555 research outputs found

    Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Get PDF
    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing background sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording: one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles

    Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Get PDF
    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold

    Slow wave activity in the medial prefrontal cortex of the anaesthetised rat : sub-regional characterisation and dopaminergic modulation

    Get PDF
    PhD ThesisDuring non-rapid eye movement (NREM) sleep, information may be transferred from hippocampus to cortex for long-term storage through synchronised reactivation of these areas. Electrical brain activity during deep NREM sleep consists mainly of a slow (< 1 Hz) alternation between ‘Up’ and ‘Down’ states (UDS). UDS enable the coordination of fast oscillations (> 6 Hz) at different frequencies between different brain regions, which is thought to aid memory consolidation. Coordinated reactivation is though to be guided by the medial prefrontal cortex (mPFC) with its strong connections to many other cortical and subcortical regions. Dopamine strongly modulates mPFC function during wakefulness. However, UDS are not well characterized in the mPFC and little is know about how dopamine modulates mPFC activity during sleep. We recorded UDS in the mPFC of urethane-anaesthetised rats and found significant variation in UDS characteristics both between mPFC sub-regions and between cortical laminae. Activation of the intrinsic dopamine system using tonic, high-frequency electrical stimulation of the ventral tegmental area abolished UDS in the mPFC, shifting activity to a low amplitude fast rhythm, as occurs during rapid eye movement (REM) sleep. This effect was blocked by a dopamine D1 receptor (D1R) antagonist, but not a D2R antagonist. An increase of extracellular dopamine by systemic amphetamine application significantly decreased the power of spindle (6-15 Hz) and gamma (30-80 Hz) oscillations during the Up state. D4R and D1R agonists also affected highfrequency oscillations associated with Up states. These results suggest that D1 receptors might play a role in the change in mPFC activity associated with the transition from NREM sleep to REM sleep. In addition, dopaminergic modulation shows the ability to finely tune Up state-associated fast oscillations, which may potentially be relevant for the coordination between different brain regions, as is necessary for memory consolidation

    Automatic Sleep EEG Pattern Detection

    Get PDF
    Analýza mozkové aktivity je jednou z klícových vyšetrovacích metod v moderní spánkové medicíne a výzkumu.nalysis of recorded brain activity is one of the main investigation methods in modern sleep medicine and research

    Dynamics and precursor signs for phase transitions in neural systems

    Get PDF
    This thesis investigates neural state transitions associated with sleep, seizure and anaesthesia. The aim is to address the question: How does a brain traverse the critical threshold between distinct cortical states, both healthy and pathological? Specifically we are interested in sub-threshold neural behaviour immediately prior to state transition. We use theoretical neural modelling (single spiking neurons, a network of these, and a mean-field continuum limit) and in vitro experiments to address this question. Dynamically realistic equations of motion for thalamic relay neuron, reticular nuclei, cortical pyramidal and cortical interneuron in different vigilance states are developed, based on the Izhikevich spiking neuron model. A network of cortical neurons is assembled to examine the behaviour of the gamma-producing cortical network and its transition to lower frequencies due to effect of anaesthesia. Then a three-neuron model for the thalamocortical loop for sleep spindles is presented. Numerical simulations of these networks confirms spiking consistent with reported in vivo measurement results, and provides supporting evidence for precursor indicators of imminent phase transition due to occurrence of individual spindles. To complement the spiking neuron networks, we study the Wilson–Cowan neural mass equations describing homogeneous cortical columns and a 1D spatial cluster of such columns. The abstract representation of cortical tissue by a pair of coupled integro-differential equations permits thorough linear stability, phase plane and bifurcation analyses. This model shows a rich set of spatial and temporal bifurcations marking the boundary to state transitions: saddle-node, Hopf, Turing, and mixed Hopf–Turing. Close to state transition, white-noise-induced subthreshold fluctuations show clear signs of critical slowing down with prolongation and strengthening of autocorrelations, both in time and space, irrespective of bifurcation type. Attempts at in vitro capture of these predicted leading indicators form the last part of the thesis. We recorded local field potentials (LFPs) from cortical and hippocampal slices of mouse brain. State transition is marked by the emergence and cessation of spontaneous seizure-like events (SLEs) induced by bathing the slices in an artificial cerebral spinal fluid containing no magnesium ions. Phase-plane analysis of the LFP time-series suggests that distinct bifurcation classes can be responsible for state change to seizure. Increased variance and growth of spectral power at low frequencies (f < 15 Hz) was observed in LFP recordings prior to initiation of some SLEs. In addition we demonstrated prolongation of electrically evoked potentials in cortical tissue, while forwarding the slice to a seizing regime. The results offer the possibility of capturing leading temporal indicators prior to seizure generation, with potential consequences for understanding epileptogenesis. Guided by dynamical systems theory this thesis captures evidence for precursor signs of phase transitions in neural systems using mathematical and computer-based modelling as well as in vitro experiments

    Wearable electroencephalography for long-term monitoring and diagnostic purposes

    Get PDF
    Truly Wearable EEG (WEEG) can be considered as the future of ambulatory EEG units, which are the current standard for long-term EEG monitoring. Replacing these short lifetime, bulky units with long-lasting, miniature and wearable devices that can be easily worn by patients will result in more EEG data being collected for extended monitoring periods. This thesis presents three new fabricated systems, in the form of Application Specific Integrated Circuits (ASICs), to aid the diagnosis of epilepsy and sleep disorders by detecting specific clinically important EEG events on the sensor node, while discarding background activity. The power consumption of the WEEG monitoring device incorporating these systems can be reduced since the transmitter, which is the dominating element in terms of power consumption, will only become active based on the output of these systems. Candidate interictal activity is identified by the developed analog-based interictal spike selection system-on-chip (SoC), using an approximation of the Continuous Wavelet Transform (CWT), as a bandpass filter, and thresholding. The spike selection SoC is fabricated in a 0.35 μm CMOS process and consumes 950 nW. Experimental results reveal that the SoC is able to identify 87% of interictal spikes correctly while only transmitting 45% of the data. Sections of EEG data containing likely ictal activity are detected by an analog seizure selection SoC using the low complexity line length feature. This SoC is fabricated in a 0.18 μm CMOS technology and consumes 1.14 μW. Based on experimental results, the fabricated SoC is able to correctly detect 83% of seizure episodes while transmitting 52% of the overall EEG data. A single-channel analog-based sleep spindle detection SoC is developed to aid the diagnosis of sleep disorders by detecting sleep spindles, which are characteristic events of sleep. The system identifies spindle events by monitoring abrupt changes in the input EEG. An approximation of the median frequency calculation, incorporated as part of the system, allows for non-spindle activity incorrectly identified by the system as sleep spindles to be discarded. The sleep spindle detection SoC is fabricated in a 0.18 μm CMOS technology, consuming only 515 nW. The SoC achieves a sensitivity and specificity of 71.5% and 98% respectively.Open Acces

    From wavelets to adaptive approximations: time-frequency parametrization of EEG

    Get PDF
    This paper presents a summary of time-frequency analysis of the electrical activity of the brain (EEG). It covers in details two major steps: introduction of wavelets and adaptive approximations. Presented studies include time-frequency solutions to several standard research and clinical problems, encountered in analysis of evoked potentials, sleep EEG, epileptic activities, ERD/ERS and pharmaco-EEG. Based upon these results we conclude that the matching pursuit algorithm provides a unified parametrization of EEG, applicable in a variety of experimental and clinical setups. This conclusion is followed by a brief discussion of the current state of the mathematical and algorithmical aspects of adaptive time-frequency approximations of signals

    Neutral coding - A report based on an NRP work session

    Get PDF
    Neural coding by impulses and trains on single and multiple channels, and representation of information in nonimpulse carrier

    Intrinsic and synaptic membrane properties of neurons in the thalamic reticular nucleus

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Le noyau réticulaire thalamique (RE) est une structure qui engendre des fuseaux, une oscillation bioélectrique de marque pendant les stades précoces du sommeil. De multiples propriétés neuronales, intrinsèques et synaptiques, sont impliquées dans la génération, la propagation, le maintien et la terminaison des ondes en fuseaux. D’un autre côté, ce rythme constitue un état spécial de l’activité du réseau qui est généré par le réseau lui-même et affecte les propriétés cellulaires du noyau RE. Cette étude se concentre sur ces sujets: comment les propriétés cellulaires et les propriétés du réseau sont inter-reliées et interagissent pour engendrer les ondes fuseaux dans les neurones du RE et leurs cibles, les neurones thalamocorticaux. La présente thèse fournit de nouvelles évidences montrant le rôle fondamental joué par les neurones du noyau RE dans la genèse des ondes en fuseaux, dû aux synapses chimiques établies par ces neurones. La propagation et la synchronisation de l’activité sont modulées par les synapses électriques entre les neurones réticulaires thalamiques, mais aussi par les composantes dépolarisantes secondaires des réponses synaptiques évoquées par le cortex. De plus, la forme générale et la terminaison des oscillations thalamiques sont probablement contrôlées en grande partie par les neurones du RE, lesquels expriment une conductance intrinsèque leurs procurant une membrane avec un comportement bistable. Finalement, les oscillations thalamiques en fuseaux sont aussi capables de moduler les propriétés membranaires et l’activité des neurones individuels du RE.The thalamic reticular nucleus (RE) is a key structure related to spindles, a hallmark bioelectrical oscillation during early stages of sleep. Multiple neuronal properties, both intrinsic and synaptic, are implicated in the generation, propagation, maintenance and termination of spindle waves. On the other hand, this rhythm constitutes a special state of network activity, which is generated within, and affects single-cell properties of the RE nucleus. This study is focused on these topics: how cellular and network properties are interrelated and interact to generate spindle waves in the pacemaking RE neurons and their targets, thalamocortical neurons. The present thesis provides new evidence showing the fundamental role played by the RE nucleus in the generation of spindle waves, due to chemical synapses established by its neurons. The propagation and synchronization of activity is modulated by electrical synapses between thalamic reticular neurons, but also by the secondary depolarizing component of cortically-evoked synaptic responses. Additionally, the general shaping and probably the termination of thalamic oscillations could be controlled to a great extent by RE neurons, which express an intrinsic conductance endowing them with membrane bistable behaviour. Finally, thalamic spindle oscillations are also able to modulate the membrane properties and activities of individual RE neurons
    corecore