3,424,880 research outputs found

    IFLA statement on privacy in the library environment

    Get PDF
    Introduction The rapid advancement of technology has resulted in increasing privacy implications for library and information services, their users, and society. Commercial Internet services, including those used to deliver library and information services, collect extensive data on users and their behaviour. They may also sell data about their users to third parties who then act on the data to deliver, monitor or withhold services. Using identification and location technology, governments and third parties can analyse a library user’s communication and activities for surveillance purposes or to control access to spaces, devices and services. Excessive data collection and use threatens individual users’ privacy and has other social and legal consequences. When Internet users are aware of large-scale data collection and surveillance, they may self- censor their behavior due to the fear of unexpected consequences. Excessive data collection can then have a chilling effect on society, narrowing an individual’s right to freedom of speech and freedom of expression as a result of this perceived threat. Limiting freedom of speech and expression has the potential to compromise democracy and civil engagement

    Happiness Institutions

    Get PDF
    Bakhjulsstyrning av fordon Ă€r en möjlig konfiguration som lite glömts bort inom fordonstekniken. Tidigare arbeten inom Ă€mnet bakhjulsstyrning Ă€r vĂ€ldigt detaljerade och snĂ€va i sin analys. I detta arbete vill författaren visa en bakgrund till hur olika farkoster styrs samt analys av detta. Syftet med arbetet Ă€r att utifrĂ„n litteratursökning och intervjuer kunna besvara vilken inverkan drivkĂ€llans placering och de konceptuella skillnaderna mellan olika farkoster har pĂ„ styrningens placering. Samt vilka förvĂ€ntade egenskaper en farkost fĂ„r med icke konventionell styrning. Med hjĂ€lp av en simulering i MATLAB Ă€r syftet att kunna besvara vilken roll massa, hastighet och axellĂ€ngd spelar för ett bakhjulsstyrt fordon och hur responsen ser ut jĂ€mfört med ett framhjulsstyrt fordon. Resultatet frĂ„n intervjuerna och litteraturen visar att drivkĂ€llans placering nĂ€ra rodret Ă€r vĂ€ldigt viktig för fartygs styrningsförmĂ„ga. DĂ€remot för flygplan pĂ„verkar det mest lastförmĂ„ga och för fordon tyngdpunktens placering. De konceptuella skillnaderna visar pĂ„ att större fordon har mer att vinna pĂ„ fyrhjulsstyrning dĂ„ en mindre vĂ€ndradie Ă€r merkritiskt för dessa och att flygplan som flyger i överljudsfart behöver andra vinguppsĂ€ttningar. För fartyg har det visat sig att en liten vĂ€ndradie Ă€r viktigt i hamnomrĂ„den och att bĂ„de stora och smĂ„ fartyg dĂ„ anvĂ€nder sig av bogpropellrar. De förvĂ€ntade egenskaperna för en ickekonventionell styrning Ă€r frĂ€mst negativ för fordon och fartyg, dĂ„ det finns risk för instabilitet och överstyrning, medan flygplan redananvĂ€nder sig av styrningen fram i form av nosvingar. Simuleringarna visar att ett bakhjulsstyrt fordon bör ha en hastighetsbegrĂ€nsning dĂ„ det blir svĂ„rkontrollerat i höga hastigheter över 50km/h. En större massa har visat sig hĂ€mma magnituden av den laterala accelerationen en i fel riktning och en lĂ€ngre axellĂ€ngd minskar rotationshastigheten kring gir-led. Resultaten visar ocksĂ„ att ett bakhjulsstyrt fordon har en fördröjning av den laterala accelerationen jĂ€mfört med ett framhjulsstyrt fordon pĂ„ 0,1-0,2 sekunder beroende av bland annat massa, axellĂ€ngd och hastighet. Responstesten visar att denna fördröjning bidrar till att den laterala förflyttningen Ă€r fördröjd första sekunden för hastigheter 10-90km/h men att redan efterytterligare 1,5 sekunder Ă€r den dubbel sĂ„ stor för hastigheter 50-90km/h. Slutsatsen Ă€r att fordon inte har bakhjulsstyrning i höga hastigheter pĂ„ grund av den fördröjda responsen i början samt av att utslaget efter nĂ„gra sekunder blir vĂ€ldigt mycket kraftigare vilket gör fordonet svĂ„rt att kontrollera.Rear wheel steering of vehicles is a possible steering, which has been forgotten in vehicle design. Earlier works show only details concerning one vehicle type from this subject. In this work the author will first present a background to how different vehicles are steered and then the analysis of it. The purpose with this paper is to from literature and interviews answer to which impact the placement of the engine and the conceptual differences have on the steering from different vessels. It will also answer which anticipated properties the steering will have if itÂŽs not placed in a conventional way. Through simulation in MATLAB the paper will answer to which degree mass, velocity and length of axle influences steering behaviour of a rear wheal steered, RWS, car and how the steering response is different to a front wheal steered car, FWS. The result from the literature and the interview shows that placement of engine and propeller near the rudder is very important for a ships steering capability. For vehicles it has most effect on the centrum of gravity, which is to prefer in middle of the vehicle,and for airplanes the ability to place cargo. The conceptual differences shows that a larger vehicle has more to gain, if it is equipped with four wheel steering, due to turning radius is a more critical aspect. For airplanes in super sonic speed it reveals that they need another set of wings. Ships need a smaller turning radius in harbours and all size of ships then use thrusters. The properties of a vessel with not conventional steering are most negative for cars and ships because of risk for oversteering and instability, while for airplanes its already in use in form of canard wings. The simulations display that rear wheel steered vehicle should have a limit of velocity because of its behaviour in high speeds over 50 km/h. A larger mass has shown todepress the magnitude of lateral acceleration in wrong direction and a larger length of an axle is shown to depress the yaw-rate. The result also displays that a RWS vehicle has a delay of the lateral acceleration compared to a FWS vehicle with approximately 0,1-0,2 seconds depending on mass, velocity and length of axle. The test of response indicates that this delay contributes to the delay of the lateral movement of the vehicle the first second for speeds between 10-90 km/h, but after only 1,5 seconds further thelateral movement is twice the value for speeds 50-90km/h. The conclusion is that vehicle doesn’t have RWS due to the delay in response in the beginning and the very larger lateral movement after only seconds later, which makes the vehicle hard to control
    • 

    corecore