, peak foot progression angle, step width, stance phase dorsiflexion activity duration, and mediolateral motion of the center of pressure) will differ from the locked and articulating AFOs. Ten young healthy subjects were recruited for gait analyses during level treadmill walking; four AFO conditions were contrasted. After five minutes of AFO and treadmill acclimation, each subject walked for two minutes at the self-selected walking speed on a level treadmill. Acquired data included lower extremity joint and segment kinematics, dorsiflexion and plantarflexion muscle activity, and treadmill kinetic data. Ambulation in the DRAFO demonstrated significantly greater knee flexion and ankle plantarflexion than with conventional AFOs, the foot progression angle was reduced in the DRAFO relative to the no AFO condition, the center of pressure progression for the DRAFO was more medial than that observed during the no and articulating AFO conditions, and the time to transition from an inclined to a reclined shank during swing was delayed. These findings suggest that the plantarflexed alignment, external heel wedges, and perhaps the soft heel features of the DRAFO design affect lower limb joint and segment kinematics, while the rigid structure provides stability to the ankle and subtalar joints

    Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients

    Get PDF
    Background: Walking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly. Methods: In a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2–3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman’s Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users’ satisfaction was assessed by a customized questionnaire. Results: Fifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman’s test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system’s usability and its therapeutic effect as positive. Conclusions: Mobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs. Trial registration: DRKS00011853 , retrospectively registered on 2017/03/23
    corecore