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Abstract

This thesis investigates neural state transitions associated with sleep, seizure and anaesthesia.
The aim is to address the question: How does a brain traverse the critical threshold between
distinct cortical states, both healthy and pathological? Specifically we are interested in sub-
threshold neural behaviour immediately prior to state transition. We use theoretical neural
modelling (single spiking neurons, a network of these, and a mean-field continuum limit) and
in vitro experiments to address this question.

Dynamically realistic equations of motion for thalamic relay neuron, reticular nuclei, cortical
pyramidal and cortical interneuron in different vigilance states are developed, based on the
Izhikevich spiking neuron model. A network of cortical neurons is assembled to examine the
behaviour of the gamma-producing cortical network and its transition to lower frequencies due
to effect of anaesthesia. Then a three-neuron model for the thalamocortical loop for sleep
spindles is presented. Numerical simulations of these networks confirms spiking consistent with
reported in vivo measurement results, and provides supporting evidence for precursor indicators
of imminent phase transition due to occurrence of individual spindles.

To complement the spiking neuron networks, we study the Wilson—Cowan neural mass equa-
tions describing homogeneous cortical columns and a 1D spatial cluster of such columns. The
abstract representation of cortical tissue by a pair of coupled integro-differential equations per-
mits thorough linear stability, phase plane and bifurcation analyses. This model shows a rich
set of spatial and temporal bifurcations marking the boundary to state transitions: saddle-node,
Hopf, Turing, and mixed Hopf-Turing. Close to state transition, white-noise-induced subthresh-
old fluctuations show clear signs of critical slowing down with prolongation and strengthening
of autocorrelations, both in time and space, irrespective of bifurcation type.

Attempts at in vitro capture of these predicted leading indicators form the last part of the
thesis. We recorded local field potentials (LFPs) from cortical and hippocampal slices of mouse
brain. State transition is marked by the emergence and cessation of spontaneous seizure-like
events (SLEs) induced by bathing the slices in an artificial cerebral spinal fluid containing no

magnesium ions. Phase-plane analysis of the LFP time-series suggests that distinct bifurcation



ii

classes can be responsible for state change to seizure. Increased variance and growth of spec-
tral power at low frequencies (f < 15 Hz) was observed in LFP recordings prior to initiation
of some SLEs. In addition we demonstrated prolongation of electrically evoked potentials in
cortical tissue, while forwarding the slice to a seizing regime. The results offer the possibility of
capturing leading temporal indicators prior to seizure generation, with potential consequences
for understanding epileptogenesis.

Guided by dynamical systems theory this thesis captures evidence for precursor signs of
phase transitions in neural systems using mathematical and computer-based modelling as well

as in vitro experiments.
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Chapter 1

Preamble

Thesis overview

This thesis is a report of comprehensive theoretical, computer-based and in vitro investigations
to identify early signs of phase transitions in neural systems.

The thesis proceeds as follows.

Chapter 2 starts with an overview of the basic principles of neurophysiology, and the
functional structure of cortex and thalamus. The underlying mechanism of anaesthesia-induced
transformation of electroencephalogram (EEG) to lower frequencies, sleep spindles and burst
suppression pattern are described. These neural phenomena are of interest since, from dynamical
systems point of view, their occurrence is mediated by a phase transition. We discuss the various
modelling approaches employed in the thesis, and give a brief survey of phase transitions observed
in a diverse range of dynamical systems in ecology, climate records, dielectrics, cancer, neural
models and in vivo measurements.

In Chapter 3 I extend previous work on the subthreshold behaviour of the H. R. Wilson
cubic spiking neuron. My theoretical and numerical examinations reveal an increase in spectral
power of the fluctuations of soma voltage prior to firing of an action potential (AP), providing
an early warning indication of phase transition. I then apply a similar fluctuation analysis to
the Izhikevich neuron, a simplified quadratic model with manual reset on spiking, examining
the voltage response for signs of precursor warning signals. Four neural types are studied in
detail: cortical regular spiking (RS), cortical fast spiking (F'S), thalamic relay (TC), and reticular
thalamic nucleus (RTn) neurons. These neurons are of interest since they are the major neural
types of cortex and thalamus, and play important role in generation of gamma and spindle
oscillations. The original Izhikevich models are modified to produce certain brain rhythms:
RS neuron is modified to demonstrate burst-suppression pattern; a hyperpolarization activated
cation current ([) is introduced into TC neuron to make it a spindle pace-maker; the RTn

neuron is modified to burst in response to incoming excitations when it is hyperpolarized. The
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dynamics of these models are studied in detail, and precursor signs of phase transition (AP firing
or bursting) demonstrated.

Using the spiking neurons developed in Chapter 3, Chapter 4 presents evidence of early
warnings of phase transitions in two population-induced neural phenomena: Transition from
gamma to low frequency oscillations in the cortex due to induction of anaesthesia, and generation
of sleep spindles in a thalamocortical network. Bistability and flickering prior to transition to
low frequency oscillations, and increased variance of voltage fluctuations prior to initiation of a
spindle, are observed in these networks.

Complementing the spiking neural modelling of Chapters 3 and 4, Chapter 5 presents a
detailed study of a mean-field neural model. The dynamical behaviour of the Wilson—-Cowan
(WC) equations of a homogeneous (space independent) cortex and its possible phase transitions
are investigated, and clear signs of critical slowing down are observed prior to state transitions.
This continuum model supports both numerical and analytical subthreshold investigations, with
simulation results confirming theoretical predictions.

Chapter 6 studies the dynamics of the WC cortical rod. The introduction of space gives rich
dynamical behaviour arising from a range of temporal, spatial and spatiotemporal instabilities
mediated by distinct bifurcations: temporal Hopf and saddle-node bifurcations, spatial Turing
instability, and spatiotemporal Turing-Hopf or mixed mode interaction. Clear signs of critical
slowing down in time and space are demonstrated, both theoretically and numerically, close to
bifurcation.

Chapter 7 reports a series of in vitro experiments in which I was looking for precursor signs
of phase transitions in living neural tissue. Artificially induced seizure-like events (SLEs) are
selected as an exemplar a neural phase transition. These events can be recorded extracellularly
from cortical and hippocampal regions of mouse brain slice, when bathed in a zero-magnesium
solution. This chapter elucidates the methodology required for acquiring SLEs with high fidelity
frequency content, and demonstrates promising preliminary evidences of increased variance,
spectral power in low frequencies, and flickering prior to initiation of individual SLEs. The
chapter concludes with a report of prolongation of evoked potentials in cortical slices during
slow approach to a seizing mode brought on by gradual washing out of magnesium ions in the
bath solution. To my knowledge these preliminary results are the first reported observations of
critical slowing down in an in vitro neural system.

In Appendices I present the verification of wave equations in 1-D Wilson—Cowan rod, details
for in wvitro methods, and MATLAB codes for implementing Whittaker smoother and automatic
spindle extractor. All the source codes developed for this thesis are accessible from Research

Commons, the open access digital repository of the University of Waikato, New Zealand.



Original contributions

The numerical calculations, theoretical analysis, related computer codes, design and conduction
of in wvitro experiments, analysis and interpretation of experimental results, and most graphic

presentations are my own work, except:

e [T used MATLAB codes written by D. A. Steyn-Ross to numerically locate the intersections
of nullclines of homogeneous WC model of Section 5.2.2.
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Chapter 2

Overview

2.1 Basic neurophysiology

2.1.1 Neurons and synaptic interactions

The central nervous system—including the brain, spinal cord, and peripheral sensory system—is
composed of principal cellular elements called neurons. Three major structural elements can be
identified on a generic neuron (see Fig. 2.1): a soma or cell body which contains the nucleus of
the cell; a treelike dendrite structure which samples signals from other neurons and integrates
them at the soma; and a fibre or azon which transfers neural signals to the other neurons via
axon-dendrite points of contact called synapses.

Neurons are excitable cells which are specialized for the formation, modification and propa-
gation of neural electrical signals. These signals originate from voltage-sensitive or ion-selective
ionic channels located on the membrane. The selective opening and closing of these channels
alters the internal ionic concentrations and perturbs the potential difference across the mem-
brane, resulting in intra- and extra-cellular currents. In the quiescent resting state, the neuron
interior carries a net negative charge relative to the extracellular space. This charge separation is
produced by the ongoing action of sodium/potassium pumps that maintain a resting membrane
potential of about —60 mV (ranging from —40 to —75 mV in different neurons [Kandel et al.,
2000]). A decrease or increase in soma potential relative to rest is called hyperpolarization and
depolarization respectively.

Depolarization of a neuron to a threshold level (usually about 15 mV above rest) activates
(opens) voltage-sensitive Na™ channels in the soma membrane, allowing an influx of sodium ions
which further depolarize the cell with an accelerating positive feedback leading to generation of
an action potential (AP) manifest as a sudden jump in membrane potential from —60 mV to
about +50 mV, the Na™ equilibrium potential. The membrane voltage then rapidly repolarizes
towards resting voltage because of activation of voltage-sensitive K+ channels (leading to K+

efflux) coupled with the slow inactivation of Na® channels [Kandel et al., 2000].
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Figure 2.1: Anatomical structure of a generic neuron and the flow of information. The neuron is composed
of three main parts: cell body or soma, dendritic tree and the axonal fibre. Image from Freeman et al.
[2005].

Action potentials are actively transmitted down the axonal fibre towards the synaptic termi-
nals. Synapses are the junctions providing the communication link between neurons (or between
a neuron and a muscle cell). Synaptic transmission can be either electrical or chemical, mean-
ing that the neural communication occurs via directly coupled electrical currents, or indirectly
through mediation by chemical neurotransmitters. Only the chemical synapses are studied in
this thesis. Synaptic communication is illustrated in Fig. 2.2. The arrival of an AP causes neu-
rotransmitter release into the synaptic cleft. These neurotransmitters bind to proteins that open
ionic channels embedded in the postsynaptic neuron, producing postsynaptic currents (PSCs)
through, and postsynaptic voltages (PSPs) across, the postsynaptic membrane.

Depending on the type of released neurotransmitters, specific ion channels are activated at
the postsynaptic site. If the activity of the presynaptic neuron induces positive-going PSCs
in the postsynaptic neuron, then the synapse (and the presynaptic neuron) is declared to be
excitatory. In contrast, an inhibitory synapse (or its presynaptic neuron) suppresses its tar-
get by inducing hyperpolarizing PSCs. GABA (y-aminobutyric acid)—with fast GABAA and

slow GABApR subtypes—is the major inhibitory neurotransmitter in the central nervous system,
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Figure 2.2: Neural communication through a chemical synapse. The action from the presynaptic neuron
causes release of neurotransmitters into the synaptic cleft, activating ion channels in the postsynaptic
membrane, producing excitatory or inhibitory postsynaptic currents. Image from Freeman et al. [2005].

while AMPA (o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-

aspartate acid) are the main fast and slow excitatory neurotransmitters respectively.

2.1.2 Structure of cortex and thalamus

Human cortex is composed of about 10'% excitatory and inhibitory strongly interacting neurons.

The cortex is 2-3 mm thick and is often modelled as a set of functional columns?

oriented per-
pendicular to the cortical surface. It is traditionally assumed that each column is composed of
six layers, numbered from outside to inside. About 80% of cortical neurons are excitatory pyra-
midal neurons, while the rest are mainly inhibitory interneurons [Braitenberg and Schiiz, 1991].
The dendritic trees of pyramidal neurons tend to be aligned in parallel pathways perpendicular
to the scalp surface; consequently the flow of synaptic currents in these dendrites form electrical
dipoles which are believed to be the source of the electroencephalogram (EEG) signal [Nunez
and Srinivasan, 2006]. The random orientation of the dendrite structures of interneurons makes
their currents unlikely to play a primary role in EEG formation.

The thalamus is a neural structure at the centre of the brain that is considered traditionally
to be a gateway that modulates the flow of sensory information to the cortex. The modern view
identifies two additional roles: the last bottleneck for sensory information processing before
cortex, via modulatory pathways which feed the thalamus, and participation in higher-order
information processing within the cortico-thalamo-cortical feedback loop [Sherman, 2006]. Tha-

lamus also plays important roles in normal or pathological brain rhythms such as slow (0.2-1 Hz)

'an organized assembly of excitatory and inhibitory neurons acting cooperatively within a small colume of the
cortex
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and spindle oscillations [Steriade and Timofeev, 2003]), and spike-and-wave oscillations during
epileptic seizures [Granger and Hearn, 2007].

Thalamus is composed of several nuclei, each with distinctive functionality specified in terms
of their incoming sensory inputs and targets on layer 6 of neocortex [Sherman and Guillery,
2001]. The three main thalamic subtypes are: excitatory thalamocortical (TC) relay neurons
that project information to the cortex; inhibitory reticular nuclei (RTn) neurons which inhibit
the relay neurons; and local interneurons which also inhibit relay neurons.

TC neurons demonstrate two distinct firing patterns under normal waking and hyperpolar-
ized sleep conditions!: tonic firing and bursting respectively [Sherman, 2001]. Since the number
of spikes in each burst does not depend on the intensity or number of inputs to the neuron,
in bursting mode TC cells do not normally transfer any input message to their output targets
(depressed responsiveness). However, TC neurons transfer their incoming spikes to cortical tar-
gets with high fidelity during wake [Steriade and McCarley, 2005]. The frequency of their tonic
response could be in the range of 10-30 Hz, while they show bursts of activity during non-rapid
eye movement (NREM) sleep with intraburst frequency of about 200 Hz. A hyperpolarization
of about 7-10 mV is normally observed in TC cells while undergoing NREM sleep [Steriade and
McCarley, 2005].

2.2 Brain rhythmogenesis

2.2.1 Cortical gamma oscillations

Although cortical gamma oscillations (frequency range above 30 Hz) are thought to play an
important role in cognitive tasks in an awake brain, their source has been a matter of debate
for many years. Following the suggestion that gamma oscillations arise from the modulation
of cortical pyramidal neurons by synchronous inhibition by cortical fast spiking interneurons
[Buzsaki et al., 1983; Lytton and Sejnowski, 1991], it has subsequently been proposed that
gamma activity is an emergent property of the neural population, and is not due to a specific
drive with gamma frequency [Knoblich, 2011]. Kopell et al. [2010] and Kann et al. [2014] describe
the conditions for generation of cortical gamma oscillations:

o Cortical regular spiking (RS) pyramidal neurons are in their excitable regime, firing in

response to incoming synaptic inputs from other neurons or brain-stem sources
o These firings excite their downstream fast spiking (FS) inhibitory interneurons, which in

turn induce rebound spikes in their RS targets.

!The level of depolarization of the thalamic neurons depends on the neurotransmitter level of the ascending
activating system (AAS) from brain stem [McCarley and Sinton, 2007]
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The recurrence of this cycle produces gamma oscillations in which the time-course of inhibitory
synapses of F'S neurons plays an important role in modulating frequency content. These oscilla-
tions can become slower and larger during emergence of natural sleep or induction of anaesthesia

[Steriade et al., 2001; Schiff et al., 2014].

2.2.2 Sleep spindles

Spindles are the EEG hallmark of early stages of the non-rapid eye movement (NREM) sleep.
They manifest as transient 12-14 Hz waxing-and-waning patterns lasting 1-3 s, recurring every
3-10 s [Steriade, 2005], and may be associated with loss of awareness and consolidation of
memories during early stages of slow-wave sleep (SWS) [Steriade, 2006].

Spindles are produced by the cooperative activity of thalamocortical relay (TC), reticular
nuclei (RTn), and corticothalamic regular spiking (RS) neurons. It is known that TC neurons are
driven by the slow hyperpolarization-activated cation current Ij, during spindle generation [Des-
texhe and Babloyantz, 1993]. Based on in vivo and in vitro experiments, Timofeev and Bazhenov
[2005] developed a network of spiking cortical and thalamic neurons capable of spindle gener-
ation, and gave detailed descriptions about the underlying mechanism for spindle generation.

They identified three distinct phases as displayed in Fig. 2.3:

o Waxing: spindling is mediated by the activity of RTn neurons
e Synchronization: all three neural types oscillate synchronously

e Waning: I inactivates, and the network desynchronizes
> Scalp EEG

Sleep consolidation
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Figure 2.3: Three phases of spindle pattern and their formation in thalamocortical network. Top to
bottom: Depth EEG trace, intracellular recordings of cortical regular spiking (RS), thalamocortical
(TC), and reticular nuclei (RTn) neurons. The waxing phase is identified by small inhibitory postsynaptic
potentials (IPSPs) observed on TC trace due to the activity of RTn neuron. At the synchronized middle
phase all three neurons are phase-locked. Desynchronization occurs at waning phase resulting in spindle
termination. Spindles can be observed on scalp EEG as population synaptic currents of spindling RS
neurons. Image adapted from Astori et al. [2013]
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2.2.3 Burst suppression

Burst suppression (BS) is a quasiperiodic electroencephalographic pattern characterized by iso-
electric flat periods interrupted by transient bursts of low frequency activity (<15 Hz) [Kroeger
and Amzica, 2007]. This pattern is frequently observed in very deep levels of anaesthesia [Akrawi
et al., 1996], and also in the comatose state [Young, 2000], and in infant encephalopathy [Ohta-
hara et al., 1987] as a result of after-birth hypoxia. Hypoxia-induced BS pattern is irregular and
erratic rather than being quasiperiodic [Roberts et al., 2014].

Lukatch and Maclver [1996] found that BS pattern survives in deafferented cortical network,
suggesting the possibility of exclusively cortex-generated BS pattern, in agreement with early
work by Hughes [1986] and recent results by Kroeger and Amzica [2007]. A possible neurophys-
iological mechanism for BS by Ching et al. [2012] argues that BS is associated with reduced
metabolic rates in the brain arising from a lack of available adenosine triphosphate (ATP). The
ATP-sensitive potassium channels can activate under low metabolism conditions, preventing the
spiking of cortical neurons, inducing quiescense. This allows ATP to rise so another activity burst
can initiate. Using this mechanism, Ching et al. [2012] developed a network of Hodgkin-Huxley
neurons, and demonstrated many in vitro and in vivo BS characteristics. Their model-predicted
statements about the heterogeneity of bursts (in contrast with the classic homogeneous point
of view), and survival of alpha activity! during bursts, were confirmed recently by Lewis et
al. [2013]. A simple model of anaesthesia-induced burst suppression is presented in Chapter 3.
The mechanisms underlying generation of hypoxia-induced burst suppression is suggested to be
different from anaesthesia-induced ones [Roberts et al., 2014], and the modelling of hypoxia is

beyond the scope of the thesis.

2.3 Neural modelling

Neural models aim to describe quantifiable and measurable behaviours of neurons or populations
of neurons. They are expressed mathematically as sets of coupled differential equations. Some
neural models can be studied analytically, and all models can be simulated numerically using
computers to mimic real behaviour and to extend knowledge about neural mechanisms. Models
can provide insights into the function of the nervous system and to predict the response of
the brain to different stimulations. Potentially, such models could be embedded in hardware
and implanted in the human body to assist malfunctioning brain areas. In addition, neural
models might allow the “training” of robots or intelligent devices rather than requiring manual

programming.? This section briefly reviews the spiking neuron and mean-field neural models

! Alpha wave with frequency of 8-12 Hz, is the dominant wave of EEG during relaxed wakefulness
2http://www.braincorporation.com/brainos/
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which are of particular relevance to this thesis. Detailed model descriptions are presented in

Chapters 3, 5, and 6.

2.3.1 Models of spiking neurons

One of the most important computational models of the spiking neuron was presented by
Hodgkin and Huxley [1952]. Based on electrophysiological experiments on squid giant axon,
Hodgkin and Huxley identified three voltage-dependent ionic currents responsible for action
potential generation:

« persistent KT current with four activation gates'

« persistent Na™ current with three activation gates and one inactivation gate

e Ohmic leak current mediated mainly by Cl~ ions

The full set Hodgkin-Huxley equations is

av

Cor=- gRImPh(V — Ena) — gi&®n*(V — Ex) — go(V — EL) +1in
Nat current Kt current Leak current
d 1
E2 = (~m+ mao(V))
dat (V) (2.3.1)
dh 1
@ —ht e
dt =~ vy heelV))
dn 1
where
Moo = am/(“m""ﬁm)a Tm = 1/(04m+ﬁm)
heo = an/(an + Br), mh = 1/(an + Br) (2.3.2)
Noo = an/(an + 571)7 Tn = 1/(an + /Bn)
and 25—V v
m - -1;, m = 4 ;
(V) =01 (V) = 130 (15 )
10-V -V
(V) =001—F—F, (V) = 0.125—
V) exp({5¥) — 1 On(V) 80 (2:3.3)
-V 1
V) =0.07exp [ — ), V)=
an(V) = 0.07exp (1) V) = T

!The gating particles or gates activate (open) or inactivate (close) ionic channels of the membrane, due to
effect of membrane voltage, intracellular or extracellular agents [Kandel et al., 2000]
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Here, the voltage-dependence of the ionic conductances are represented by dimensionless
weights: m, n, h. Each weight is described by a differential equation with voltage-dependent
time-constants (7,, n.n) and steady-states (Mmoo, Moo, Noo))-

Since HH equations are fourth-order and rather difficult for analytical studies and expen-
sive for numerical simulations, reduced models of AP generation are highly desirable and have
been attempted by many researchers. For example, Rinzel [1985] replaced the three HH gating

variables by a single inhibitory or recovery variable W:

% s max (W\?
C—r = 9Na mg,(V)(L=W)(V — Wxa) — g8 < (V= Vk) =g1(V = Er) + Iin

w_ (WOO(V) - W) (2.3.4)

at (V)

where 7(V) = 5exp[—(V + 10)2/55%] + 1, ¢ is the HH temperature correction factor, and

nae (V) 4 S — hao (V)
Wa(V) = S
( 1+6° ) (2.3.5)
o 1oha

with Moo, Moo, heo following their original HH definitions. Similar simplifications have been pro-
posed by many other researchers, for example, Abbott and Kepler [1990], Joeken and Schwegler
[1995] and Wilson [1999]!. Further simplifications were made by concentrating on the pre-spike
behaviour of the neuron (linear regime), without specifying what happens after spike—as repre-
sented by leaky integrate-and-fire [Tuckwell, 1988] or resonate-and-fire [FitzHugh, 1966] models.
These linear models all have an artificial threshold and a manual reset rule. Although good
for mathematical analysis, these models are incomplete because they cannot spike: they lack
an accelerating upstroke mechanism for action potential generation, and are just “said to fire”
[Izhikevich, 2007].

To restore spiking while retaining mathematical simplicity, the quadratic integrate-and-fire
model was introduced by Latham et al. [2000]. This formulation captures the nonlinear nature
of the spike generation mechanism of real neurons. Rather than using the conductance-based
form for the currents responsible for generating action potentials, Latham and his colleagues

modelled the spike current as

(V-V)(v-V)
RcellAV

Ispike = - (236)

1See Section 3.1 for Wilson spiking neuron model
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where AV =V, — V. is the nominal gap between resting (V;.) and threshold (V;) voltages and
Reepn is the membrane resistance of the cell. After rescaling, the non-dimensional form for the

integrate and-fire model can be written [Izhikevich, 2007]:

% =b+ V2; it V= Vpeaka then V' « Vieget (237)

where b is the resting voltage and Vjeak and vreset are the peak and reset voltages used in
the “manual” reset rule. Equation (2.3.7) describes the simplest model for a spiking neuron.
However, this model captures only one among many bifurcation mechanisms underlying spike
generation'. Izhikevich [2003] extended the quadratic model by incorporating a slow recovery
variable, and showed that this enhanced model is capable of producing spiking and bursting
activity of many types of mammalian neurons. The fact that the Izhikevich form preserves a
realistic subthreshold (pre-spike) dynamics has made it the model of choice for my single-neuron

and network subthreshold investigations of Chapters 3 and 4.

2.3.2 Mean-field models

Complementary to spiking-neuron modelling, the mean-field approach describes the collective
behaviour of populations of interconnected neurons (excitatory, inhibitory or mixed). These
macroscopic models can provide insights about the mechanisms underpinning emergent be-
haviour in neural population, interaction of brain parts—such as thalamus, cortex, hippocam-
pus, and brain stem—and also whole brain dynamics. Here we briefly overview some mean-field

models.

o Wilson and Cowan [1972] introduced one of the earliest mean-field models in which the
collective behaviour of interacting excitatory and inhibitory cortical neurons are expressed
as their mean firing-rates. Based on common anatomical characteristics of the cortex, the
model includes both excitatory and inhibitory connections. Excitatory connections are
localized while inhibitory connections are allowed to cover broader ranges. Exponentially
decaying functions of distance govern the weight of synaptic connections.

o Amari [1971, 1972, 1977] presented a neural model based on the similar concepts followed
by Wilson and Cowan. Considering local excitation and long-rage inhibition this model
predicts spatially localized solutions (bumps), oscillatory and traveling waves, and tran-
sient responses.

o Nunez [1974] considered axonal delays in an infinite, one dimensional (1D) continuum

model of excitatory and inhibitory populations introduced by da Silva et al. [1974]. Nunez

IDifferent mechanisms underlying the spike generation and other phase transitions will be discussed in Chapters
3-6
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investigated the model analytically using wave solutions in 1D and 2D, and consequently
predicted global modes with frequencies matching the major cerebral rhythms.

da Silva et al. [1974]; da Silva et al. [1976] used a lumped-parameter approach to describe
interactions between thalamocortical relay cells and interneurons leading to alpha activity.
Freeman [1975] modelled the spatiotemporal properties of EEG signals from the olfactory
bulb. He considered distinct connection properties within and between different neural sets
and formalized the concept of cortical “mass action” by assuming hierarchical interactions
between neural aggregates. He noted the importance of synaptic and dendritic delays in
the generation of oscillatory behaviour.

Katznelson [1981] highlighted the importance of cortico-cortical connections by including
them in da Silva’s model with the cortex represented as a two-dimensional spherical surface.
His linearized model predicted oscillations corresponding to alpha and theta rhythms.
Jansen et al. [1993]; Jansen and Rit [1995] retained the nonlinearities of da Silva’s 1974
model to produce chaotic activity, and were able to demonstrate normal EEG patterns and
evoked potential responses supporting the hypothesis that spontaneous EEG and visually
evoked potential are generated by same neural structures in the cortex.

Wright and Liley [1995] introduced a spatially discretized model of the cortex that in-
cluded both axonal and dendritic delays. The cortical sheet was subdivided into patches
with interconnections formulated with a Green function. The biologically inspired param-
eter values of this model resulted in outputs more comparable with experimental results,
compared with earlier models.

Robinson et al. [1997] replaced the Green function of the Wright and Liley model with a
damped wave equation to greatly improve the runtime of numerical methods and enhance
spatial resolution. By adopting a continuum form (instead of the discretized Wright and
Liley equation) Robinson was able to undertake analytic study of wave properties and
their stability.

The Liley et al. [2002] model assumes a homogeneous cortex with long-range (cortico-
cortical) and short-range (intra-cortical) connections. This model has been used to demon-
strate cortical evoked potentials, travelling waves, and chaotic and noise driven oscillations
at realistic EEG frequencies.

The Waikato model shares many biophysical features with the Wright, Liley, and Robin-
son models, and contains excitatory and inhibitory neural populations that communicate
through local and distant connections at chemical synapses [Steyn-Ross et al., 1999, 2004,
2014]. The significance difference from previous continuum models is the inclusion of

electrical synapses (gap junctions) to supplement chemical synaptic connections.
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The reminder of this section focuses on the Wilson-Cowan (WC) mean-field model and its
applications. Its subthreshold properties will be studied in detail in Chapters 5 and 6.

Cowan [2014] explores general concepts in mean-field modelling and provides a historical
review of the WC model, a well-studied neural mass description which has been used extensively
to investigate dynamical behaviours of neural systems. Sakaguchi [1988] used the WC model to
investigate transition between stationary, oscillatory and excitable states. Borisyuk and Kirillov
[1992] performed a bifurcation analysis on this system to describe qualitative behaviour.

Modified versions of the WC formalism have attracted much recent interest. Wang et al.
[2012] used the homogeneous WC network to generate spike and wave seizures by adding a
slow third parameter to permit bursting. Srinivasan et al. [2013] investigated the top-down
effects of neural background and arousal on activity of single neurons. Meijer and Coombes
[2013] impose metabolic limits on synaptic activity by including a refractory time-scale in the
dynamics of the synaptic interactions of the model, supporting production of travelling waves in
a purely excitatory network. Pasillas-Lepine [2013] proposed necessary conditions for stability of
a delayed WC network as a representation of the subthalamo-pallidal feedback loop which may
play a critical role in the tremors observed in parkinsonian subjects. Hlinka and Coombes [2012]
studied the original WC network with a more realistic structural connectivity! that permits
inclusion of realistic long-range anatomical connections. They examined the effect of local
network dynamics on functional connectivity. Their findings may provide insights into nervous
collapse and malfunctions due to local dynamics. Influence of axon propagation delays in neural
dynamics [Nunez and Srinivasan, 2014], and analysis of chaotic oscillations in neural systems
[Maruyama et al., 2014] are examples of very recent applications of the WC model.

This brief survey of WC-related literature and model applications shows the WC formalism
is of foundational importance in computational neuroscience. Its relative simplicity is another
reason which motivated me to use it in my theoretical and numerical studies of mean-field
subthreshold dynamics. In Chapters 5 and 6 I will show how a range of phase transitions (both

temporal and spatial) can be demonstrated by this model.

2.4 Phase transitions in dynamical systems

A dynamical system consists of a set of variables describing the state of the system and a law
which describes the evolution of the variables over the time [Meiss, 2007; Izhikevich, 2007]. The
governing law can be expressed mathematically using a system of differential equations which

quantify how the future state depends on the system input and the previous state. The standard

!The original WC formalism assumes a homogeneous structural medium with all-to-all connections between
excitatory and inhibitory populations, and an exponentially decaying synaptic strength over space



16 Overview

form for a one dimensional dynamical system with state variable  and governing rule f is usually

expressed as [Wiggins et al., 1990]:

Z—j = f(z,\) (2.4.1)
where t is time, and A is the control or bifurcation parameter. In general there is no explicit
analytical solution for this differential equation, and one must employ numerical integration
methods to update the state variable . A wide range of numerical integrators and their software
implementation is introduced in Press et al. [1992], among them two methods that are used
extensively in this thesis: the fixed-step Euler method, and the fourth-order Runge-Kutta (RK4)
method.

Fortunately, numerical integration is not the only way of analyzing dynamical behaviour.

Alternative analysis methods include—

e Phase plane analysis provides qualitative predictions about system evolution and interac-
tion of system states [Izhikevich, 2007]

o Steady-state or fixed-point analysis determines the set of resting states at which the system
does not evolve, i.e., the solution of f(z,\) =0 Eq. (2.4.1)

e Linear stability analysis determines the stability of those steady states relative to small

perturbations

These three methods provide insights about the occurrence of a bifurcation (sometimes referred
as tipping point or a phase transition) where the system undergoes an abrupt qualitative change.
This transition can be result of the disappearance of a steady state, the appearance of a new
steady state, or a change in the stability of one of the steady states. These result in distinct
bifurcation types (see Golubitsky et al. [1988]; Izhikevich [2007] for more details). Bifurcation
theory is the study of system dynamics as the system explores its state-space by continuous
modification of its bifurcation parameter A [Golubitsky et al., 1988]. Kelso et al. [1981] applied
bifurcation theory to analyze a biological system, namely human interlimb coordination, in terms
of nonlinear limit-cycles. Later, Kelso [1984] reported phase transition and critical behaviour
when human subjects performed voluntary hand movements, demonstrating increased variability
of phase difference between hand movements when a transition point is approached [Kelso et
al., 1986).

It is known that system resilience to small perturbations reduces when the bifurcation point
is approached [van Nes and Scheffer, 2007]. This behaviour can be quantified by constructing the
Jacobian matrix of the linearized form of the system: the real part of the dominant eigenvalue

predicts the rate of recovery when disturbed by a small perturbation. Approaching a bifurcation
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Figure 2.4: Perturbation experiments prior to phase transition in a multistable ecosystem. External
conditions act as bifurcation parameter and change the resilience or stability properties of the system
as depicted by stability landscapes showing equilibria and their basins of attraction. The hills and
peaks indicate stable and unstable steady states. The steady state of the ecosystem versus bifurcation
parameter () is displayed in bottom plane. The top and bottom branches are stable while the middle
one is unstable. As the F2 bifurcation point is approached (indicated by 1-5), the size of the basin of
attraction of the top branch and its resilience reduces, the system gets slower in recovering to resting
state, and small perturbations may flip the system to the bottom branch. Modified from Scheffer et al.
[2001].

corresponds to the real part of the eigenvalue tending towards zero, which shrinks the basin of
attraction of the steady state and makes the system increasingly “slow” in its recovery [Strogatz,
1994].

The proximity of a system to its tipping point can be discerned from measured time-series
if the appropriate variables are sampled and if the transition towards the tipping point is slow
[Carpenter et al., 2011]. The perturbation method is a straightforward approach to determine
the proximity to a tipping point, and is cartooned in Fig. 2.4, where the system response to an
externally imposed stimulus is represented. The decay-time of response increases prior to phase
transition at point Fy; this is what is meant by “slowing down”. This idea is applicable even
if it is not possible to perturb the system externally, since real world systems are continuously
affected by natural perturbations due to the presence of internal or external noise. Slowing down
reveals itself in fluctuations displaying increased amplitude and correlation time [Dakos et al.,

2008].
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Bifurcation theory has been employed to analyze many real-world dynamical systems, and

to forecast onset of catastrophic change, for example

o Population of living organisms. Veraart et al. [2012] studied the sudden collapse
of planktonic organisms due to excessive light irradiation. They perturbed the system by
removing 10% of the plankton population via dilution, and measured the rate at which the
population density recovered. They detected an increased recovery time prior to population
collapse.

o Lake ecosystem. Catastrophic change in the food web organization of a whole ecosystem
was studied by Carpenter et al. [2011]. They perturbed the prey-dominated ecosystem of
a lake by gradually increasing the population of predator fish, over a three-year period.
Since the chlorophyll density responds strongly to food web fluctuations, they analyzed the
chlorophyll time-series, and found increased variance and return times prior to transition
from prey to predator dominance.

« Paleoclimatic transitions. Dakos et al. [2008] and Livina and Lenton [2007] stud-
ied the paleoclimate records in the times leading to major historic climate transitions:
icehouse-greenhouse transition, Sahara desertification. Since it was not possible to apply
any perturbation to the system, they focused on the fluctuation analysis of the data, and
found increased variance and correlation times prior to regime shifts. A similar study by
Held and Kleinen [2004] revealed the existence of precursor signs of bifurcation points in
models of climate change.

o Dielectric liquid breakdown. Zhang and Zahn [2014] reported electro-optic precursors
of critical transitions in dielectric liquids. They found increased spatial variance as an
indicator of proximity to electrical breakdown in high-voltage-pulsed transformer oil.

» Ecological dynamics of cancer. The “Opinion” article by Korolev et al. [2014] suggests
investigation of spatial organization of tumors—which has key role in cancer evolution—
as a possible indicator of extinction or growth of cancer tissue. They suggested that the
response of a tumor to perturbation (for example by a pulsed application of a drug) might
quantify closeness to extinction or growth of cancer cells.

o Transition into and out of depression in human. van de Leemput et al. [2014] have
reported increased variance and autocorrelation in the time-series of different emotional,

cognitive, and behavioural variables related to depression.
The following two studies are particularly relevant for my thesis:

¢ Increased irritability prior to spike generation. Considering the spike generation
as a phase transition, Steyn-Ross et al. [2006] presented the first detailed analysis of pre-

spike soma voltage fluctuations in the H. R. Wilson model of cortical neuron and squid
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axon. They reported increased variance, correlation times and spectral growth at resonant
frequencies as signs of critical slowing down.

Slowing down prior to “down/up” transitions of the cortical slow oscillations.
Wilson et al. [2008] first reported signs of slowing down in in vivo experiments in rat
brain. Considering the down-to-up transition of cortical slow oscillations (as observed
on intracellular voltage signals) as a phase transition, they reported increased fluctuation

power and time scale prior to the down-to-up transitions.

Dynamical systems theory and the bifurcation analysis have been applied to describe dy-

namics of an epileptic brain:

Using a mean-field model of the thalamocortical loop, Robinson et al. [2002] demonstrated
distinct steady states, corresponding to normal and seizure states of the brain.

da Silva et al. [2003] considered the occurrence of an epileptic seizure as a sudden qual-
itative change in underlying physiological characteristics. They proposed a multistable
dynamics for the epileptic brain presenting generic dynamical models to explain qualita-
tive differences between absence and limbic seizures.

In a reduced mean-field model of thalamocortical network, Rodrigues et al. [2006] used
bifurcation theory to demonstrate thalamic origins of spike-and-wave components for ab-
sence seizure.

By investigating the dynamical bifurcations of a nonlinear neural model, Breakspear et al.
[2006] predicted both periodic and chaotic dynamics and multistability, both relevant to
tonic-clonic and absence seizures.

Terry et al. [2012] demonstrated that subtle alterations of neural connection structures may
result in generation of focal seizures, without the requirement for any localized seizing zone.
Jirsa et al. [2014] identified distinct bifurcation types at seizure onset and offset. They
introduced a generic “Epileptor” model which is capable of showing general features of
different classes of seizures. The authors propose that a seizure initiates when a brain tra-
jectory collides with the separatrix between normal and epileptic states. Model predictions

were validated using n vitro and in vivo experiments.

Motivated by these studies, and using both modelling and in wvitro approaches, this thesis

investigates a range of neural transitions (from spiking single neurons to network emergent

phenomena) to identify noise-induced precursors of phase transitions. In addition, preliminary in

vitro observation of stimulus-induced state change is also included in Chapter 7, providing a link

between the theoretical and in vitro findings of this thesis and the in vivo “probing” experiments

of Kalitzin et al. [2002, 2005] and Freestone et al. [2011]. We demonstrate a characteristic
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change of stimulation-evoked potentials prior to pharmacologically-induced state changes in

mouse neocortical tissue.



Chapter 3

Dynamical behaviour of spiking single

neurons

Patterns of critically slowed fluctuations emerge in dynamical systems when they approach a
phase transition point. Anticipation of transition points is significant not only for broadening
our knowledge about the functional mechanisms underpinning of state transitions, but also to
permit timely preventive intervention in the event of pathological transitions. Phase transitions
are common in neural systems. Examples include, but are not limited to, a broad spectrum of
events ranging from the firing of a single action potential in an individual neuron, to a global
transition in brain state due to seizure occurrence or induction of anaesthesia.

A previous work by Steyn-Ross et al. [2006] theoretically predicts and numerically captures
the signs of critical-slowing down in the H. R. Wilson model [Wilson, 1999] of a single spiking
neuron, as the neuron approaches firing threshold. Here I extend this work by studying the
spectrum of the same model. Then I demonstrate precursor critical fluctuations in a reduced
spiking neuron model due to Izhikevich [2007]. Four specific neural classes are studied in this
chapter:

o Regular spiking (RS) excitatory pyramidal neurons (cortical)

o Fast spiking (F'S) inhibitory interneurons (cortical)

o Excitatory thalamocortical (TC) relay neurons (thalamic)

o Inhibitory reticular thalamic nucleus (RTn) neurons (thalamic)

These classes are of interest since they are prevalent in cortex and thalamus, and so play a
major role in the generation of natural and pathological brain activities. Some of the models are
modified to make them better candidates for use in network simulations of gamma oscillations
in wakefulness and spindle generation in sleep (see Chapter 4). In this chapter I first present the
models, then their modified forms. I mainly concentrate on the subthreshold voltage fluctuations

to elucidate precursor signs of phase transitions.
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3.1 Subthreshold dynamics of the Wilson spiking-neuron model

Among the well-known models for action potential (spike) generation in a single nerve cell
(neuron) is a model presented by by Wilson [1999, p. 139] as a second-order reduction of the
standard fourth-order Hodgkin-Huxley model. Although Wilson’s nonlinear model is capable of
generating spikes, my interest lies in the period leading up to spike genesis, so I have concentrated
on the below-threshold behaviour of the Wilson neuron. A 2006 paper by Steyn-Ross et al. [2006]
showed that a linear Ornstein—Uhlenbeck (OU) analysis is capable of predicting subthreshold
behaviour of the nonlinear Wilson model. Briefly, the OU process was originally formulated to
describe the velocity of a massive Brownian particle under the influence of opposing random-
driving and frictional damping forces. Sometimes is called “mean-reverting”, this process tends
to approach its mean steady state over the time.

I extend results of Steyn-Ross et al. [2006] here with the aim of comparing linear predictions
against numerical simulations of the full nonlinear Wilson equations. Specifically, I concentrate
on the spectral-amplitude curves for membrane voltage fluctuations, testing the validity of the
theoretical fluctuation spectrum.

Wilson’s equations describe the deterministic response of an excitable membrane to an in-
jected stimulus current. These equations are expressed as a pair of coupled nonlinear differential
equations which I have modified by adding two independent sources of white noise (£1(t), &2(t))

to represent biological fluctuations.

dv
C— = — gNa(V)(V — ENa,) — gKR . (V — EK) + L + or 51 (t)
dt N N—_——
sodium ion current potassium ion current  stimulus current  white-noise disturbance
dR
— = —R GV t
R + (V) + or&a(t)

recovery variable  gteady-state value of R white-noise disturbance

(3.1.1)

where V' is the membrane voltage in mV, and R is a dimensionless recovery variable repre-
senting the combined effect of K* channel opening and Na™ channel closing. The membrane
specific capacitance is C' = 11F /em?. The specific conductances gna (V) and gk = 26 carry units

2

mS/cm?®. Here o7, o are the amplitudes (standard deviations) of the white noise terms, and

the &; 2 are defined to have zero mean and variance 1/dt:

£(t) = (3.1.2)
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where N (0, 1) represents normally distributed random numbers (produced with MATLAB randn
function) with zero mean and unity variance, and dt is the fixed time-step of the numerical
integrator.

By changing the form of G(V) from a linear polynomial to a quadratic, the Wilson model is
capable of simulating spike generation in either a squid axon or in a human cortical neuron.
For the squid axon model, En, = 0.55, Fx = —0.92 (meaning +55 and —92 mV respectively),
and 7 = 1.9 ms is the exponential decay time-constant of the R variable. The Na specific

conductance and the G(V') function for the squid axon model are given by

gna(V) = 17.81 + 47.71V + 32.63V>
(3.1.3)

G(V)=1.35V +1.03

For the human cortical neuron, En, = 0.48, EFx = —0.95 (meaning +48 and —95 mV respec-
tively), and 7 = 5.6 ms. The Na specific conductance and the G(V') function for this neuron
are given by!

gNa(V) = 17.81 4 47.58V + 33.8V2
(3.1.4)

G(V)=0.794 1.29V + 3.3(V + 0.38)?

3.1.1 Steady states and eigenvalue analysis

In steady state the model variables do not evolve temporally, so the derivatives of the determin-

istic form of Egs. (3.1.1) are set to zero®:

Fl(V, R) :é [—gNa(V)(V — ENa) — gKR(V — Ek) + Idc] =0
1 (3.1.5)
FyV.R) = [-R+G(V)] =0

These equations can be solved numerically giving the steady-state coordinate (V?, R?) for mem-
brane voltage and recovery variable. The Jacobian matrix of partial derivatives, J, evaluated at

the (V0, R%) equilibrium point is

oF 9k,
J—| 9V OR (3.1.6)
OF,  OF

V' OR |0 g

"Wilson’s Eq. (9.10) on [Wilson, 1999, p. 147] contains an error: the “3.3” appears as “0.33”. This is reported
in Wilson’s Errata at http://cvr.yorku.ca/webpages/book.html.
*In the deterministic form of Egs. (3.1.1), the noise amplitudes are or = o = 0
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The real parts of the eigenvalues of this matrix predict growth or decay of small fluctuations
about (V°, RY), hence the stability of the given steady state. [See Figs. 4, 5 in Steyn-Ross et
al. [2006] for the steady-state distribution, and eigenvalue structure of integrator and resonator

Wilson neurons as a function of the control parameter Iy.|

3.1.2 Linear analysis of the nonlinear Wilson equations
By assuming that the membrane is resting at a subthreshold equilibrium point (V9 R?), one

can linearize Eqgs (3.1.1) about the nominated steady state point as,
d |v v 1(t
- = -A| |+VD “i(t) (3.1.7)

with
v(t) =V(t)— V"
(3.1.8)
r(t) = R(t) — R
defining the fluctuations (instantaneous deviations away from (V9 R°)), A is the 2x2 drift

matrix, equal to the negative of the Jacobian matrix J, evaluated at the nominated steady

state; and D is the 2x2 diffusion matrix [Steyn-Ross et al., 2006]:

o7/C? 0
p— |7 (3.1.9)
0 ok/Th

Equation (3.1.7) defines a two-dimensional Ornstein—Uhlenbeck process, in which the 2x2

spectrum matrix is [Gardiner, 2004],

1 [ _. 1

S(w) = — / e “TC(r)dr = — (A +iwI) 'D(AT —iwI)™! (3.1.10)
27 J—so 2

where I is the 2 x 2 identity matrix, T is the transpose operator and C(7) is the 2x2 steady-state

time-correlation matrix for v and r fluctuations defined as

Clr) = cov{v(0),v(r)} cov{v(0),r(7)} (3.1.11)

cov{r(0),v(r)} cov{r(0),r(r)}
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with 7 as the lag-time. Following Gardiner [2004] one can compute the C(7) as the product of

the matrix exponential exp(A7) with the covariance matrix X:
Cr)=e™®, 7<0 (3.1.12)
with symmetry property C(—7) = [C(7)]T. The covariance matrix [Gardiner, 2004] is,

_ det(A)D + [A — tx(A)ID[A — tr(A)I]"

> 2 tr(A)det(A) (3.1.13)

where det(-) and tr(-) are determinant and trace operators respectively. In this section I examine
the Si1(w) component of the spectrum matrix since this gives the theoretical power spectral
density of the membrane voltage fluctuations. This theoretical prediction and the numerically
calculated fluctuation spectrum will be studied while the neural model is forwarded towards its

firing threshold.

3.1.3  Numerical simulation of nonlinear stochastic Wilson equations

In order to test the predictions of linear theory, a series of numerical simulations of the nonlinear
noisy Wilson equations have been performed for both the squid axon and human cortical neuron.
I used the Euler-trapezium method which provides a predictor-corrector strategy to compute
the membrane voltage time-series’. All the simulations were done in the quiescent subthreshold
(nonspiking) regime, with care taken to minimize the chance of spike generation. Experimental
spectral amplitude curves were computed by averaging Fourier transforms of 500 simulation
runs for each case.

Figure 3.1 compares the ideal (Eq. (3.1.10)) and experimental spectra for both human (left
panel) and squid axon (right panel) models. For each type of excitable membrane, three different
levels of I4. injected current were applied, but the intensity of white-noise stimulations were kept
unchanged.

Critical current for spike generation is about 7.7732 pA/cm? for squid axon, and 21.4752
pA /em? for human cortical neuron [Wilson, 1999]. Both models show strong growth in spectral
energy as the critical current is approached—exactly as predicted by linear Ornstein-Uhlenbeck
theory. For the squid axon, the double-sided spectra develop a narrow resonance at ~ +360 Hz;
in contrast, the resonance frequency is 0 Hz for the human neuron. Theoretical and experimental
results show a satisfying compatibility over a wide range of frequency. However, this agreement

was only achieved by ensuring that the noise intensity was set sufficiently low that spikes were

!The Euler-trapezium update rule to solve the equation dy/dt = f(t,y) is Yn+1 = Yn + 0.5AL(f(tn, yn) +
f(tnt1,Yn+1)), where At is the step size.
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Figure 3.1: Subthreshold spectrum graphs for integrator cortical neuron (left panel), and resonator squid
axon (right panel) models. Grey (blue online) traces show the S11(w) Ornstein-Uhlenbeck prediction.
Black traces show Fourier transform results averaged across 500 independent nonlinear stochastic simula-
tion runs. Integration algorithm is Euler-trapezium with time-step At = 0.05 ms. The noise attenuation
followed Steyn-Ross et al. [2006]. The critical currents for spike generation are Iy, ~ 7.7732, Iy, ~ 21.4752
(A /em? for squid axon and human cortical neurons respectively [Wilson, 1999).

never generated during the simulations. This is particularly important for currents that are very
close to critical value.

As is evident in the zoomed inset in the bottom-right graph, there remains a tiny discrepancy
between experiment and theory. This mismatch seems to be due to the finite length of my
numerically generated time-series. By increasing the duration by a factor of 10 (to 10,000 ms),
the discrepancy decreases by a factor of 0.75. Another source of spectral error probably arises
from the high-frequency aliasing which is the inevitable result of taking the discrete Fourier
transform of a non-band-limited process.

The surprising conclusion is that linear stochastic theory can make useful predictions about
the onset of strongly nonlinear deterministic behaviour. Neuron susceptibility to small white-
noise stimulus grows dramatically as the neuron approaches its spiking threshold. The resulting
voltage fluctuations may be communicated to neighbouring neurons via electrical gap-junctions,

thus these predictions may have biophysical significance.
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Similar subthreshold examinations are performed on a simple Izhikevich spiking neuron
model in the next sections. Although the Izhikevich model ignores the after-spike dynamics
(simply replaces it with a manual reset rule), it preserves the subthreshold dynamics. As a
result it is expected to exhibit signs of critical slowing, just as has been demonstrated in the

more biophysically realistic Wilson model.

3.2 lzhikevich model of spiking single neurons

It has been shown that many spiking models can be reduced to two-dimensional systems having a
fast voltage and a slower recovery variable representing respectively the activation or inactivation
of the ion channels (K* and Na™) [Izhikevich, 2007]. These reduced models are a generalization
of the integrate-and-fire neuron and are an alternative to the very simple leaky integrate-and-
fire neuron [Shlizerman and Holmes, 2012]'. In reduced models, only the subthreshold activity
of the neurons is tracked, and the mechanism of action potential generation is collapsed into
an artificially imposed delta function, followed by a manual reset of the voltage and recovery
variables.

Although these models depict neither the curent flows of individual ions, nor the stochastic
aspects of channel activity, they are widely used in large network simulations [Shlizerman and
Holmes, 2012]. It is standard practice to assume that the fastest channels have reached their
steady state in these models. As a result, only the soma voltage and a slow recovery variable
are required, making reduced models ideal for phase plane analysis.

Eugene M. Izhikevich introduced his reduced spiking neuron model in 2003 [Izhikevich, 2003].
He argues that the governing subthreshold dynamics of the neuron leading to spike generation
are more important than the spike shape itself. The Izhikevich model is an abstraction of
the standard Hodgkin-Huzley neuron and is a generalization of the quadratic integrate-and-fire
neuron [Izhikevich, 2007].

The governing equations for the Izhikevich neuron, are

dv
Ca =k(v—v)(v—v) —u+Iq
du
E :a{b(v—fur) —u)} (321)

if v>vpeak, then veec, u—u+d

where v is the membrane potential, u is the recovery current, C' is the membrane capacitance,

v, is the resting membrane potential, and v, is the instantaneous threshold potential. The sign

!Section 2.3.1 of Chapter 2 introduces the most famous single neuron models.
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of b determines whether u is an amplifying (b < 0) or resonant (b > 0) variable. The recovery
rate constant is a. The spike cutoff value is vpeak, and the voltage reset value is c. With
suitable tuning, this simple model is capable of reproducing spiking and bursting behaviour of
many types of mammalian neurons, so is a good choice for simulations of large-scale networks

of spiking neurons [Izhikevich, 2007].

3.3 Regular Spiking (RS) Neuron

The pyramidal neuron is the most common excitatory cell type in mammalian cortex [Spruston,
2009]. Most are classified as regular spiking (RS) neuron; although there are intrinsically bursting
(IB) and chattering (CH) pyramidal neurons in different layers of cortex.

Using the simple model (3.2.1) and some in vitro data, a typical RS model can be defined
as [Izhikevich, 2007, p. 282]:

d
100d—;’ = 0.7(v + 60) (v + 40) — u + I

d

;§:0ﬁnwv+&»—w} (3.3.1)

if v>+435, then v+« =50, w+« u-+ 100

The slope of u-nullcline is controlled by b. This coefficient may have positive or negative
values, based on rheobase! and the input resistance of the neuron. Depending on the sign of b,
the depolarization of v decreases (b < 0) or increases (b > 0) the recovery current.

In the next sections I will show that the RS neuron shows low frequency fluctuations (Fig. 3.3)
when b < 0 and is a so-called “integrator”, while it demonstrates subthreshold oscillations

(Fig. 3.5) for b > 0, and is called a “resonator”.

3.3.1 Linear stability analysis of integrator RS neuron

I first derive the v- and u-nullcline equations in which the rates of change of the v and u variables

are set respectively to zero:

d 1
(v-mulleline) o =0 = Fy(v,r) = ={k(v - v,)(v — v;) — u+ Ige} = 0

:;5 ¢ (3.3.2)
(u-nullcline) i 0 = Ev,r)=a{blv—v)—u}=0 =u=>blv—u)

These equations can be rearranged to give u as a function of v. This produces the (u,v)

nullclines of Fig. 3.2(a). The location of the v-nullcline depends on I4. (external dc current),

!The minimal amplitude of injected current (infinite duration) needed to fire a neuron [Izhikevich, 2007]
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Figure 3.2: Linear stability analysis of the regular spiking (RS) cortical neuron of Egs. (3.3.1) with
b= —2. (a) The v (black) and u (gray) nullclines in w — v plane. The intersection of nullclines locates

the steady states. Increasing Ij. moves the v-nullcline upward. (b) Steady state diagram of the voltage
vgs as a function of 4. and the corresponding real (b) and imaginary (c) parts of the system eigenvalues.
The upper state (indicated by dashed line) is an unstable node; the bottom branch (solid line) is a stable
node. The two branches approach each other and annihilate via saddle-node bifurcation at Iy, = Isn
where Ign ~ 51.4285714285716 pA.

moving upward with increasing I4.. By eliminating u in Eqgs. (3.3.2) on obtains

kv? — v(k(v, +v,) + b) + kvpvy + b + Ige = 0 (3.3.3)

which is the characteristic equation of the system giving the intersection point(s) of the two
nullclines. The steady-state diagram can be extracted from Eq. (3.3.3) using a range of 4.
values. The result is displayed in Fig. 3.2(b) for 0 < I4. < 60 pA.

We now linearize the model equations. The governing equations (3.2.1) can be written as

W= R, R = 5 k- ) - ) —ut T
. (3.3.4)
di: = Fy(v,u), Fo(v,u)=a{blv—uv,)—u}

We write v(t) — vo + 0(t) and u(t) — up + 4(t) where vg, ug are the stationary values and the

d(t), 0(t) are small temporal perturbations of the form o (t) = d,eMt, 0(t) = §,e*2! with d,,, and

A1,2 being the amplitude and decay rate of the perturbations respectively. Thus Egs. (3.3.4)
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become

Fi(u,v) = F(vg + 0, up + 4)

(3.3.5)
Fa(u,v) = Fa(vp + 0,up + 0)
Taylor expanding, and retaining only linear terms,
O . OF .
Fi(u,v) = Fi(vo, u0) + == luo,u0 0 Tullvoﬂio i
OF, 2 R (3.3.6)
FZ(“»”) ~ FQ(UOvUO) + E“o#o v %’vo,uo u
Noting that F}(vg, ug) = Fa(vo,up) = 0, we obtain the linearised system
d . 0F . 0 N
%U = %h}o,uo v %Mo,uo U
i OF R ) (3.3.7)
i Wh}o,uo v+ %Mo,uo u
which is equivalent to the matrix form
N OF, OF N N
d v | 9 du vl J v
| g OFy  OF, @ i
v du lo
where
or O
Jg—| O Ou (3.3.8)
oFy  OFy
ov ou

lo

is the stability matriz of (3.2.1) evaluated at the equilibrium point (vg, ug) with F1, F as deriva-
tive functions defined in Egs. (3.3.4). The eigenvalues of J predict the exponential decay or
growth of the system response to small fluctuations around the fixed points (steady-states).
Negative values for the real parts of both eigenvalues indicates stability of the fixed point while
a positive real part of either eigenvalues shows the fixed point is unstable. The real and imagi-
nary parts of the eigenvalues are plotted in Fig. 3.2(c, d) respectively. The upper steady state
(dashed line) has one real positive and one real negative eigenvalue, characteristic of an unstable
saddle point. The lower branch (solid line) has a pair of real negative eigenvalues, indicating a
stable node. The two steady states coalesce at Iq. = Isny = 51.4285714285716 pA and annihilate
through saddle-node bifurcation. For I3, > Isny the two nullclines do not intersect and the state

of the system grows without limit towards infinity. This divergence is taken to mean that a
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spike event (action potential) has occurred. The Izhikevich model does not have an automatic

mechanism to bring the state back to rest; this is why a manual reset is required.

3.3.2 Subthreshold dynamics of integrator RS neuron

In order to explore the dynamics of the RS neuron around its steady state, a white-noise input

is added to the external current to render a stochastic version of the RS equations:

O% ko — ) — ) —u+ I + o)
du
o =a{bv—u) —u)} (3.3.9)

if v2>vpeak, then ve—c, u—u-+d

where 0,£(t) is a small amplitude noise term with characteristics described in Section 3.1.

I perform a series of subthreshold stochastic experiments in which the Ij. is used as a
control parameter to drive the system towards the threshold of saddle-node (SN) instability.
The numerically obtained voltage fluctuations are plotted in Fig. 3.3(a). (The baseline of each
trace has been offset to produce the stack graph for a simple visual comparison.) The same
noise source is used for all twenty simulations. By increasing I3, (upward arrow), the amplitude
of the slow voltage fluctuations grows strongly.

I define € as the normalized distance from Iy

~ Isn — Igc (3.3.10)
¢ — ON — ~dc
Isn

and plot the logarithm of the variance of each voltage time-series versus corresponding log(e).
The results are displayed in Fig. 3.3(b) with a dashed line superimposed on the variance values
with the slope of —0.5. The logarithmic graph shows a dramatic increase in the variance of the
noise-induced subthreshold voltage fluctuations on close approach to the spike generation via
SN bifurcation. The slope of —0.5 is in agreement with theoretically reported values for SN
bifurcation in the Wilson model of a human integrator spiking neuron [Steyn-Ross et al., 2006],

implying a power-law divergence in fluctuation variance,

1
var(v) ~ 7 (3.3.11)

This is a general result for any system approaching saddle-node bifurcation, and is valid not

only for the Wilson and Izhikevich integrator neurons, but also for mean-field neural populations
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such as Wilson-Cowan homogeneous cortex (Chapter 5) and 1-D cortical rod (Chapter 6).
Further analysis can be done on the fluctuation time-series by examining the autocorrelation
and power spectrum. We find that the autocorrelation function gets larger and broader when
approaching the SN threshold, consistent with a peaking of the spectral density at dc (e.g., see
Fig. 3.1). These changes are characteristics of a well-known phenomenon in dynamical systems,
namely critical slowing down, when the system becomes divergently slower in returning to steady

state in response to a subthreshold perturbation.

3.4 RS Neuron as a resonator

It is informative to examine the subthreshold behaviour of the RS neuron when it is configured
as a resonator. This is achieved by altering the sign of coefficient b in Eqgs. (3.3.1): here we set
b = 5. The resonator nullclines and steady states are displayed in Fig. 3.4(a), (b). The nullclines
are similar to those for the integrator RS neuron, apart from the change in the slope of the u-
nullcline. The linear stability eigenvalues are displayed in Fig. 3.4(c,d). The non-zero imaginary
part of the eigenvalues in a certain range of I4. implies a non-zero “resonance” frequency of
noise-induced oscillations. The real parts of the eigenvalues indicate stability of bottom branch

and instability of top branch of steady states.
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Figure 3.3: Subthreshold dynamics of a regular spiking (RS) neuron. (a) The subthreshold fluctuations
of the soma voltage in an Izhikevich model of RS neuron. The traces represent soma voltages (shifted and
stacked beside each other for visual comparison) for numerical simulations at 20 different I4. values using
an RK4 integrator with time-step At = 0.05 ms. (b) Logarithm of variance of fluctuations as a function
of log(e) where €; = (—1I; + Isn)/Isn = 1/47 with j € {1,2,...,20}, and Isny = 51.4285714285716 pA.
The superimposed dashed line has the slope of —0.5. The model parameters are as for Fig. 3.2.
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Figure 3.4: Linear stability analysis of the regular spiking (RS) cortical neuron model configured as a
resonator. Model parameters are as Fig. 3.2 but with 6 = 5. (a) Nullclines of the system. (b) Steady
states as a function of control current I3.. Stable and unstable branches are indicated by solid and dashed
lines respectively according to the real part of their corresponding eigenvalues as displayed in (c). (d)
Scaled imaginary part of the eigenvalues, predicting the frequency of oscillations as a function of Iy.. (e)
A detailed view of (c) at Hopf bifurcation (HB); the bottom branch loses stability at Iq. = Iyg = 127.5
pA and an action potential is fired.

As the I4. control parameter is increased, the bottom branch undergoes a series of qualitative
changes. The bottom branch is a stable node for Iz, < 40 pA since its eigenvalues are real
negative. Increasing Ij. gives birth to imaginary parts, changing the stable node to a stable
spiralling-in focus point. The stable focus changes to an unstable spiralling-out point at Iy, =
127.5 pA, since the real part of the eigenvalues become positive as displayed in Fig. 3.4(e). This
qualitative change marks a Hopf bifurcation (HB), making the bottom branch unstable. Note
that both branches are unstable now, and results in the firing of an action potential in the
resonator RS neuron.

The subthreshold behaviour of the model is investigated numerically in a series of experiments
in which the system is forwarded towards the HB point using I4. as control parameter, while
using the same white-noise sequences for all experiments. The results of Fig. 3.5(a) demonstrate
pronounced growth in the amplitude of the subthreshold oscillations consistent with diminished

resonator damping as the critical point is approached. This is particularly apparent in the
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last four experiments displayed in Fig. 3.5(b), revealing emergence of ~4.3 Hz oscillations as
predicted by the linear stability analysis of Fig. 3.4(d). The time-course of the decaying envelope
of these subthreshold oscillations is predicted by the real part of the dominant eigenvalue of
Fig. 3.4 (c, e). Close approach to the HB point is associated with very small negative real
parts of the eigenvalue implying a “slowed” system. Crossing the HB threshold changes the
sign of real parts, allowing the subthreshold oscillations to grow unboundedly (resulting in spike
generation).

The variance of the subthreshold oscillations is computed and displayed in Fig. 3.5(c) as a

function of € where the € is defined as:

I — I (3.4.1)
¢ — tHB ~ fdc
Iup

A significant increase in the variance is evident prior to HB point in the Izhikevich resonator.
A dashed line with the slope of —1 is superimposed on the graph showing the same results as
previously demonstrated by Steyn-Ross et al. [2006] for the Wilson resonator spiking neuron,
and implies a power-law divergence:

1

var(v) ~ - (3.4.2)

as generally expected for a dynamical system with a Hopf bifurcation.
In the next section I present a modified form of the RS neuron capable of producing a
complex dynamics known as burst-suppression. The subthreshold behaviour of the model will

also be studied briefly.

3.5 Modified RS neuron showing burst-suppression (BS) pattern

In this section a modified form of RS resonator neuron is presented which is capable of pro-
ducing burst-suppression (BS) patterns at hyperpolarized membrane potentials’. The working
mechanism underlying the BS pattern is adopted from works by Cunningham et al. [2006] and
Ching et al. [2012]. These authors model BS using a Hodgkin-Huxley formalism in which the

equation for the membrane voltage is,

1%
CE = Idc - INa - IK - IKATP - Ileak

'See Section 2.2.3 of Chapter 2 for a description of burst-suppression.
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Figure 3.5: Subthreshold dynamics of Izhikevich regular spiking (RS) resonator neuron. (a) White noise-
induced subthreshold oscillations while the model is forwarded towards Hopf bifurcation (HB) by stepped
increases of Iyc. (b) Details of subthreshold oscillations prior to HB showing oscillations with frequency
f ~ 4.3 Hz for the top trace. (c) Fluctuation variance corresponding to time-series in (a) as a function
of log(€) showing a dramatic increase while approaching HB at I4. = Iyp where Iyp ~ 127.5 pA.

See Cunningham et al. [2006]; Ching et al. [2012] for the sodium, potassium and leakage currents.

The ATP-gated potassium membrane current is,

Ik prp = K arp2(V — EK) (3.5.1)

in which the gating variable z of ATP-sensitive potassium channels depends on ATP concentra-
tion:

1

* = [T To[ATE] (3.5.2)

The concentration of ATP is related to intracellular concentration of sodium ions [Na] and the

sodium ionic current Iy,, obeying the following differential equations:

d[clza] = F.In, — 3Km[Na]3[ATP]
(3.5.3)
d[fz”fP] = Jarp ([ATP]max — [ATP]) — K, [Na]*[ATP]

where F' = 8.8 x 1075 mM-(ms)~!(pA)~! is the surface factor (which transforms sodium ionic

flow to intracellular concentration), and K,, = 6 x 107% (mM)~3-(ms) ™! is the kinetic constant
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of Na®™/K*-ATPase pump (the main energy consumer neural element [Ames 111, 2000]). The
parameter Jarp is the production rate of ATP, directly coupled to cerebral metabolism. Manip-
ulation of this parameter could be a proxy for changes in metabolic rate. The baseline value set
to Jatp = 2 x 107* (ms)~! and is increased over the range of 30 — 50% of baseline to model the
decrease in metabolic rate due to the effect of anaesthetics and hypothermic effects on cerebral
metabolism.

In this section I demonstrate how the mechanism of BS pattern generation can be embedded
into an Izhikevich-based model for the cortical RS neuron. We note that the individual ionic
currents are not declared explicitly in the Izhikevich scheme: the recovery current u represents
the sum of all inward and outward ionic currents. However Eqs. (3.5.1-3.5.3) show the depen-
dence of Ik, current on [ATP] concentration, which is related to concentration of intracellular
sodium [Na], and consequently to the sodium current In,. As a result, the In, current needs to

be incorporated into the Izhikevich model. I choose to represent the Iy, current as,

Ina >~ U — Ugs

i.e., as a departure of u from its steady-state value ug, obtained by setting du/dt = 0 in second

equation of Egs. (3.2.1) to give

du
E:O = a{b(v—v,) —ug}t =0

= ugs = b(v—vy)

Based on this simplification I propose the following equations for a single pyramidal cell capable

of producing a burst suppression pattern at lowered metabolism rates,

dv
C% =k(v—v,)(v—v) —u~+ Ly + Ik pp + DOISE

du

i a{b(v —v,) —u}

Ik yrp = gKATPZ(v - Ex)

1
© T L4 L0[ATP] (3.5.4)
d[dl\lza] — F(u — uss) _ 3Km[Na]3[ATP]
d[ng} = Jatp ([ATP]pmax — [ATP]) — K,,,[Na]?[ATP]

reset rule: v «— —75 mV, u « u+ 100, when v > 35 mV (spike cutoff)
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Table 3.1: Variables (Var) and parameters (Par) of bursting cortical pyramidal neuron based on Izhikevich
formalism

Var/Par  Description Value Unit

v membrane potential mV

U recovery variable, representative of summation of all PA
all inward and outward ionic currents of membrane

Uss steady state of recovery variable (used in [ATP] equations) pA

C membrane capacitance 100 pF

k scaling factor, affects the spike width 0.7 mS/mV

Uy resting membrane potential -90 mV

Ut instantaneous threshold potential —70 mV

Iac externally applied dc current 127.5 pPA

a rate constant of recovery currents 0.03 (ms)~?

b sensitivity of recovery current to 5 nS
subthreshold membrane fluctuations

Upeak spike cutoff value 35 mV

c voltage reset value —75 mV

d reset value of recovery variable 100 PA

Ik yrp ATP-sensitive potassium current pA

K arp maximum conductance of ATP-sensitive K channels 3 nS

z gating variable of ATP sensitive potassium channels dimensionless

Fx potassium channel reversal potential —80 mV

[Na] concentration of intracellular sodium mM

[ATP] concentration of intracellular ATP mM

[ATP]max maximum concentration of intracellular ATP 2 mM

F surface factor, converts sodium influx to 2x107% mM-(ms)~!(pA)~!
intracellular concentration

K kinetic constant of NaK-ATPase 3x107%  (mM)~3(ms)~?

JaTp production rate of ATP, a surrogate for metabolic rate 2x107*  (ms)7!

See Table 3.1 for definition and parameter values. The values of some parameters differ from
the original resonating RS model. These modifications were applied in order to construct an RS
model capable of producing a BS pattern under deep anaesthesia. Cortical RS neurons are known
to hyperpolarize by about 25-30 mV during BS generation [Steriade et al., 1994]. As a result
I lowered the resting membrane potential to v, = —90 mV. Consequently the corresponding
spike threshold potential, and the voltage reset values, were set to new values of v; = —70 and
¢ = —75 mV respectively.

The resultant 4*-order model is an example of a fast-slow bursting system, composed of fast
and slow variables with drastically different time courses. The fast subsystem is composed of v, u
and [Na| variables while the slow variable is [ATP] level. The time course of the slow subsystem
is determined by Jatp = 2 x 10~% (ms)~!. Such a bursting model can be dissected by freezing
the slow variable and using it as the bifurcation parameter to control the the fast subsystem
[Izhikevich, 2007, ch. 9]. The v- and wu-nullclines of the fast subsystem can be extracted by

assuming a fixed value for the slow variable [ATP] and the resultant Ik, .. According to the
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Figure 3.6: Nullclines and trajectories of a hyperpolarized regular spiking (RS) resonator neuron capable
of producing burst suppression (BS) pattern as described by Eqs. (3.5.4). (a) The nullclines and their
intersections resulting in the generation of a stable spiralling-in focus (F) and unstable saddle (S). The
v-nullcline moves vertically according to the variation of slow variable [ATP] or the corresponding Ik ,.p
values. Considering the numerically obtained range of values for Ix,.., three v-nullclines are superim-
posed in the figure. (b) The numerically obtained trajectories of the model are superimposed on the
nullclines. A fourth-order Runge-Kutta integrator (time step At = 0.1 ms) is used to solve the model
equations. See Table. 3.1 for parameter values.

model equations (3.5.4), the variation in the slow variable induces a vertical shift of the v-
nullcline. Considering this effect, the nullclines of the model are extracted and displayed in
Fig. 3.6(a). Similar to the original resonating RS neuron, the w-nullcline is a line with slope of

= 5, and the v-nullcline is a parabola. Using the numerically obtained values for I, three
v-nullclines are plotted in the figure.

When Ik, = 0, the system is equivalent to the original resonating RS model. As demon-
strated for the resonator RS model in Fig. 3.4, the two intersections can be shown to be a
stable spiralling-in focus and an unstable saddle point (F and S in the figure respectively).
As shown in Fig. 3.6, the revised model parameters lets the system rest at a hyperpolarized

membrane potential corresponding to the stable node at v = —78.5 mV. The metabolic rate is
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low in the hyperpolarized state, so the ATP level slowly recovers to its base value, correspond-
ing to slow decrease in Ik ., (according to the inverse relationship between [ATP] and Ik, in
(3.5.4), fourth equation). When the ATP-sensitive potassium current reaches its minimum point
Ik, rp = —9.93 pA, a Hopf bifurcation has already happened, and the stable focus point has
changed to an unstable one and then disappeared (similar dynamics as displayed in Fig. 3.4(e)).
The v- and u-nullclines do not intersect for Ix,,., = —9.93 pA, and the system is unstable. As
a result the system starts firing a burst of action potentials.

The generation of action potentials quickly consumes the available ATP which is equivalent
to the uptake of Ik ,,,. This uptake shifts the v-nullcline downward, until two nullclines intersect
again, and a new stable focus point is formed. The v-nullcline corresponding to the maximum
value of the Ik, is also displayed in the Fig. 3.6(a). The numerically obtained v — u trajectory
is superimposed on the nullclines and displayed in Fig. 3.6(b). The inset shows that the system
is resting around the stable spiralling-in focus point (black circle)!. The uptake of ATP makes
the focus unstable, and the trajectories grow outwardly towards the spiking threshold, and the
system starts another cycle of bursting,.

The mechanism of BS generation, maintenance and termination in this model are well illus-
trated in time-series for membrane potential, intracellular Na and ATP levels, and the corre-
sponding Ik ., values: see Fig. 3.7. Performing a numerical simulation for 200 s results in the
BS pattern generation by an RS neuron as displayed in in (a). In agreement with in vivo obser-
vations (see Figure 1 in Liley and Walsh [2013] and related citations), variability is apparent in
the duration of the suppressed or isoelectric period.

Two bursts are selected from (a) and displayed in (b) with the inset showing the close-up
view of the suppressed period in which the RS neuron shows subthreshold oscillations that are
closely similar to those of Fig. 3.5 for the standard two-variable resonator RS neuron. Note
that it is possible to demonstrate the occurrence of critical slowing-down in this system as well.
One can freeze the slow variable [ATP], and analyze the subthreshold oscillations of the system
while forwarding it towards Hopf bifurcation. The results are expected to be similar to the
subthreshold behaviour of the resonating RS neuron of Sect. 3.4.

The corresponding intracellular ATP level and the sodium concentration are displayed in
Fig. 3.7(c). The ATP (dashed line) is consumed during the bursting phase, and recovers slowly
to its baseline value during the quiescent phase of the BS pattern. The [Na] increases while
bursting, and returns to baseline during the quiescent period. The last trace (d) displays the

variations in the I, level. It is interesting to contrast the slow evolution of [ATP] with the

Note that white noise is applied to the system. As a result the trajectories contain noisy fluctuations.
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Figure 3.7: Bursting regular-spiking cortical neuron as described by Egs. (3.5.4) and Table 3.1. (a)
Membrane potential of RS neuron showing burst of action potentials with variable length of quiescent
periods. (b) A detailed view of two bursts from (a) showing the growth in the subthreshold fluctuations
prior to burst generation. (c, d) The corresponding intracellular [Na] concentration, [ATP] level and the
ATP-gated potassium current Ik ... Numerical simulation method is as in Fig. 3.6.

much faster time course of v illustrating clearly the fast-slow dynamics that drives this bursting

model.

3.6 Fast spiking (FS) cortical interneurons

The fast spiking (FS) interneurons are the prevalent type of inhibitory neuron in the neocortex

and hippocampus, comprising ~20% of the population of all inhibitory neurons [Kann et al.,
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2014]. These neurons play an essential role in generation of gamma oscillations' and can fire
up to hundreds of spikes per second during gamma oscillations (hence “fast-spiking”). These
neurons also exhibit resonator behaviour (subthreshold oscillations with non-zero frequency and
discontinuity in their frequency-current relation), stuttering (random switching between spiking
and quiescence) and lack of rebound or post-inhibitory spikes (firing after strong hyperpolar-

ization) [Izhikevich, 2007]. Based on these characteristics Izhikevich [2007] introduced his FS

model as
dv
20& = (v+55)(v+40) —u + Iq.
d 0 ifo<o
o 02{UW) —u} ,UW) = P = —55mv (36.1)
dt 0.025(v —vp)®  otherwise
reset rule: v« —45 mV when v > 25

with a nonlinear u-nullcline to prevent formation of rebound spike [Izhikevich, 2007].

Following the method introduced in Section 3.3.1, I perform a linear stability analysis on F'S
neuron. The results of the analysis are displayed in Fig. 3.8, with the steady state diagram of
vgs as a function of I4. in (a), and the corresponding real and imaginary parts of eigenvalues
of the stability matrix in (b), (c) respectively. Considering the structure of the eigenvalues,
one observes occurrence of a Hopf bifurcation (HB) where the real parts of complex eigenvalues
change sign at Igyp ~ 73.6843750000033 pA.

I selected four qualitatively different regions of the steady-state diagram corresponding to
T4c = 20,73,74,90 pA, indicated by vertical dashed lines in Fig. 3.8 (a-c) marked @, @, @, and
@D. The corresponding v- and u-nullclines (black dashed and solid lines respectively) for selected
I4. values are plotted in Fig. 3.9 (a-d). For Iy, = 20 pA, the two nullclines plotted in (a) have
an intersection with two real negative eigenvalues, characteristic of a stable node. A numerically
obtained trajectory (blue trace) with an arbitrary starting point (grey circle) is superimposed
on the phase plane diagram, showing attraction to the stable node. When the drive current is
increased to Iq. = 73 pA, the v-nullcline shifts upward and the steady state becomes a stable
focus. This is confirmed with a numerical simulation showing that a trajectory starting from
the vicinity of intersection is attracted spirally into the steady state as displayed in (b). Panel

(c) shows the system dynamics when the intersection is an unstable spiraling out focus point

!Gamma oscillations (frequency range ~30-100 Hz) are the hallmarks of consciousness and higher cognitive
tasks. See Sections 2.2.1, 4.3.
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Figure 3.8: Steady states of the fast spiking (FS) cortical neuron. (a) Steady-state voltage as a function

of external stimulus current. (b, ¢) Corresponding real and imaginary parts of the eigenvalues of system.
The real parts changes sign at Iy, = Iyp ~ 73.6843750000033 pA, via Hopf bifurcation (HB).

corresponding to Ig. = 74 pA. A typical trajectory, started in the vicinity of the intersection,
spirals out (not visible in the figure) and grows to full-scale tonic spiking. Considering the
eigenvalues for I3 = 90 pA, the steady state is an unstable node. All trajectories are repelled
away from this steady state (without subthreshold oscillation) and grow to full amplitude spikes
as displayed in (d).

The corresponding voltage time-series are displayed in (e-h). Note the existence of sub-
threshold oscillations in (f), and (g) with frequency of f ~ 27.3 and 26 Hz respectively. These
numerically obtained frequencies are in agreement with the theoretical predictions as displayed
in Fig. 3.8 (¢) as the scaled (divided by 27) imaginary part of corresponding eigenvalues.

A similar approach as presented in Section 3.3.2 can be employed to analyze the subthreshold
response of the FS neuron to small white-noise stimulation during approach to the HB point.
One can observe signs of critical slowing down prior to state transition in the F'S neuron; these

are comparable to those seen in the resonator RS neuron shown in Fig. 3.5.

3.7 Thalamocortical (TC) relay neurons

Thalamocortical (TC) relay neurons are a type of excitatory thalamic neuron that projects
sensory information to the cortex. These neurons have two functional modes, tonic firing and

bursting. Izhikevich [2007] presented a simple model of a “typical” TC neuron as,
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Figure 3.9: Numerical analysis of fast spiking (FS) cortical neuron. Numerical simulation of FS neuron
at four selected Iy, values (marked (O, @), (3, and (@) in Fig. 3.8; resulting v — u trajectories (blue)
are superimposed on the corresponding v- and u-nullclines (black solid and dashed respectively) in phase
planes of (a-d). An RK4 integrator with time step At = 0.1 ms was used. See text for the values of
selected dc current. The corresponding voltage traces are plotted in right panels, showing sub- (e, f) and
supra-threshold (g, h) response of FS neuron.

d
200677; = 1.6(v + 60)(v + 50) — u + Iy
d 15 ifv<—65mV
& 0.01{b(v+65) —u}, b= (3.7.1)
dt 0 otherwise

reset rule: v «— —60 — 0.1u, u «— u + 10, when v > 35+ 0.1u

Figure 3.10(a) displays the v-nullcline (dv/dt = 0) and w-nullcline (du/dt = 0) of this
model. The u-nullcline is a piecewise linear function, and is designed to provide both the tonic
and bursting firing patterns of the TC neuron. The “spike cutoff” and the “reset” lines are

superimposed. Although a theoretical eigenvalue analysis can be done on the model in two
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Figure 3.10: The response of Izhikevich model of thalamocortical (TC) relay neuron to different initial
soma voltages prior to saddle-node bifurcation. (a) The nullclines (thick grey), reset and spike cutoff lines
(dashed) of the model described by Eq. (3.7.1). The model is in a subthreshold mode prior to saddle-node
(SD) bifurcation set by I4. = 30 pA. The result of four numerical simulations of the model starting from
different points are displayed in (b-e). (b, c¢) Initial values are in the attraction domain of the node (N)
point and the trajectories are attracted to the stable node point. When the initial state of the model
is out of the attraction domain of N, the trajectories travel towards the “spike cutoftf” threshold, where
they are instantaneously reset. Note the firing of rebound burst of spikes in (e).

different ranges of v (corresponding to linear pieces of u-nullcline) to determine stability, a
qualitative approach can also be employed. In the latter method one numerically obtains the
trajectories of the model starting from different regions of the phase-plane. By performing a set
of such experiments, one can infer the type of steady points. None of these analyses are shown
here, but the result of the numerical approach identifies the node and saddle points, and are
displayed as N and S in Fig. 3.10(a).

After selecting four initial points on different regions of the phase-plane, a series of numerical
simulations are performed and the results are shown as the trajectories in (a) and the correspond-
ing voltage time series in (b) to (e). The trajectories in (b) and (c) are attracted to the node,
indicating that the attraction domain of the node includes (¢) and (b) points in Fig. 3.10(a). If
the starting point of the trajectories is beyond the attraction domain of the stable steady-state
(d, e), then the trajectories go towards the spike cutoff line, and then reset according. This can
result in the firing of a burst of rebound spikes as shown in (e).

Let us study the suprathreshold response of the model when I3, > Isn and the saddle-node
bifurcation has already occurred, so the system does not have any steady state. This is shown

in Fig. 3.11(a) as the nullcline diagram, and the two selected trajectories. Since there is no
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attracting steady-state, the trajectories are increased unboundedly, until they reach the spike
cutoff line and then reset.

The “reset O cutoff” loop may repeat several times before the attraction of the trajectories
to the tonic spiking limit-cycle. Depending on the start point of the trajectories (determined
by the level of hyperpolarization of v, and the value of the recovery variable u), the TC neuron

expresses a tonic firing mode (b), or a rebound burst followed by regular tonic mode (c).

3.8 TC neuron with hyperpolarization-activated cation current

The original Izhikevich model of the TC neuron was introduced in the previous section. However
it is known that TC neuron is driven by a slow hyperpolarization activated cation current, Ip.
Briefly, the Na™ and KT ions flow into the neuron via activated Ij, channels in response to
membrane hyperpolarization. In wvitro experiments show that blockade of the I current by
application of cesium results in elimination of spindle-like! and slow oscillations in hyperpolarized
TC neurons [Destexhe and Babloyantz, 1993]. As a result I}, is believed to have a key role during
spindle generation [Destexhe and Babloyantz, 1993; Steriade and McCarley, 2005]. This section
presents an extended model of TC neuron including Ij, current.

To incorporate the dynamics of the I}, current in the model thalamocortical neuron, I added

a third differential equation to augment the original two-variable model:

1Spindles are hallmarks of early stages of the slow-wave sleep and are modelled in Section 4.4 of this thesis.
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Figure 3.11: The response of Izhikevich model of thalamocortical (TC) relay neuron to different initial

soma voltages in suprathreshold regime
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Table 3.2: Variables (Var) and parameters (Par) of hyperpolarization-activated thalamocortical relay
neuron based on Izhikevich formalism

Var/Par Description Value Unit
v membrane potential mV
U recovery variable, representative of summation PA

of all inward and outward ionic currents
Iy hyperpolarization-activated cation current pPA
C membrane capacitance 180 pF
k scaling factor, affects the spike width 1.6 mS/mV
Up resting membrane potential —65 mV
vt instantaneous threshold potential —55 mV
Iac externally applied dc current 18 PA
a rate constant of recovery currents 0.01 (ms)~?
ap rate constant of Ij, currents 3.5x1077  (ms)~!
b sensitivity of recovery current to nS

subthreshold membrane fluctuations

by, sensitivity of I} to nS
membrane voltage

€ voltage sensitivity to I, 3
I, offsct I, offset value 75 pA
Upeak spike cutoff value 35 mV
c voltage reset value —65 mV
d offset value of recovery variable —15 pA
dp, offset value of Ij, current -1.3 PA
dv .
C% =k(v—v.)(v—v) —u+ Iqc + e, + noise
du 15 if v < -70mV
= a b= )~ u}, b=
dt 0 otherwise
(3.8.1)
dlp, —255.5 if v < —65 mV
— = Oh {bn - v = Ipoffset — In}, bp=
0 otherwise
reset rule: v <~ c¢—0.1u, w<—u+d, Iy« I +dy, when v 2> vpeax — 1.1u

See Table 3.2 for description and values of model parameters. Note that the I term is now

added to the voltage equation. The third equation describes the slow (see ap value ) current

which depolarizes the neuron. Ideally the range of allowed values for these parameters should

be determined from biological measurements, but that is beyond the scope of this work.

The numerical simulation is used in this section to demonstrate interaction of the system

variables, v, u, I. Figure 3.12 shows the temporal evolution of v and I;. Assuming that the
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Figure 3.12: Spontaneously generated burst in a model of thalamocortical relay (TC) neuron with
hyperpolarization-activated cation current I, as described by Egs. (3.8.1). (a) The membrane voltage
(black) and I, (grey) of TC neuron biased with I4. = 18 pA and driven with white noise. The I}, current
slowly increases from 19.51 to 19.66 pA. This increment depolarizes the neuron towards its firing thresh-
old. Firing of action potentials reduces I, which results in the slight hyperpolarization of the membrane
in return and termination of the burst. (b) A detailed view of subthreshold fluctuation of the membrane
voltage. Variance of two 8-sec pre- and post-burst epochs (black) are calculated. The variance is higher
prior to burst generation compared to the after-burst period (var = 0.1261, 0.0978 mV?) respectively.

neuron is in bursting mode (more specifically in spindle generation mode) and that Ij, current
is active, Iy increases very slowly while the neuron is resting at v &~ —61 mV. The increase in I},
slowly depolarizes the neuron until it fires a burst of action potentials at ¢ = 8.55 s. Following
the after-spike reset rule described in Eq. (3.8.1), the firing of every action potential subtracts
dp, = 1.3 pA from I}, (vertical bar in Fig. 3.12(a)). The continious reduction of I;, during burst
firing hyperpolarizes the membrane potential to subthreshold levels and the bursting terminates.
Another burst will spontaneously emerge when I, grows to a level capable of depolarizing the
cell again. We will shortly see that in an in vivo-like condition, consecutive external inhibitory
stimuli can promote burst generation in TC neuron.

Before examining the effect of externally induced inhibitions on burst generation, a simple
analysis is performed on the subthreshold voltage fluctuations of the model as displayed in
Fig. 3.12(b). The aim is to track variance of voltage fluctuations prior to and after bursts.The
comparison between variances of two 8-sec voltage epochs—belonging to before- and after-burst
periods—shows 22% reduction after the burst generation. The increased variance prior to burst

generation is a result of critical slowing down and is consistent with increased sensitivity of
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the system in the period leading up to phase transition. One can perform a detailed analysis’
of the variance by simply freezing the slow variable (), and analysing on the fast subsystem
composed of v and u variables only.

The remainder of this section examines the model response to pulses of hyperpolarizing
current. In in vivo conditions when spindles are generated, the hyperpolarizing currents are
due to activity of inhibitory reticular nucleus of thalamus.The model behaviour is displayed in
Fig. 3.13. To understand the mechanisms underlying spindle generation, the feedback connection
from Iy, to v is temporarily disconnected as displayed in (a). One can do this simply by setting
e = 0 in Egs (3.8.1). The stimulation train induces temporary hyperpolarization of v = —76.5
mV in the membrane potential as displayed in the inset. Each hyperpolarization increases Iy,
about 0.4 pA, provided that the membrane is hyperpolarized to lower levels than —65 mV (see
the definition of b, parameter in the model). Since the effect of I, on membrane voltage is
suppressed in this experiment, no spiking dynamics occurs in this crippled version of the model.

The mutual interaction between v and I variables is restored in Fig. 3.13(b), resulting in
bursting. The bursts are produced in response to hyperpolarizing pulses, and are composed of 3—
4 consecutive spikes. As described in (a), every stimulation pulse hyperpolarizes the membrane
which results in an uptake of Ij, current. The increased inflow of I, depolarizes the TC cell,
until the neuron passes firing threshold and generates the first action potential of the burst.
This inactivates the I, channels, blocking the Ij inflow, and reducing the membrane potential.
This is modelled by an after-spike reset in I,. However the neuron is still depolarized and 2-3
further action potentials may be generated. The firing of every spike reduces the I level more
and more, until the neuron stops spiking. Further stimulation of the neuron can reactivate this
mechanism to produce another burst of action potentials after a refractory period of ~2 s.

In Section 4.4 the TC neuron will be incorporated into a thalamocortocal network to model
spindle generation.

The next section presents a model for inhibitory thalamic reticular nucleus neuron, which

also plays important role in spindle generation.

3.9 Reticular thalamic nucleus neuron (RTn)

Reticular thalamic nucleus (RTn) neurons fire tonic spikes in response to depolarizing incoming
signals if they are at rest potential (corresponding to awake state of the brain), but fire bursts of

action potentials in response to the same stimuli when they are hyperpolarized (corresponding

'The detailed variance analysis is similar to the analysis presented for two RS models in Sections 3.3, 3.4 of
this chapter
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Figure 3.13: Burst generation in thalamocortical (TC) model with hyperpolarization-activated cation
current [j, as described by Egs. (3.8.1). (a) Top, illustration of the model variables when the feedback
from Ij, to v is disconnected. The hyperpolarizing pulses (pulse width = 50 ms, amplitude = —450 pA,
frequency = 4 Hz) are applied to the neuron from ¢t = 1 to 11 s. The membrane potential is displayed
as a function of time, with I; current superimposed. The neuron does not fire action potentials. (b)
Burst generation in TC model after restoring mutual interaction between v and I variables. Same
hyperpolarizing pulses are applied to the neuron. The details of the v and I} variables is displayed in
top right corner for a selected period of time. A fourth-order Runge-Kutta integrator with time steps of
At = 0.1 ms is used to numerically simulate the model.

to NREM or SWS or light anaesthesia states of the brain). The simple Izhikevich model of RTN

neurons follows:

d
40671; = 0.25(v + 65) (v +45) —u + I
d
di: — 0.015{b(v + 65) — u}, b=10if v < —65 and b = 2 otherwise (3.9.1)

with reset rule of: v« —55, w <+ u+ 10, when v >0 (spike cutoff)

This model emits a rebound spike when it is released from a hyperpolarized potential of about
—80 mV to more depolarized potentials around the resting potential (—60 mV'). This behaviour
is displayed in Fig. 3.14, where the nullclines are plotted in (a) and the numerically obtained
trajectory superimposed. The rebound spike generation is produced based on a similar mecha-
nism as displayed in Fig. 3.10 for TC neuron. However the type of the stable point is different
as indicated by the numerically obtained trajectories: the trajectory in the inset of Fig. 3.14(a)
shows that the steady state is a stable focus point, while the steady state was a stable node for
the TC neuron.

The response of this neuron to incoming excitations and inhibitions is demonstrated in
Fig. 3.15. The stimuli have a form of rapid excitatory or inhibitory pulses with the width of 20

ms (in the order of the time-course of incoming synaptic currents) and amplitude of +250 and
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—100 pA for excitatory and inhibitory stimuli respectively. The “E” and “I” arrows show the
neural response to excitatory and inhibitory inputs respectively. The resting neuron (v, = —55
mV) fires single spikes due to both types of incoming stimuli, while the hyperpolarized neuron
(v, = —68.5 mV) only fires due to incoming excitations.

A thalamocortical network model of spindle generation will be presented in the next chapter
with the hyperpolarized RTn neuron as one of the key elements of the model. It is known
that hyperpolarized RTns fire bursts of spikes in response to incoming excitatory stimulations
[Bazhenov and Timofeev, 2006]. However Fig. 3.15 demonstrated that the original RTn model
does not burst when hyperpolarized. I propose a modified form of the RTn model that is capable

of burst generation while the neuron is hyperpolarized:

Cd—v =k(v—uv)(v—1v) —u+ I

dt
d 80 if u < —65 pA
o a{b(v — v,) — u}, b= P
dt 2 otherwise

(3.9.2)
with reset rule of: v = ¢ + Uoffset, U — U+ d + Uofser, When v > vpeak

—40 if u < —250 pA 20 if u < —250 pA
Voffset = s Uoffset =
0 otherwise 0 otherwise

Here vofiset and uofiset are values to be added to the after-spike voltage and recovery variables
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Figure 3.14: Rebound spike generation in original Izhikevich model of reticular thalamic nucleus (RTN)
neuron described by Eqs. 3.9.1. (a) The nullclines and the numerically obtained (fourth-order Runge-
Kutta method, At = 0.01 ms) trajectory of RTN model upon release from hyperpolarized state of v = —80
mV. The inset shows detail of the trajectory while getting attracted to the intersection. The spiralling-in
behaviour signals the existence of a stable focus. (b) Corresponding voltage time-series, comparable with
in vivo measurements as stated in Fig. 8.32 of Izhikevich [2007]. The external stimulus current is set to
T4 = 45 pA.
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Figure 3.15: The response of resting and hyperpolarized Izhikevich model of reticular thalamic nucleus
(RTn) neuron (same neuron as studied in Fig. 3.14) to brief excitatory and inhibitory pulses. The resting
neuron fires single spikes to both inhibitory and excitatory inputs (indicated by “I” and “E” arrows
respectively), while the hyperpolarized neuron fires only due to excitations.

respectively. The dependence of the offset values on u (and consequently on v) in this modi-
fied model distinguishes the spiking behaviour of the RTn neuron in the hyperpolarized state
(v, = —71 mV) compared to when it is slightly depolarized (v,, = —65 mV). See Table 3.3 for
description and values of model parameters.

Figure 3.16(a) displays the membrane voltage of the modified model. Brief excitatory stimuli
(pulse width = 8 ms, amplitude = 250 pA) are applied regularly to the neuron. The neuron
undergoes a hyperpolarization from ¢ = 4 to ¢ = 8 s by application of a negative external current.
A tonic discharge pattern is observed in response to stimuli while the membrane voltage is at
vy = —65 mV; this potential corresponds to the awake state [Steriade and McCarley, 2005,
ch. 5]. The figure shows that neuron fires differently when it is hyperpolarized to v,, = —71 mV.
The hyperpolarization corresponds to natural slow wave sleep (SWS) and can be accompanied

with sleep spindles [Steriade and McCarley, 2005]. With a hyperpolarized membrane potential,

Table 3.3: Variables (Var) and parameters (Par) of modified reticular thalamic nucleus neuron, Eq. (3.9.2).

Var/Par Description Value  Unit
v membrane potential mV
U recovery variable, representative of summation PA
of all inward and outward ionic currents
C membrane capacitance 40 pF
k scaling factor, affects the spike width 0.25 mS/mV
Uy resting membrane potential —65 mV
Vg instantaneous threshold potential —45 mV
I externally applied dc current 45 PA
a rate constant of recovery currents 0.015  (ms)~!
b sensitivity of recovery current to nS

subthreshold membrane fluctuations

Upeak spike cutoff value 0 mV
c voltage reset value —55 mV
d offset value of recovery variable 10 pPA
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Figure 3.16: Response of the modified model of the reticular thalamic nucleus (RTn) neuron. (a) In
response to excitatory current stimulations (applied every 1 s), the neuron fires differently. Tonic firing
is produced when the membrane potential is at resting voltage of v,; = —65 mV. The neuron generates a
burst of action potentials when it is hyperpolarized to v,, = —71 mV by application of Iy, = —450 pA. (b)
The nullclines of the model showing the effect of hyperpolarization as the downward shift in the location
of the v-nullcline. The trajectories of two events from (a)—marked (1), and @—are superimposed on the
nullclines showing the mechanism of bursting in this model. (¢) The expanded view of the events from
(a) showing two modes of firing for RTn neurons. The corresponding external stimuli are superimposed.
Iic = 0 pA. An RK4 integrator with time step At = 0.01 ms was used. Small amplitude white noise is
added to Iyc.

the neuron fires a burst of action potentials in response to excitatory stimuli.

The nullclines of the model are displayed in Fig. 3.16(b), and are identical to the nullclines of
the original RTn model of Fig. 3.14(a). However, the after-spike conditions are different in the
new model. The trajectories corresponding to two events in (a) (marked (1), 2), and expanded
in (c)) are superimposed on the nullclines, showing the generation of rebound burst when the

neuron is hyperpolarized.

3.10 Chapter summary

What happens during the time leading up to action potential generation in a neuron? This

chapter tries to answer this question in biophysical models of single spiking neurons using theory
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of dynamical systems and numerical simulations. The subthreshold voltage fluctuations are
proposed to convey precursor signs prior to occurrence of a phase transition represented by the
firing of an action potential. Studying and capturing such signs could be significant in terms of
providing theoretical knowledge about the mechanisms by which the brain undergoes switching
between its different healthy or pathological rhythms.

The chapter starts with an extension of a previous theoretical and numerical subthreshold
analysis of the H. R. Wilson model of cortical neurons. The results show precursors in the spec-
trum of voltage fluctuations prior to spike generation. As the next step it would be interesting
to look for the signs of phase transitions in more complex neural phenomenon rather than a
spike generation in a single neuron. However proper models of different neural types (cortical,
thalamic, ...) should be developed at first. Although H. R. Wilson model is simpler than orig-
inal four-dimensional Hodgkin-Huxley model in terms of number of governing equations, more
abstract models are better fits for our network simulations.

The number of governing equations and consequently the complexity is reduced in abstract
model by retaining only the subthreshold dynamics and replacing the after spike behaviour with
a manual reset rule. The Izhikevich model is shown to capture the spiking behaviour of many
known neurons in vitro and in vivo, and is the model of choice in this chapter.

Models of two cortical neural types (excitatory regular spiking RS, and inhibitory fast spik-
ing FS) and two thalamic neural types (excitatory thalamic relay (TC) and inhibitory reticular
nucleus neuron RTn) were investigated in the chapter. The subthreshold dynamics of these
neurons were studied using the linear stability analysis, and the mechanisms underlying spike
generation were described using the bifurcation theory. Then the subthreshold voltage fluctua-
tions were studied, and I found signs of critical slowing prior to bifurcation. Modifications were
introduced to the original Izhikevich model to allow more realistic behaviour in some neural
types. Specifically, the RS model was altered to capture the metabolic-rate related bursting.
A hyperpolarization activated cation current was incorporated into the TC neuron. The origi-
nal Izhikevich RTn neuron was modified to burst in response to incoming excitation, when the
neuron is hyperpolarized. The two latter novel modifications are of importance for generating

thalamocortical sleep spindles which will be presented in Chapter 4.






Chapter 4

Slowing down in networks of spiking

neurons

The previous chapter demonstrated subthreshold critical fluctuations prior to action potential
or burst generation in single-neuron models for cortex and thalamus. Precursor signals can
be detected in the time-series for neuron voltage. The vision of the thesis is pursued in this
chapter by looking for signs of critical slowing in network assemblies of spiking neurons. The
constitutive elements of the network are the modified Izhikevich models described in Chapter 3.
These biologically inspired networks are tuned to generate gamma oscillations and sleep spindles.
I will show evidence of warning signs in neural activity prior to state transitions.

We begin with a discussion about synaptic interactions, and describe how the local field
potential (LFP) can be extracted from the network. A cortical network capable of gamma
frequency activity is presented in Section 4.3, and we demonstrate transition to lower frequencies
following simulated application of an anaesthetic drug. In Section 4.4 we construct a small
network of cortical and thalamic neurons that supports sleep spindles. I demonstrate how signs

of critical slowing can be detected in these network generators of gamma and spindle oscillations.

4.1 Synaptic connections

The arrival of a presynaptic action potential (AP) at the synaptic terminal releases neurotrans-
mitters into the synaptic cleft, and these bind to their corresponding receptors in the postsy-
naptic side of the synapse. This binding may result in the opening of ion channels (directly,
or indirectly via secondary messengers) on the postsynaptic site, leading to change in ionic
concentrations in- and outside of the postsynaptic dendrite. Depending on the type of neuro-
transmitter and receptor, the result can be excitation or inhibition of the postsynaptic neuron.
The amount of released neurotransmitter and the time-course of the consequent processes should
be considered when designing a model for a synaptic interaction. Other details could also be

considered in the model such as the delay time after AP arrival and neurotransmitter release.
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A realistic synaptic model might consider the separate time-courses of neurotransmitter release
and uptake. A detailed model of the synapse is presented by Ledoux and Brunel [2011].

Here the goal is to use a moderately realistic synaptic model that is also computationally
efficient in order to facilitate network simulation. Following Ohm’s law, synaptic currents can
be modelled as the product of the synaptic conductance with the voltage difference across the

synapse [Izhikevich and Edelman, 2008]

ISyn = g(t)(vrev - Vpost) (411)

where Vst is the postsynaptic membrane potential, and Ve, is the receptor-dependent reversal
potential. The time-dependent conductance g(t) has first-order linear kinetics:

dg _ —g

—= = 4.1.2
dt T ( )
with exponentially decaying solution g(t) = gmax €xp(—t/7) where gmax is the maximum con-
ductance and 7 is the time-constant.

Following a similar network scheme by Traub et al. [2005], I assume that synaptic cur-
rents entering a particular neuron sum linearly. Only the inhibitory GABA, (y-aminobutyric
acid type A) and the excitatory AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
mediated synaptic currents are considered here: these neurotransmitters are dominant in the

central nervous system. (See Chapter 2 for more descriptions on GABA and AMPA currents.)

4.2 Modelling local field potentials (LFPs)

Electroencephalogram (EEG) and local field potentials (LFPs) are common measures of neural
activity, but it is not fully understood how they are related to individual neural variables such as
ionic currents or membrane potential [Mazzoni et al., 2008]. However, it is known that the EEG
and LFP signals are strongly correlated with population activity of pyramidal neurons since the
dendritic trees of these neurons are aligned in pathways perpendicular to scalp surface, unlike
interneurons which have randomly directed dendrites [Nunez and Srinivasan, 2006].

Based on this fact, mean-field (continuum) models are designed to contain variables directly
comparable with EEG or LFPs. However, to compare the output of spiking-neuron-based models
with experimental data, the EEG or LFP related parameters need to be extracted from the model
in a biologically plausible way. Two main approaches are suggested to extract an EEG/LFP-

related parameter from the networks of spiking neurons:
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1. In several mean-field models it is assumed that the AC component of the EEG voltage
is linearly related to the fluctuation of the spatially averaged excitatory soma membrane
potentials [?Bojak and Liley, 2005; Steyn-Ross et al., 2009]. The same assumption about
the origin of EEG signal is made by Ursino and Cara [2006] and Warlaumont et al. [2011] in
their neuron-by-neuron modelling works. However, because action potentials are strongly
low-pass filtered when they propagate through extracellular fluids (and skull and skin for
EEG signal), some researchers believe that the membrane potentials are unlikely to sum
additively [Stead et al., 2010] to form the LFP or EEG signal. An alternative view asserts
that temporal variations in the mean firing rate of excitatory neurons is proportional to
the EEG and LFP signals [Robinson et al., 1998; Wilson, 1999].

2. Because of the relatively slow dynamics of the post-synaptic currents [Stead et al., 2010],
they are highly correlated with EEG and LFP signals [Steriade and McCarley, 2005]. As
a result some modellers use total input synaptic current entering pyramidal neurons as a
descriptor of neural mass activity (see, e.g., [Logothetis, 2003; Mazzoni et al., 2008; Deco et
al., 2008; Ledoux and Brunel, 2011]), while others assume that the EEG and LFP signals
are proportional to the mean of AMPA currents emanating from the excitatory population
[Ching et al., 2010].

A study by Mazzoni et al. [2008] contrasted the soma voltage and synaptic current models
for LFP, using “spectral features” and “information content” as comparison criteria. The results
showed that the spectrum of mean membrane voltage may not be in complete agreement with
LFP signal, but the information content of membrane potential and the LFP signal can be very
similar. However both spectral features and information content are in agreement when the
average synaptic current entering the excitatory neurons is used as a model of LFP. Thus a
good representation of the LFP signal can be obtained by averaging the sum of the absolute

values of AMPA and GABA, currents entering the pyramidal neurons:

[Tanpa | + [ IGABA, il
N )

LFP =%, N: number of pyramidal neurons (4.2.1)

Mazzoni et al. [2008] showed that this is a reasonable approach for modelling LFP, allowing

comparison between model output and experimental LFP recordings.

4.3 Modelling cortical gamma oscillations

A mechanism for the generation of gamma oscillations—as an example of a population-generated
neural rhythm—is now presented. Whittington et al. [2000] classify the gamma rhythm as an

“inhibition-based oscillation” to emphasize the role of inhibitory neurons in the generation of
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these oscillations, and its collapse in the absence of inhibition. Here I demonstrate that a network
of excitatory RS neurons and inhibitory F'S interneurons can produce gamma activity.

Following Whittington et al. [2000], I set the F'S neurons in their subthreshold regime, while
the RS pyramidals are in their excitable mode firing action potentials (APs) with frequency of
f < 10 Hz in response to incoming stimuli. The sparse firing of RS neurons depolarizes the FS
neurons causing them to fire fast spikes in the 30-40 Hz range, influencing their postsynaptic
RS targets. The collective behaviour of the network is reflected on the extracted LFP showing
gamma frequency oscillations of frequency f ~ 30 Hz. The gamma wave is a population-induced
oscillation in which the excitatory RS neurons activate the inhibitory FS neurons, and the FS
neurons respond by sending fast inhibitory postsynaptic currents to their RS targets.

The cortical network is composed of 20 RS and four FS neurons', with synaptic connections
and network connectivity matrix as displayed in Fig. 4.1 (a, b). A 20 x 20 connectivity matrix
whose elements are “one” is constructed first, representing all-to-all connection prototype. We
then introduce uncertainty to the network by randomly zeroing some connections (see Fig. 4.1).
Next, we construct the conductance matrix using the connectivity prototype. This matrix
provides all the information about the topology of the network, and is used to update synaptic

currents at each time-step. A one-line vector based MATLAB code is used for this update:

Isyn = sum( cond.*( repmat(v, N ,1 ) - rev_pot) );

where Isyn contains synaptic current of all neurons, cond is the conductance matrix, v is the
membrane voltage vector, N is the total number of neurons, and rev_pot contains all rever-
sal potentials. The synaptic excitation and inhibition are mediated respectively by AMPA-
and GABA s-type neurotransmitters with reversal potentials V, = 0 and —80 mV. The maxi-
mum synaptic conductances between different neurons are set to? grg.rs = 0.25, grs.rs = 0.2,
grs-rs = 0.12, and grpg.ps = 0.025 nS. The decay times of synaptic conductances are Taypa = 2,
and Tgaa, = 10 ms. A stochastic term is added to the DC drive current of each neuron in
a similar method as described in Section 3.1 by Eq. (3.1.2). The standard deviations of the
applied white noise are selected to be oy = 0.01 and o = 0.2 /ms-pA for FS and RS neurons
respectively.

The spiking of individual neurons during a 1-sec interval is displayed as a raster plot in
Fig. 4.1(c), top. The RS neurons fire with a frequency of frg ~6 Hz, while the FS neurons fire
with the frequency of frg ~30 Hz. The corresponding 1-sec length LFP signal is extracted from

!The cortical excitatory and inhibitory neurons compose respectively 80% and 20% of total neural population
[Braitenberg and Schiiz, 1991]

2The parameter values for synaptic interactions are selected to be in the range of a similar study by Izhikevich
and Edelman [2008]
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Figure 4.1: Gamma wave generation in Izhikevich-based cortical model composed of 16 regular spiking
(RS) excitatory pyramidal neurons and four fast spiking (FS) inhibitory interneurons. (a) Connection
diagram between a typical RS-FS pair in the network , showing all possible synaptic connections. Not
every RS-FS pair in the network contains all displayed synaptic connections. (b) Connection matrix of
the network. Each dot represents a connection between corresponding neurons indicated on the vertical
and horizontal axes. We discard randomly selected 5% of all possible inhibitory connections from FS to
RS neurons (green dots). This percentage is 25% for RS to FS (grey dots), 70% for RS to RS (blue dots),
and 50% for FS to FS connections (red dots), as displayed on connection diagram. (c) Top, one second
of the raster plot showing network activity: each dot represents the firing of individual neurons. Bottom,
the 1-sec local field potential (LFP) produced as the average of sum of absolute values of the AMPA
and GABA presynaptic currents impinging on all RS neurons. (d) The frequency-time representation
of the full-length (20 s) LFP signal showing the emergent gamma-band oscillation with narrow frequency
distribution around f ~ 30 Hz. A fourth-order Runge-kutta integrator was used for numerical simulation.
The parameters of each RS model are as in Fig. 3.4 and I3 = 132 pA. See Eq. (3.6.1) for parameters of
each FS neuron, with Ig. = 73 pA.

the activity of all pyramidal neurons using Eq. (4.2.1), and displayed in Fig. 4.1(c), bottom. The
result of spectral analysis on the full-length (20 s) LFP signal is displayed as a time-frequency
graph in Fig. 4.1(d). The emergent gamma oscillation is evident in this graph as the result of

interaction between cortical RS and F'S neural populations.

4.3.1 Transition from gamma to low-frequency oscillations in the cortex

General anaesthetics including volatile gases (isoflurane, desflurane, and sevaflurane) and intra-
venous drugs (thiopental, etomidate and propofol) increase the amplitude and slow the time-
course of GABA, mediated synaptic currents. See Garcia et al. [2010] for a review. In this
section it is assumed that only the time-course of GABA currents is increased by anaesthetic
drug. The dynamics of the gamma-producing cortical network in response to varying rcapa,
is investigated. Considering two distinct oscillating modes of the cortex (viz gamma and low-
frequency bands), the possibility of capturing the precursors of transitions between modes is

examined here.
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It is known that propofol increases the dwell time of GABAA neurotransmitters in the
synaptic cleft. This results in strengthening of the inhibitory post synaptic currents (IPSCs),
and consequently greater hyperpolarization of the postsynaptic neurons. The decay time of
GABA, mediated synaptic currents 7gapa, can be increased up to three-fold as a model of
induction of anaesthesia [Sleigh et al., 2009]. The cortical model is set initially to produce
gamma oscillations as a model of the awake state. Then the network response is studied while
increasing 7qapa, decay time. The results are displayed in Fig. 4.2. The spectrogram of the
LFP is displayed in (a), with the trend of 7gapa, superimposed as a dashed line. The spectrum
shows the transition from 30-Hz (gamma range) to 6-Hz oscillations, in agreement with activity-
suppressing effect of larger Tqaa, values induced by application of anaesthetic agents.

The LFP shows mixture of high- and low-frequency oscillations for times 25 < ¢t < 35 s,
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Figure 4.2: Transition from gamma-dominated wakefulness to minimally conscious state. (a) Time-
frequency plot of extracted local field potential (LFP). The model is identical to the one in Fig. 4.1
is used here, except the variable 7gapa, (superimposed dashed line). The initial 30-Hz population
frequency switches to 6 Hz as 7qapa, increases from 10 to 30 ms. The cortex is in a bistable mode when
the transition between modes occurs (see spectrum for 25 < t < 35s). (b-d) Raster plots of entire network
at three 0.5-s time-periods, (e-g) corresponding LFP signals. (h-j) Corresponding membrane potential of
a selected fast spiking (FS) interneuron, (k-m) regular spiking (RS) pyramidal neuron. The transition
period is reminiscent of “normal wakefulness” in which the EEG contains two prominent spectral peaks
in 3-7 Hz range (theta), and another peak in the 15-30 Hz (beta) range.
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reminding the behaviour of a bistable system. The horizontal bars in (a) represent three 0.5-
second epochs belonging to three qualitatively different phases of LFP: gamma, low-frequency
and bistable modes. The corresponding raster plots (b-d), LEPs (e-g), soma voltage of selected
FS (h-j), and RS (k-m) neurons are displayed in the figure. The raster plot in (b) shows
asynchronous activity of RS and FS neurons during gamma oscillations, while both RS and FS
populations fire almost synchronously in ~6 Hz mode as displayed in (d). In bistable-like mode
a weak synchrony is observed in the RS population, while the FS neurons have a firing rate of
~27 spikes per second.

A further analysis is performed on the firing rate of RS and FS neurons in gamma (~30 Hz)
and slow (~6 Hz) modes. Figure 4.3 displays the firing rate of the two selected neurons from
the previous simulation. The firing rate of the RS neuron shows a small increase (8%) for RS,
while a noticeable decrease (50%) for F'S neuron is captured when the oscillation mode changes
from 30 to 6 Hz. The change of firing-rates in the model reminds the firing-rate variations across
awake and slow-wave-sleep in an in vivo experiments by Steriade et al. [2001].

The bistability in the transition phase from gamma to slow oscillations is interesting, inviting
further investigation. A continuous-cyclic transition of the model (gamma — slow — gamma)
can be achieved by an appropriate variation in 7gapa,. The resulting LFP signal and the
superimposed trend of 7qapa, is displayed in Fig. 4.4(a). The LFP contains high-frequency
gamma oscillations at the beginning and the end, but high-amplitude low-frequency oscillations
in the middle stage with similarities to SWS or slow-wave anaesthesia.

The time-frequency plot is displayed in Fig. 4.4(b). The appearance and disappearance of
low-frequency oscillations are marked with vertical lines. Although the 7gapa, trend has a

symmetrical shape, the emergence and termination of slow oscillations occur at different doses
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Figure 4.3: Firing rate of individual neurons in gamma and slow oscillations. The firing rate of the
two selected regular spiking (RS) and fast spiking (FS) neurons from modelling experiment displayed in
Fig. 4.2, during gamma and anaesthesia-induced slow oscillations.
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of anaesthetic drug corresponding to Tgaa, = 23.3, 18.32 ms respectively. This phenomenon
is analogous to anaesthetic induced hysteresis and is observed in particular neural models which
exhibit bistability of stable states under specific conditions [Wilson, 1999; Steyn-Ross, 2002].
These modelling predictions have been supported recently by Friedman et al. [2010] in exper-
imental studies on mice and fruit flies. They demonstrated that induction of unconsciousness
by general anaesthetics and dissipation of anaesthetic effect is not mediated through identical
forward and reverse paths.

A further analysis of the LFP is performed to investigate the possible early signs of state
transition of LFP. The full-length LFP signal is displayed again in Fig. 4.5(a) for convenience.
Three 3-s length epochs (horizontal bars) are selected from qualitatively different stages of the
LFP time series. These epochs are plotted in (b-d). We compute the corresponding discrete
Fourier transforms (implemented by MATLAB’s FFT function), and extract the normalized am-

plitude spectrum:
1

TiL

Amplitude spectrum of LFP = |[FFT{LFP} | (4.3.1)

where Ty = 0.1 ms is the sampling interval (equal to the time step of the RK4 integrator),
and L = 30000 is the length of the epoch. Amplitude spectra are plotted in Fig. 4.5(e-g).
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Figure 4.4: Hysteresis in the gamma-slow-gamma transition loop. (a) LFP when the activity of cortical
network switches between gamma and slow oscillations by appropriate variation of 7gapa, (superimposed
black trace) from 10 ms in the baseline to 30 ms in the peak. (b) Time-frequency analysis of the LFP.
The vertical lines highlight emergence and termination of low-frequency oscillations. Although Tgapa,
varies symmetrically, the emergence and termination of slow oscillations occur asymmetrically, implying
a hysteresis effect.
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These results show dominance of 30.82 Hz in (e), almost equal contribution of the f = 5.79
and f = 28.69 Hz components in (f), and the dominance of f = 6.41 Hz mode in (g). The
simultaneous existence of two frequencies (corresponding to two distinct states of the system)
is evident in (f), which can be interpreted as a sign of approaching a bistable region, with the
possibility of an upcoming phase transition.

This section demonstrated how a simple network of spiking neurons can be developed to
capture aspects of cortical activity in the fully “conscious” state that supports gamma-range
oscillations. Network oscillations under the influence of anaesthesia (represented as a lengthen-
ing of the time-course of GABA mediated inhibitory currents) was investigated. Interesting
dynamical behaviours—bistability, and hysteresis—were observed near the transition regime be-
fore the system switches to a new oscillation mode, reminding us of the precursors announcing
a bifurcation point.

In the next section I present a model for sleep spindles in a corticothalamic network of

Izhikevich neurons with a focus on phase transitions.
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Figure 4.5: Appearance of alternative states in cortical network. (a) The LFP and 7gapa, trend from
Fig. 4.4(a) replotted here for convenience. (b-d) Guided by the trend of the 7gapa,, three 3-s epochs
were selected (horizontal bars) showing: normal activity, transition, and the low-frequency mode. (e-g)
Amplitude spectrum showing bistability of the LFP in transition phase (f).
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Figure 4.6: Structure of the thalamocortical model capable of producing spindles. There is a mutual
connection between relay (TC) and reticular nuclei (RTn) neurons. The pyramidal regular spiking (RS)
neuron of the cortex excites both thalamic neurons and receives feedback excitation from TC.

4.4 Increased sensitivity prior to sleep spindles

Here I demonstrate how a three-neuron thalamocortical network can be developed to generate
sleep-related spindles. Then I examine the subthreshold fluctuations of individual neurons, and
the behaviour of the LFP signal. I will look specifically for signs of increased sensitivity prior

to spindle generation as a generic precursor of phase transitions in dynamical systems.

4.4.1 Sleep spindle modelling

Sleep spindles are produced through the interaction between thalamus and cortex [Steriade et
al., 1997; Steriade and McCarley, 2005]. The main neural types responsible for generation, main-
tenance and termination of spindles are thalamic T'C, RTn, and cortical RS neurons. Cortical F'S
neurons do not contribute directly in any phase of spindle activity, although they are important
in functional “deafferentation” of cortex through modulation of neocortical gamma activity by
thalamic-originated spindles and hippocampal-originated sharp-wave-rippples [Peyrache et al.,
2011; Ayoub et al., 2012]. Following theories of spindle generation and adopting correspond-
ing models and experimental results of Destexhe et al. [1998], Bazhenov et al. [1998, 2002],
Timofeev and Bazhenov [2005], and Bonjean et al. [2011] a simple model of thalamocortical
network is constructed using only three types of neuron. Figure 4.6 shows the model structure:
mutual connections between thalamocortical relay (TC) and reticular nuclei (RTn) neurons, and
excitatory connections to and from the cortical RS neuron.

When the brain produces sleep spindles, the RS neurons are in bistable or excitable mode,
and fire occasionally in response to excitation received from other brain areas, mainly as a result
of sensory inputs. The cortically sourced random action potentials from RS excite both TC
and RTn neurons. This excitation produces a subthreshold depolarization on the TC neuron,
but induces bursts of action potentials (APs) in the RTn neuron, causing strong and persistent

hyperpolarization of the TC neuron. The hyperpolarization-activated cation current (1) of the
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Figure 4.7: Spindle generation in the network of Fig. 4.6. The membrane voltage of three neural types and
the Ij, current of TC neuron are displayed. The drive currents of the neurons are Iy, = —450, 80,18 pA
for RTn, RS, and TC neurons respectively. The maximum synaptic conductances are grmm-Tc, max = 40,

JgTC-RTh, max — 107 9gTC-RS, max = 57 9RS-RTn, max — 67 9RS-TC, max = 157 9RS-RS, max — 1 nS. The
synaptic decay times are 7 = 15, 5, 7 ms for GABA », thalamic AMPA and cortical AMPA respectively.
A fourth-order Runge-Kutta integrator with fixed time-step of At = 0.1 ms was used to solve the model
equations.

TC neuron becomes active due to incoming inhibition from RTn!, and may cause TC to cross
firing threshold, so that it generates a burst of action potentials.

Bursting of the TC neuron excites its RTn and RS targets, resulting in generation of a
synchronous spindle pattern in all three neurons. However TC firings inactivate the I}, current,
causing hyperpolarization of TC neuron. This terminates the bursting of the TC neuron and
consequently other neurons. The next spindle will be initiated by another random firing of the
cortical RS neuron.

Based on the presented mechanism, two numerical simulations are performed in this sec-
tion showing the activity of thalamic and cortical neurons during spindle generation. First, we
isolate the cortex from the thalamus. Simulation results are displayed in Fig. 4.7(a), showing
the random firing of RS neuron, while the thalamic neurons are in their quiet mode with sub-
threshold fluctuations (not visible in the figure). The hyperpolarization activation current (Ij)

of TC neuron is also displayed (bottom trace), demonstrating a very slow dynamics, compared

'Recall that I, is a depolarizing current—see Section 3.8
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to the fast dynamics of the spiking. The gradual uptake of I}, slowly depolarizes the TC neuron.
Note that in a longer simulation of isolated thalamus and cortex, one may eventually observe
TC firing at elevated values for I,. However, the generated action potentials will quickly su-
press I, returning the TC membrane potential to hyperpolarized state with only noise-induced
subthreshold fluctuations.

In the second experiment, the mutual connections between thalamus and cortex are restored.
This results in repeated emergence and termination of synchronous spindles by all three neurons
as indicated by arrows in top trace of Fig. 4.7(b). The spindles are extracted automatically (see
Appendix C.2), and indicated by dashed line in Fig. 4.8(a). The resultant traces of spindle-width
and the inter-spindle gaps are displayed in Fig. 4.8(b, c) respectively. The mean spindle width
is 2.1 s, and the mean distance between consecutive spindles is 7.5 s. These results are in good
agreement with their corresponding in vivo values of 0.5-3 and 5-15 s respectively [Bonjean et
al., 2011].

The interaction of individual neurons as described earlier can be realized more clearly by a
closer look at the activity of the neurons as displayed in Fig. 4.9. The top trace shows random
firing of an isolated RS neuron. Then the same neuron (with same applied noise) is connected to
the rest of the network, and its membrane voltage displayed in the second trace. The first four
APs fired by RS induce isolated bursts of APs in RTn (third trace), and small depolarization
on TC (fourth trace) and a step increase in I}, current of TC neuron (last trace). The spindling
initiates after firing of the fifth AP by RS neuron (indicated by star symbol), when the I;, has

reached a level capable of depolarizing the TC neuron to its firing threshold.
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Figure 4.8: Extraction of spindle-width and interspindle gaps
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Figure 4.9: Detailed view of activity of individual neurons while a single spindle emerges and fades out.
This particular spindle is the first one selected from the experiment displayed in Fig. 4.7.

4.4.2 Increased sensitivity prior to spindle initiation

The quiescent and bursting phases of a spindle pattern can be considered as two distinct dy-
namical modes for underlying neural system. Here I look for precursor signs of transitions in
the spindling network. Among the three neural types, the best candidate to capture precursor
activity is the TC neuron due to its slow-fast dynamic and its key role in spindle generation—
although we will shortly examine RS and RTn neurons as well. Consider the activity of TC
neuron as displayed in right panel of Fig. 4.7. The high-pass filtered or “rough” part of the
TC voltage is extracted using a Whittaker filter! and displayed in Fig. 4.10(a). Two interburst
periods (framed parts) are selected and plotted in Fig. 4.10(b, c). In the following its described
how the variance of membrane fluctuations during inter-burst period is calculated and analyzed
prior to spindle initiation.

One can track the variance of subthreshold fluctuations by sliding a temporal window on
the time-series and extracting the instantaneous variance value at every step. This method is
not straightforward to implement in our case due to interruptions by small spikelets. These
spikelets contaminating the interburst period (indicated by star symbols in (c)) are due to TC
response to excitations and inhibitions originating from RS and RTn neurons respectively. Only
the spikelet-free parts of interburst periods are considered as potential conveyors for signs of
upcoming burst. Two spikelet-free epochs are selected for each interburst period, belonging to
start and end phases of the period, and their variances are compared. Fig. 4.10(b, c¢) displays the

details of two interburst periods with extracted spikelet-free epochs in blue along with variance

!The smoothing factor and the sampling frequency of Whittaker filter are 10,000,000, 10,000 respectively
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Figure 4.10: Increased variance of thalamocortical (TC) fluctuation prior to spindle generation. (a) TC
membrane voltage during spindle generation in the network. The percentages demonstrate the growth in
the fluctuation variance within inter-spindle periods. The variance increases noticeably in eight periods,
but decreases in one periods. (b, ¢) Detailed view of two inter-spindle periods from (a). The inter-spindle
periods are interrupted by spikelets (star symbols in (c)). Two spikelet-free epochs (blue) from beginning
and end phases of each inter-spindle period are selected for further analysis. The framed numbers display
normalized variance of corresponding epochs. Spikelet-free epochs vary in length from 0.5 to 4 s.

values and growth rates. In this simulation, 90% of spindle events are preceded by a growth in
the interburst variance. The average variance increase is ~40%

The same analysis is performed on the subthreshold voltage fluctuation of the RS neuron.
Unlike the TC results, the variance of the RS interburst periods does not show a consistent trend
in fluctuation variance. The corresponding high-pass filtered RS activity during two interspindle
periods displayed in Fig. 4.10(b,c) are displayed in Fig. 4.11(a,b) respectively. The highlighted
(grey) epochs of fluctuations and their variance values are displayed in the figure, showing no
trend for the variance on the way towards spindle generation. Similar null results were found
for RTn fluctuations (results not shown). Thus only the subthreshold voltage fluctuations of the

TC neuron seemed to show precursor growth fluctuation amplitude prior to spindle generation.

A further variance analysis was performed on a longer TC time-series containing 33 inter-
spindle periods; see Table 4.1. About 75% of spindles were preceded by a large increase in

the voltage fluctuations. The initiation and termination phases of interspindle periods have an
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(a)

omvV » omV »

Figure 4.11: Variance analysis in spindling regular spiking (RS) neuron. The activity of RS neuron during
two selected inter-burst periods is displayed. Displayed numbers are the variances of highlighted (grey)
time-series in (mV)?2, and show no trend in the period leading to burst generation.

average variance of 0.0189 and 0.0288 (mV)? respectively, showing an average growth of 32%.
These results show the increased variance in the time leading up to a spindle initiation, which

can be interpreted as a precursor sign of phase transition.

4.5 Chapter summary

After examining the subthreshold fluctuations of individual neurons in Chapter 3, I extended the
investigations to networks of spiking neurons in this chapter. Following a brief discussion about
synaptic interactions, I selected a network measure for local field potential (LFP). Using the
models of single neurons developed in Chapter 3, small networks were presented to model two dis-
tinct neural phenomena, namely cortical gamma oscillations and thalamocortical sleep spindles.
The network model for gamma activity produced results comparable to in wvivo observations.
The transformation of gamma oscillations to slower oscillations due to the effect of anaesthesia
was investigated. Interestingly, the network LFP displayed, bistability and hysteresis across the
transition from gamma to slow oscillations. Such behaviours can be interpreted as precursors of
phase transitions, reminding us of flicker hallucination and pre-epileptic/pre-migraine auras.

A three-neuron model of thalamocortical network capable of producing sleep spindles was

constructed. The spindle-generation mechanisms were informed by previous work based on

Table 4.1: Variance growth in the thalamocortical (TC) fluctuations prior to spindle initiation. The
network structure is displayed in Fig. 4.6. Model parameters are as right panel of Fig. 4.7. A total of
33 interspindle periods were analyzed using similar approach as in Fig. 4.10; among these 25 spindles
were successfully predicted by 32% growth in the fluctuation variance of inter-spindle periods. Variance
of beginning and end phases are displayed in the form of averagetstandard deviation, with units
(mV)2.

Number of Variance at Variance at Average
interspindle periods the begining the end variance growth (%)

25 0.01940.004 0.02940.005 +32
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the Hodgkin-Huxley formalism. Using the Izhikevich-based models of Chapter 3, the proposed
network produces spindles which are comparable with in vivo results. Subthreshold voltage
fluctuations of individual neurons were investigated prior to spindle initiation. The TC neuron
demonstrated increased variance of subthreshold fluctuations prior to spindle generation, con-
sistent with critical slowing down. Unlike the TC neuron, the RS and RTn neuron did not show
signs of critical slowing. Because of the insignificant contribution of TC subthreshold activity
in synaptic currents, the LFP signal is not expected to demonstrate increased variance prior to
spindle initiation.

The network models presented in this chapter supported the possibility of capturing precur-
sors of phase transitions at least, in a model. The study of phase transitions and corresponding
precursors will be continued in the next two chapters using the Wilson-Cowan mean-field cortical
model. We will see how such mean-field models provide a solid frame-work for both theoretical

and numerical examination of neural systems and their phase transitions.



Chapter 5

Subthreshold analysis of
spatially-homogeneous Wilson—Cowan

model

We are motivated by the idea that computational modelling of seizure events may provide
insights about epileptogenesis. It is known that both microscopic (ion channels, synapses) and
network-scale macroscopic neural phenomena have role in seizure generation, maintenance and
termination. As a result both scales should be considered in designing the computational models
of the mechanisms underlying seizures. Both detailed network and mean-field models are used
vastly to model behaviour of epileptic neural populations [Ullah and Schiff, 2009; Fisher et
al., 2005]. However we choose mean-field approach which enables us to to perform theoretical
analysis of the model beside numerical simulations.

The Wilson—Cowan equations as one of the foundation mean-field models, has been used
to model multiple aspects of neural functions (see Chapter 1 for a review). Here we use this
model to investigate the system dynamics prior to different bifurcation types which may control
seizure-induced state transitions. Our hypothesis is that distinct bifurcation types accompany
the emergence and termination phases of seizures, so we seek precursor signals or leading indica-
tors that may be detected prior to such state transitions. This chapter tests our hypothesis using
a spatially-homogeneous form of the Wilson—Cowan model that can exhibit both bifurcations:
saddle-node and Hopf. Looking for evidence of critical slowing, the variance and autocorrelation
of model-generated excitatory firing rates will be analyzed while approaching those bifurca-
tion points. We will show that numerical results confirm theoretical predictions about system
behaviour.

The chapter starts with a complete introduction of the original Wilson-Cowan equations in
Section 5.1. We analyse the spatially-homogeneous limiting form in Section 5.2. The linearized

form of the model and its stability analysis is presented in 5.2.2, 5.2.3. Then we derive the
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steady-state distribution curve in 5.2.4. Section 5.2.5 shows how the system demonstrates two
different bifurcation types, and leading indicators can be captured prior to these bifurcations.

The chapter concludes with a summary in Section 5.3.

5.1 Wilson—Cowan model for excitable tissue

The introduction of Hodgkin—Huxley model in 1952 [Hodgkin and Huxley, 1952] motivated
many neural modellers to include detailed descriptions of individual neurons and their structural
components such as ionic channels and dendrites. This trend towards ever increasing detail
was reversed in the approach adopted by Hugh R. Wilson and Jack D. Cowan, when they
realized the necessity of developing a neural mass model to describe interactions of thousands
of neurons within a localized population [Wilson and Cowan, 1972]. This adoption of a neural
continuum was necessary to model parts of brain which are associated with higher functions
such as learning, memory and pattern recognition, since these functional parts of nervous system
require coordinated input produced by large numbers of neurons, and this scale is too vast to
contemplate modelling at the level of single neurons. In addition, the global nature of functions
such as pattern recognition cannot be inferred from the action of single cells. Wilson and Cowan
recognized that local interactions between individual neurons are largely random; however such
interactions on a large scale can give rise to very precise neural functions, similar to the way
in which the random Brownian motion of individual molecules of fluid can organize into an
orderly laminar flow when viewed macroscopically. Thus the Wilson—-Cowan model emphasizes
properties of populations of neurons rather than the behaviour of individual cells.

The Wilson—Cowan model describes average spike frequency of a neural population (instead
of membrane voltage of single neuron) as a function of continuous time (instead of discrete
timing of spike events). The major simplifying assumption is that all functions of brain activity
arise from interactions between excitatory and inhibitory populations, so the state variables for
the model are F and I representing the excitatory and inhibitory spike frequencies respectively.
Based on known neuroanatomy, Wilson and Cowan assumed a random, dense connectivity
between individual cells, allowing at least one connection between any two cells in the network.

Wilson and Cowan neglected spatial interactions in their 1972 paper in order to investigate
temporal dynamics of a localized cortical column; they then extended their model to spatially
distributed neural populations in their 1973 paper [Wilson and Cowan, 1973], and modelled 1D
lines and 2D sheets of cortical and thalamic tissue.

The E(t) and I(t) functions were defined originally as the proportion of excitatory and
inhibitory subpopulations which fire in unit time. It is assumed that the firing fraction at time

(t+7) is given by the proportion of cells which are not in their refractory period and which also
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receive a threshold excitation at time t. This excitation is composed of synaptic inputs from
other neurons in the network, plus external input entering each subpopulation. The resulting
equations governing the dynamics of localized populations of neurons are [Wilson and Cowan,

1972]:
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where r is the absolute refractory period (in ms), and P(t), Q(t) are time-dependent external
inputs to E and I subpopulations respectively (in (ms)~!). The proportion of excitatory cells
which are not in the refractory period (i.e., which are sensitive) is given by {1 — [t Bt }
The S; (in /ms) are subpopulation response functions which give the expected firing rate of
the excitatory and inhibitory subpopulations based on the average excitation (in mV) they re-
ceive. It is assumed that individual cells sum their excitatory and inhibitory inputs with weights
represented by ¢; coefficients (which are unitless numbers representing the average number of
excitatory or inhibitory synapses per cell), and that the effect of stimulations decay with a time
course a(t) (in mV). It is also assumed that to be a sensitive cell and for it to reach threshold
excitation are statistically independent events. As discussed in the literature review, subpopula-
tion response functions are normally selected to have monotonically increasing sigmoidal forms
as inspired by experimental single-cell and population-response curves.

Wilson and Cowan used a temporal coarse graining to simplify equations (5.1.1) and thereby
eliminated the temporal integrals which have less biological significance than the sigmoidal
response functions. They defined f (t), the coarse-grained average of a time dependent variable
f#),
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where s is some appropriately chosen interval over which the moving time-average is computed.
Wilson and Cowan showed that temporal responses evolving over time courses shorter than s are
not significant for their modelling purposes, so they replaced the time-integrals in the right-hand
side of Eq. (5.1.1) with their corresponding coarse-grained representations as
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where k is a constant in mV-ms. They also replaced E(t+7) and I(t+7") with their corresponding

coarse-grained equivalents E(¢+7) and I(t47'), and then with their truncated Taylor expansions,

Thus the simplified form of equations (5.1.1) is arrived at:

dE - - 5 [
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where k and k&’ are constants given by the area under the respective temporal response function
(with units mV-ms), so represent synaptic strengths.

Applying phase-plane analysis to these simplified equations, Wilson and Cowan demon-
strated the existence of limit cycles, multiple steady states and hysteresis loops. Dynamical
aspects of a slightly modified form of equations (5.1.2) will be studied in detail in the present
chapter (in sections 5.2, 6.1) to elucidate subthreshold behaviour as well as different bifurcation
mechanisms leading to distinct phase transitions.

Wilson and Cowan’s 1972 paper describes the excitatory and inhibitory interactions in local-
ized (space independent) populations. These populations are considered as functional columns
with high degree of redundancy, meaning that clusters of neurons have similar response function
[Shadlen and Newsome, 1994]. The cortical columns are linked via lateral inter-column con-
nections, forming a 2D sheet of excitable tissue. Considering lateral connections, Wilson and
Cowan incorporated a spatial domain as the basis for their 1973 spatiotemporal model.

Figure 5.1 illustrates how an assembly of cortical columns can form a cortical sheet as a
representative of cortical tissue. Equations (5.1.2) describe the behaviour of a single cortical
column; the spatially extended version of this model as governed by equations (5.1.3) describes
the average behaviour a 1D neural line comprised of interacting columns. The authors assumed

that

o The sheet is homogeneous (uniform distribution of neurons across the sheet)

o The sheet is isotropic (lateral connectivity is a function of distance only)

¢ Individual neurons temporally and spatially summate incoming excitations

o All possible types of connection between excitatory and inhibitory neurons are allowed:

F—FE E—-I I—-FE I—I
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(a) cortical column (b) cortical sheet (c) cortex

Figure 5.1: Wilson and Cowan representation of the cortex as a 2D sheet of laterally organized, radially
redundant cortical columns. (a) A cortical column is composed of densely packed and interconnected
excitatory and inhibitory neurons (connections not shown). Equations (5.1.2) describe the average activity
of interacting excitatory and inhibitory neurons within an individual cortical column. Each column has
cross-sectional area 1 mm? and length 2.7 mm in human, containing an average of 20000 neurons [Wilson
and Cowan, 1973]. (b) Model of cortical sheet as part of cortex (c¢) developed by incorporating lateral
interconnections (not shown) between columns to describe the average behaviour of cortical and thalamic
sheets as described by Eq. (5.1.3). [Cortex modified from http://all-free-download.com/|

Connectivity of neurons of type j to neurons of type k is described by the functions B
(unitless) which were selected to be a monotonicaly decaying function of space. Accounting
for the spatial summation of incoming synaptic signals received by individual neurons, Wilson
and Cowan introduced their model of cortical and thalamic nervous tissue [Wilson and Cowan,
1973]. After applying temporal coarse-graining, their space-dependent model reads:

0
P (B(,)) = —(B(2, 1)) + [1 = 1e(E(z,1))]
S[anlo.(B@,0) @ fuelw) - 0l (2,0) © ulw) + (P(e,1))]]
0
(I(z,1)) = =((x, 1)) + [1 = ri(I (2, 1))]

Hore
S; {au [0e(E(z,1)) @ Bei(x) — 0i(I(x, 1)) @ Byii(z) + <Q(%t>>]]

(5.1.3)

where ® denotes a 1D spatial convolution defined by

o
X(z)@Y(x) = / X (Y (z —2') da’
—00
The g¢; (in (pm)~!) are the surface density of excitatory and inhibitory neurons in a 1D
homogeneous and isotropic tissue; p (in ms) is the neuronal membrane time constant; « (in
mV) is the maximum amplitude of the postsynaptic potential; and S; is the subpopulation
response function. The (x) represents the time-averaged value of x(t). These equations describe

the dynamical behaviour of a 1D line of cortical or thalamic tissue distributed along the x-

axis; incorporating the second spatial dimension to model a 2D cortical sheet, as illustrated in
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Fig. 5.1.(b), is straightforward.

Later in 1999, Wilson presented a simplification of equations (5.1.3) which sets the refractory
period to zero, giving equations in which E and I now describe neural spike rates (rather than the
proportion of E or I subpopulations which are active during unit time and unit area [Wilson,
1999]). The model describes the collective behaviour of cortical tissue in terms of a discrete
network of laterally-connected localized aggregates of E' and I populations representing cortical

columns. The revised equations are:

TE dEd(t:C) =—-E(x)+ Sk (Z wpp(r)E(r) — Z wip(@)I(z) + P)

; (5.1.4)
. d(t”") — I(x) + S (Z wpr(@)B(w) = Y wir(2)I(x) + Q)

where the spatial convolutions have been replaced by discrete summations. For our investigations

we choose to return these network equations to their continuum form,

TEaatE(a?,t) =—FE(x,t)+ Sg [wEE(x) ® B(z,t) —wip(z) @ I(z,t) + p}
(5.1.5)

ngtf(:c,t) =—I(z,t)+ Sr [wEI(ZII) @ I(z,t) —wi(z) @ I(z,t) + Q}

where E(z) and I(z) are again the mean firing rate of neurons at position z in (ms)~!, 7

and 77 are the time constant of each population (in ms), and P, @ (in mV) are the external
voltage inputs to each population. The four wj; (j,k € {E, I}) are the connectivity functions
that define the density (strength per unit length) of the synaptic coupling between and within
populations. The coupling strength is assumed to decay exponentially with distance:
bk
wik(x) = 57— exp(—|z| /o) (5.1.6)

2ij

where bj;j, (in mV.ms) represents the maximum synaptic coupling strength between populations
j and k, and o, (in pm) is the space constant that controls the spread of connectivity. This form

of normalization of the exponential decay has been chosen so that the integral of the connection

density over the infinite 1D spatial domain gives the connection strength by:

/_O:O wik(x) dr = bjj, (5.1.7)
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(a) Connectivity factor vs distance (b) Sigmoid response vs voltage
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Figure 5.2: (a) The connectivity factor of Eq. (6.1.2) as defined by b.exp(—|z|/c) versus distance x is
plotted for two different sets of the coeflicients, [b/(mV.ms), o /um] = [18, 50], [10,123.6], solid and dashed
curves respectively. This function provides stronger connectivity for adjacent neurons compared to distant
ones. (b) The sigmoidal response function as a function of membrane voltages for two sets of coefficients,
(S5 /(ms) ™!, a/(mV)~, 0/mV] = [0.15,9,2.2],[0.1,9,2.2], solid and dashed curves respectively.

This follows after noting that

/ exp(—|z|/oj;) do = 2/ exp(—x/oj) dr =20

This result is particularly useful when simplifying Eq. (5.1.5) to its spatially homogeneous limit
(see next section). Figure 5.2(a) plots the synaptic connectivity factor b exp(—|z|/o) versus z
for typical values of b, o. Wilson [1999] used the Naka—Rushton function to map from voltage

to firing rate, but the sigmoidal function we elect to use in this thesis has the form,

max
Sj

T 1+ exp[—a;(v— 6;)]

S;i(v) . jel{l B (5.1.8)

where 6 (in mV) is the threshold voltage for half-maximum firing, a (in (mV)~!) sets the sigmoid

slope at threshold, and S7*** (in (ms)~!) is the maximum firing rate; see Fig. 5.2(b).

5.2 Wilson—Cowan model of a spatially-homogeneous cortex

As our simplest reference case, we wish to investigate the properties of a homogeneous 1D cortex

in which the population firing rates are independent of position, i.e.,

E(x,t) — E(t), I(z,t) — I(t)
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so that the convolution integrals in Eqgs.(5.1.5) simplify to constant scale factors multiplying the

population activities. For example,
wpp() ® B@.t) = [ wpp(@') B —a',1) do’
becomes -
'UJEE(Z) ®E(t> :/ wEE(x’) E(t) d.’L'/
_ E() / I

=bpr E(t) from Eq. (5.1.7)

Applying the corresponding simplifications to the remaining three convolution integrals results

in our final form for the Wilson—-Cowan spatially-homogeneous cortex:

dE
TE— = —E + Sp(bppE — bipl + P)
dt
i (5.2.1)

Figure 5.3 illustrates the spatially homogeneous model with two interacting excitatory and
inhibitory populations. P, @ (in mV) are the respective external inputs to excitatory and in-
hibitory populations. Synaptic weights are indicated by bj; coefficients where j,k € {E,I}.
These weights represent the synaptic coupling strength from population j to k, and are propor-
tional to the average number of synapses targeting the postsynaptic cell. The firing rate of each
population is a sigmoidal function of its summed synaptic and external voltage inputs.

We now investigate the subthreshold dynamical behaviour of the spatially-homogeneous
model. This analysis examines the dynamics of the cortex prior to occurrence of phase transi-
tions in the homogeneous limit, and may provide insights about seizure generation mechanisms,

L We will see

since emergence of seizures can be well described by different bifurcation types.
that white-noise-induced fluctuations of the model undergo critical slowing down, prior to two
different bifurcation types: saddle-node and Hopf. Precursor signs will be extracted from the
system’s state prior to phase transitions which can have clinical significance in terms of seizure

prediction.

'Our in vitro records from mouse brain slices (containing cortical and hippocampal areas) show different types
of bifurcations responsible for seizure emergence and termination. See chapter 7 for more details.
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Figure 5.3: A diagrammatic representation of the Wilson—-Cowan model of a spatially-homogeneous
cortex. The inhibitory and excitatory connections are shown with dashed and solid lines respectively. P
and () are exogenous voltage inputs to the neural populations, and b;, are the synaptic weights. The
firing rates are sigmoidal function of synaptic and exogenous inputs.

5.2.1 Parameter values of the model

Although the homogeneous model of Eq. (5.2.1) is, by design, mathematically rather simple, it
requires the specification of 14 numerical parameters (see Table 5.1). Choosing reasonable values
for these 14 parameters is challenging, and requires biologically-inspired constraints to select or
limit the range of values. The P, (@ voltage inputs can take on a broad range of values since
these parameters represent exogenous events such as external stimuli or incoming signals from
neighbouring columns or distant brain parts such as thalamus or brainstem. Many parameters
describe the spatially-averaged characteristics of cortical columns instead of individual neurons.
For example, we choose 7z = 10 ms as a combination of decay times of all excitatory elements
within a cortical column. Keeping the parameter values in the order of suggested values of a
similar work by Wang et al. [2012], and considering biologically measured values, we fine-tuned
some parameters. Specifically the sigmoidal parameters (Sﬁ*}x, ap,1, p,1) were tuned to get
at least one non-monotone nullcline (a nullcline with regional negative and positive slopes, see
E-nullcline in Fig. 5.4); and the P, @ voltage inputs were selected to give multi-root region in
steady-state distribution curve as depicted in Fig. 5.5(a). Table 5.1 shows the parameter values.

It should be mentioned that the firing rates output from the Wilson-Cowan model are
directly related to the axonal activity of neurons. As a result, the outputs are not quantitatively

comparable with EEG waveforms.! However there is a reasonable correlation between mean

!Dendritic trees of cortical pyramidal neurons are aligned parallel to each other, and EEG is mainly produced
by excitatory postsynaptic potentials of these neurons [da Silva, 2010]. The geometrical structure of cortical
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Table 5.1: Symbol definitions and typical parameter values for the spatially-homogeneous Wilson—Cowan
model. Although there is considerable uncertainty in the parameter values, they are selected to be in the
range of a similar study by Wang et. al. [Wang et al., 2012].

Symbol Description Value Unit
E 1 Firing rates of E and I processes (ms)~!
TE,I Time constants of E' and I responses 10, 8 ms
SE,Sr Sigmoid functions mapping voltage to firing rate (ms) 1
bEE,EILIE,IT Synaptic coupling strength 18, 10, 10, 0 mV.ms
OEE,EIIE,IT Space constant 50, 110, 110, 20 pm
SET Maximum firing rate 0.1,0.15 (ms)~!
ap,r Sigmoid slope at threshold 9 (mV)~!
0.1 Threshold voltage for half-maximum firing 2.2 mV
P,Q Exogenous voltage inputs to E' and I populations [1.3-2.1], 1.5 mV

firing rate of cortical neurons (as modelled by Wilson—-Cowan equations), and amplitude (power)

or phase of EEG potentials [Whittingstall and Logothetis, 2009] and [Ng et al., 2013].

5.2.2 Equilibrium points of the homogeneous cortex

Although a numerical method is needed to study the temporal evolution of a highly nonlinear
system such as Wilson—Cowan model, considerable insights about system dynamics can be ob-
tained by examining the equilibrium points or steady states. Following Steyn-Ross et al. [2013],
we consider the dynamics to have a fluctuating behaviour around, or relaxation towards, one
or more fixed equilibrium points. These fixed points define resting states of a cortical column
and are known as the equilibria or steady states of the system. The governing equations can be
linearized about such states and then linear stability analysis (LSA) employed to theoretically
predict conditions under which the system undergoes instabilities. All deviations from a stable
state are predicted to decay back to steady state after removal of the perturbation. Even an
unstable steady state can act to organize the system dynamics. Finally the existence of multiple
stable and unstable steady states (as we will see shortly for Wilson-Cowan model) gives a rich
dynamical behaviour to the system.

The equilibrium points of the system (FE°, I°), are determined by setting all derivatives in

Eq. (5.2.1) to zero to give the nullcline or isocline equations of the system

E° =Sg(bgppE° — bigI°® + P), (a) E-nullcline
(5.2.2)
I° = S;(bprE° — b1 I° + Q), (b) I-nullcline

pyramidals facilitates formation of synchronized strong current dipoles (as a result of ionic sink—sources around
neurons). Theses dipoles produce electrical field normal to cortical surface, and can be recorded using scalp EEG
electrodes.
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Figure 5.4: Phase-plane diagram of the spatially homogeneous Wilson-Cowan model (5.2.1). (a) The
dE/dt = 0 (black) and dI/dt = 0 (grey) nullclines as described by Egs. (5.2.2), with superimposed vector
fields. The external input is P = 1.7476 mV. Refer to Table 5.1 for values of other parameters. The
intersections of nullclines indicate three steady states with coordinates shown in the figure. Increasing
and decreasing P shifts dE/dt = 0 nullcline up (b) and down (c) respectively, resulting in different set(s)
of steady states. See Fig. 5.5(a) for distribution of steady states as a function of P. Linear stability
analysis (LSA) reveals instability of two intersections (labelled 1, 2), and stability of third one (3) in (a).

These nullclines are plotted in Fig. 5.4(a) along with corresponding vector field!. Steady states
of the system are located at the intersection of nullclines so satisfy both equations in (5.2.2)
simultaneously.

Since these nullclines are highly nonlinear functions, an iterative numerical method employed
by [Steyn-Ross, 2002] is used to find equilibrium points. In brief, we first select a set of finely-
spaced candidate values of E in the range [0 Shmax] (excluding border values). Then we find
the corresponding vector of I-values based on Eq. (5.2.2)(a) and substitute into Eq. (5.2.2)(b)
to give a vector of E’-values. The sign changes in the resultant element-by-element subtraction
of E and E’ vectors reveals occurrence of intersections between nullclines. For each sign-change
(representing a root) a bracketing interval is formed, and then a bisection technique (MATLAB’s
fzero function) is applied to find the root (see appendix C.3 for MATLAB code). The inset in
Fig. 5.4(a) shows values of equilibrium points obtained by mentioned method.

Note that increasing and decreasing P shifts dE/dt = 0 nullcline (grey in the figure) up

and down as shown in Fig. 5.4(b) and (c) respectively. As a result, the location and number

'The vector field (also called direction or velocity field) predicts the direction of movement of a system’s state
based on its current position in the phase plane [Izhikevich, 2007]. The dE/dt and dI /dt equations given in (5.2.1)
are evaluated at selected discrete points on the phase plane to produce the vector field using MATLAB’s quiver
function (Fig. 5.4). The vector field provides qualitative graphical insights regarding the stability of steady states.
The exact determination of stability of equilibrium points is given by linear stability analysis which is studied in
section (5.2.3).
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of intersections can vary. In section (5.2.4) we investigate how the distribution of equilibrium

point changes as P is varied.

5.2.3 Linear stability analysis

We rewrite Egs. (5.2.1) as

dEZBl(Evl)
‘Ciltl (5.2.3)
& BB,
dt 2( Y )

where
By =15 [-E+ Sp(bggE — bl + P)]

By =71, [~T+S1(bp1E — by I + Q)]

We linearize Egs. (5.2.3) by assuming:
Z(t)=2°+ 2

where Z is a small temporal perturbation of the form, Z = §Z(t), and Z € {E,I}; Z° is the
equilibrium point. The question of interest asks if E and I perturbations grow or decay—as
characteristic of unstable and stable equilibrium points. Replacing E, I with their perturbed
forms, and using Taylor series expansions, (5.2.3) can be written in the form,

dE

0B, 0B,

= = B(E°+E. I°+1)=By(E°. I°)+ —| E I+

o 1(E°+ E,I°+ 1) 1( ’)+8E +or| 1t
o o

dl . . OBs| ~ 0Byl .

S By(E°+ B I°+ 1) = By(E°. I°) + —2| B+ X [+...

7 2(E°+ E,I°+ 1) 2(’)+8E +or| 1T

o (¢}

Since Z is small, we neglect the higher order terms. Noting that B 2(E°,I°) = 0, we obtain,

dE 0B, 0B ;

=R+ —]
dl _0Byp 0By
dt OFE oI

where the partial derivatives are evaluated at the equilibrium point. Equations (5.2.4) describe
the evolution of the perturbations £, I. Noting that £ = §E(t), I = 6I(t) these equations can

be written in linear matrix form,

d o | _| 5% G| e | _ | sE®
dt - a
ol (t 0B, 0B 01 (t ol (t
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Table 5.2: The type and stability of the steady-states depends on the eigenvalues of Jacobian matrix.

Node Saddle Focus
Unstable Stable Unstable Unstable Stable
eigenvaluel Refeigl} * B —/+ * B
Im{eigl} 0 0 0 # 0 #0
eigenvalue2 Re{eig2} * B +/- * B
Im{eig2} 0 0 0 #0
where
0By 0B
j— | 98 al (5.2.5)
0By 0Bo
OF ol

lo

is the Jacobian matriz of (5.2.1) evaluated at the equilibrium point (E°,I°) with By, B2 as

derivative functions defined in (5.2.3). The partial derivatives,

J N l |:—1+E CLbEE exp(—a(bEEEO—bIEIO-i-P—Q))
ne "1+ exp(—a(bppE° — bigl® + P — 0)))2

T — ;1 {E abrg exp(—a(bEEEO —bpl°+ P — 9)) :|
2 7M1+ exp(—albppE® — biplo + P —0)))2

T 1 [ abprexp(—a(bprE® — brrI°+ Q —0)) }
5 M1+ exp(—a(bpiEC — bilo + Q — 0)))2

J . ;1 l:l —l—[ abnexp(—a(bE[EO—b]]IO+Q—9))
2= "1+ exp(—a(bprE® — biIo + Q — 0)))2

(5.2.6)

give the elements of Jacobian matrix J. Based on the theory of linear stability [Reichl and

Prigogine, 1980], the exponential time-course for small perturbations around the steady state

(E°, I°) can be predicted from the eigenvalues of J matrix: when both eigenvalues are real

and negative, or complex with negative real parts, then the steady state is stable; but when

either eigenvalue is real and positive, or complex with positive real part, then the steady state is

unstable. Table 5.2 summarizes the type and stability of steady states based on their eigenvalues.

5.2.4 Steady state distribution

The location of steady states can be modified by changing one (or both) of the external inputs

P, Q. Figure 5.5(a) shows the distribution of steady state excitatory firing rate E° as a function

of P. It is clear that, with the parameter values in Table 5.1, the system can support up to
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three steady states. The vertical line at P = 1.7476 [mV] demonstrates three roots (labelled 1-3
on the figure) corresponding to intersections of nullclines in Fig. 5.4(a).

Real and imaginary parts of both eigenvalues at each equilibrium point are plotted in
Fig. 5.5(b) and (c) respectively. Based on the sign of real part of dominant eigenvalue, the
unstable steady-states are highlighted with a grey background in Fig. 5.5(a). The state or phase
transition happens at the border between stable and unstable equilibrium points. We study the

subthreshold dynamics of the system prior to state transitions in the next section.

5.2.5 Ciritical slowing down prior to bifurcation points

At bifurcation points the qualitative behaviour of the system changes considerably. Cases like
annihilation/emergence of states (via saddle-node annihilation) or change in the stability of
the system (via Hopf bifurcation) are the most common and well-known types of bifurcations.
The space-free Wilson—Cowan model demonstrates all of these bifurcation types implying a rich
dynamical behaviour.

White-noise fluctuations are introduced to Egs. (5.2.1) as additive noises to model continuous
bombardment of neural membrane and ionic channels by ambient noise. This transforms the
model equations to a pair of coupled stochastic differential equations (SDEs). We introduce the

stochastic form of (5.2.1) as

dE
7—EE = —FE+Sg(bppE —bipl + P) + c1&1()
it (5.2.7)
Tr = —1+S1(bpr B = bl + Q) + caba(t)
which can be linearized to give
E(t E(t t
% ON__AlFO |, | &® (5.2.8)
I(t) I(t) §2(1)

Here & (t) and &(t) (in (ms)~'/2) are two independent white-noise sources, and the ¢y (in
(ms)~1/2) are corresponding rms noise amplitudes. Following Steyn-Ross et al. [2006], these
white-noise sources are produced as Gaussian-distributed white noise of zero mean, infinite

variance with zero autocorrelation everywhere except at lag 7 = 0,

€0) =0, (&1)&E)) = d;kd(t 1) (5.2.9)

where d; ;, is the dimensionless Kronecker deltal and §(¢) is the Dirac delta-function in (ms)~!.

1ifj=k

1 i i J—
Kronecker delta function d; is defined ;5 = { 0 ifj £k
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Figure 5.5: The steady state distribution (SSD) and eigenvalue diagram of the spatially homogeneous
Wilson-Cowan model Eqgs. (5.2.1). Hopf (HB) and saddle-node (SN) bifurcations happen at Props =
1.610341975380000 and Psy = 1.987601511600000 mV respectively as indicated by vertical dashed lines.
(a) SSD of excitatory firing rates E° (ms~!) as a function of external input P (mV). The grey background
in SSD curve indicates unstable equilibrium points. (b) Real and (c) imaginary parts of eigenvalues of
steady states (both in ms™!) versus P. The bottom branch of SSD curve (black in (a)) has a pair of real
negative eigenvalues (black traces in (b)), indicating a stable node. The middle branch (red in (a)) has
pair of real opposite-sign eigenvalues (red traces in (b)), indicating an unstable saddle. The top branch
(blue in (a)) has a pair of complex conjugate eigenvalues (blue traces in (b,c)) which can be stable or
unstable for different P values. The top branch is a stable spiraling-in focus for P > Pyope and an unstable
spiraling-out focus for other P values. The frequency of perturbation-induced oscillations of top branch is
determined from (c), e.g. the angular frequency of top branch at P ~ 1.61034 is w = 0.1806 ms~! which
corresponds to f ~ 28.74 Hz. Note that the eigenvalues of bottom and middle branches are real, and
their zero imaginary parts are plotted as grey line in (c¢). The points labelled as 1-3 at P = 1.7476 mV
correspond to intersections of nullclines in Fig. 5.4(a).



86 Dynamics of spatially-homogeneous Wilson—Cowan model

Samples from a zero-mean, unit-variance Gaussian random number generator (implemented
by MATLAB’s randn function) are used to generate this noise in numerical simulations. Noise
samples are scaled by square-root of inverse of time step used in updating the numerical solution
as

£(t) = ) (5.2.10)

The A in (5.2.8) is the drift matrix equal to negative of the Jacobian matrix defined in
(5.2.5), A = —J, and D is the diffusion matrix:
2.2
ci/T 0
p_| VT (5.2.11)
0 3/}
As with most nonlinear differential equations, generally it is not possible to find explicit an-
alytical solutions. So numerical methods are used to approximately determine the solutions.
Following Steyn-Ross [2002], the differential form of Egs. (5.2.8) can be interpreted as an up-

dating rule to be used in numerical simulations as:

dt
_|_7

E(t+dt) = E(t) [—E(t) + Sp(bppE — bipl + P) + c1&1(t)]

B (5.2.12)

ﬂ [fj(t) + S[(bE‘IE —brrl + Q) + 0252(75)]

I(t+dt) = I(t) +
TI

which is the form we use in our numerical simulations of the spatially-homogeneous Wilson—
Cowan equations.

The stochastic differential equations in (5.2.8) describe a multivariate Ornstein—Uhlenbeck
process for which one can make some theoretical predictions. We will use autocorrelations
of F time-series to study the white-noise-induced dynamics of the system while approaching
bifurcation points. In subthreshold regime—where all eigenvalues have negative real parts— the
2x 2 stationary covariance matrix of this process (in (ms)~2), X, is calculated from [Gardiner,
2004]

AX +3AT=D (5.2.13)

which can be reworked into the form

_ det(A)D + [A — tr(A)[D[A — tr(A)T]T

> 2tr(A)det(A)

(5.2.14)

after a little algebraic manipulation. Here I is the 2x2 identity matrix; det(-) and tr(-) are
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the determinant and trace operators. Following Gardiner [2004], the 2 x 2 steady-state time-

correlation matrix of this system! is
C(r)=e"%, 72>0 (5.2.15)

where exp(—A7) is the matrix exponential operator. The Ci1(7) gives theoretically predicted
autocorrelation function E(t) fluctuations which can be compared against experimental auto-
correlations (from numerically generated E(t) time-series). By examining theoretical and ex-
perimental autocorrelations, we will see how the fluctuations of the system become critical prior

to occurrence of two different bifurcation types: saddle-node and Hopf.

Subthreshold behaviour prior to saddle-node annihilation

The steady-state distribution of spatially-homogeneous Wilson—Cowan model (5.2.1) is plotted
again in Fig. 5.6(a) with the saddle-node bifurcation point labelled at P ~ 1.98760 mV. A
saddle-node bifurcation occurs at the point where the mid-branch saddle and bottom-branch
node equilibria collide and annihilate.

Close to steady state, the response of the system to small perturbations can be predicted from
the steady-state eigenvalues. Bottom branch eigenvalues are plotted in Fig. 5.6(b) and (c) as a
function of subcortical drive P. Both eigenvalues are real and negative, so the bottom branch
is stable. Perturbations away from this stable node will decay with two distinct time-scales,
Tsiow = —1/A1 and Tpsy = —1/Xa where A1 and Ay are the dominant and second eigenvalues
respectively. These time-scales are plotted in Fig. 5.6(d) and (e) showing a dramatic increase
in slow time-scale while approaching the SN bifurcation. This behaviour results in slowing of
system responsiveness, and is known as critical slowing down.

We calculate the variance and autocorrelation of numerically obtained F time-series to in-
vestigate system dynamics close to SN bifurcation, and compare against Ornstein—Uhlenbeck
predictions by examining the ¥1; element of the covariance matrix 3 (see Eq. (5.2.14)).

The traces in Fig. 5.7(a) (from bottom to top) show white-noise-induced fluctuations of the
model while approaching the SN point using external stimulation P as the control parameter.
Fig. 5.7(b) shows the corresponding autocorrelation functions. Each blue trace is the average
of three experimental autocorrelation (calculated with MATLAB’s xcov function). Each black
trace is the theoretical one-sided autocorrelation (317 component of covariance matrix) for
the linearized Wilson—Cowan model as an Ornstein—Uhlenbeck stochastic process. Growth in
peak value (variance) and broadening of autocorrelation functions (corresponding to reduced

decay rate) are evident on approach to SN bifurcation. Good agreement is observed between

Lwhich is an OU system
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Figure 5.6: Steady states and eigenvalues of the spatially-homogeneous Wilson—Cowan model approaching
a saddle-node (SN) bifurcation point. (a) Steady state distribution is replotted here versus P as the control
parameter. Saddle-node bifurcation happens at P ~ 1.98760 mV where two equilibrium points collide
and annihilate. Eigenvalues of the lower branch are plotted in (b), (c) versus P. Both eigenvalues are
real and negative, characteristc of a stable node. Dominant eigenvalue approaches zero when P pushes
the system toward SN point. Time-scales defined as T = 1/|A| ms are plotted in (d), (e). Dramatic
increment in slow time scale at SN point is a sign of critical slowing down.

theoretical prediction and numerical experiments. Note that obtaining comparable numerical
and theoretical results become very challenging when the system is close to the SN point, and
numerical settings need to be selected carefully [Steyn-Ross, 2002]:

» Noise intensities: The c; 2 rms noise amplitudes should be sufficiently small to keep the
system within the basin of attraction of stable node. This is more critical in the vicinity
of SN point, where the basin of attraction shrinks considerably.

¢ Simulation time: The simulation time should be long enough to capture slow dynamics
of the system. A rule of thumb is that simulation length should be at least 100Xx7gjo-
Again this is critical in the close vicinity of SN point, see Ty in Fig. 5.6(e).

¢ Numerical time-step: The time-step of numerical update should be small enough to
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Figure 5.7: Numerical and theoretical analysis of white-noise-induced fluctuations in the spatially homo-
geneous Wilson—Cowan model approaching saddle-node (SN) bifurcation point. (a) Bottom to top are
the numerically obtained firing rate of E neurons versus time approaching SN point. Values of control
parameter P are shown for each case in mV. The time-step of numerical simulations is At=0.1 ms and
the length of simulation is 15 s. Emergence of larger amplitude slow oscillations is evident as the state is
driven toward SN point by increasing P. (b) Temporal autocorrelation functions of time-series of (a) are
plotted (in blue) versus time-lag. Each blue trace is produced by averaging the autocorrelations obtained
from three numerical experiments. Approaching bifurcation point increases peak value of autocorrelation
function (equal to variance of the time series), and broadens the autocorrelation functions. Black curves
are theoretically predicted one-sided autocorrelation functions described by 11 (7) element of covariance
matrix (5.2.14).

capture fast dynamics of the system as indicated by T g,ss = 1/|\2| where Ag is the second
eigenvalue of the system. The time step should also be small enough to prevent numerical
instabilities.
Excellent agreement between theory and numerical experiment is achievable when the simula-
tions satisfy all three criteria. This is a challenging task in the vicinity of the SN point, where
the slow time-scale dominates, demanding very long numerical simulations to capture slow dy-

namics. The results observed in top trace of autocorrelations in Fig. 5.7 can be improved by
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Figure 5.8: Variance of white-noise-induced fluctuations for the spatially homogeneous Wilson—Cowan
model prior to saddle-node (SN) bifurcation. Arrows indicate moving toward SN point by increasing
P. (a) From bottom to top are the time series of white-noise-induced fluctuations of E using different
values of P. Proximity of the system to SN point is indicated by emergence of larger-amplitude slow
oscillations in top traces. See Table 5.3 for the parameter values. (b) variance versus log(e) where
€j = (Psx — P;)/Psy = 1/47 with j € {1, 2, ..., 10}, and Psx = 1.9876015116 mV. Each variance is
a mean value obtained from 12 stochastic simulations. Error-bars show standard deviation of variances
over 12 repeated experiments. (c¢) The logarithmic plot of variances versus log(e). The superimposed
dashed line has the slope of —0.5.

performing longer simulations.

In order to extract the power-law relationship between fluctuation variance and closeness to
the SN point, we generated 10 time-series corresponding to numerical simulations of Egs. (5.2.7),
using P as a control parameter to derive the system toward SN bifurcation point. We used
€j = Psn—Pj, j € {1, 2, ..., 10} as a measure of distance from bifurcation point. See Table 5.3
for full list of simulation parameters and their values. We repeated the numerical simulation 12
times per P value. Figure 5.8(a) shows sample time-series of E corresponding to each P value.

White-noise-induced fluctuations show larger-amplitude slow oscillations while the system is
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Table 5.3: Parameter values and simulation variables to produce Figs. 5.8 and 5.13

Symbol/Parameter Description Value Value Unit
Fig. 5.8 Fig. 5.13

Psn,uB P at bifurcation point 1.9876015116 1.6103419764 mV

€ ¢ = W 147, j€{1, 2, .., 10} 1/49, € {1, 2, ..., 8}

At Time-step of Euler update 0.1 0.01 (ms)

T Length of simulation 5 5 S

12 rms noise amplitudes 1x107° 1x1071° (ms)~1/2

driven toward SN point. This is evident in top traces in (a), consistent with critical slowing down.
For each P value, 12 variances are extracted from 12 simulation runs, and the mean of variances
was recorded. Figure 5.8(b) shows mean variances as a function of log(e) with corresponding
error-bars defined as standard deviation of variances. A pronounced increase in the variances,
and their standard deviations, is evident prior to SN point. Figure 5.8(c) shows a logarithmic
plot of variances. A line of slope —0.5 is superimposed to show the theoretically expected power-
law growth for variance of white-noise-induced fluctuations prior to SN bifurcation [Steyn-Ross

et al., 2006],
var{E} ~ 1/\/e (5.2.16)

Note that there is a good agreement for middle values of €, confirming the validity of Ornstein-
Uhlenbeck theory. Deviations of experimental variances from theoretical predictions is evident
at the borders of range of € values. When log(e) 2 —1, then P < 0.9PsN, and the system is
far from SN point, so is little affected by slowing-down phenomenon. In the other hand when
log(e) < —4.5, then P = 0.9999683772Psn, and the system is extremely close to SN point,
extended simulation times are required (see Fig. 5.6(d)). Longer numerical simulations are

expected to improve agreement between theory and experiment for these extreme cases.

Subthreshold behaviour prior to Hopf bifurcation

Recalling the eigenvalue structure of the top branch of Fig. 5.5, this branch has a pair of
complex conjugate eigenvalues (A1 2 = —a =+ jw). The real part is positive for P < 1.6103419764
which results in an unstable-spiraling out focus; larger P values result in a negative real part,
representative of stable spiraling-in focus. The evolution of Wilson—Cowan system around the
top branch in the phase plane is demonstrated in Fig. 5.9(a) and (b).

Simulations start from two different points (indicated by star symbol) in each case. Trajecto-
ries are spiraling-out when the top branch is unstable (a), and spiraling-in when the top branch

is stable (b). The corresponding time-series plotted in (c) and (d) both show oscillations whose
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Figure 5.9: The spatially-homogeneous Wilson-Cowan model demonstrates unstable and stable spiral
equilibrium points. Insets in (a), (b) show the steady state distribution with Hopf bifurcation (HB) point
at P ~ 1.610341976400 mV indicated by an open circle. (a) Phase plot at P = 1.596 mV demonstrating
an unstable spiral point. Two numerical simulations starting at selected different points (indicated by
stars) in the vicinity of spiral point demonstrate the instability. (b) Phase plot of the system at P = 1.644
mV demonstrating a stable spiral point for two numerical simulations. When the top branch is unstable,
the states evolve to bottom branch after making a spiraling-out trajectory. When the state is stable,
trajectories are attracted to top branch with a spiraling-in trajectory. Time series are plotted in (c) and
(d). The frequency of oscillations are determined by the imaginary part of eigenvalues in both cases. The
HB happens at the border between stable and unstable equilibria when the real part of eigenvalues is
zero, leaving pure imaginary eigenvalues.

frequency can be predicted from the imaginary part of the eigenvalues. The Hopf bifurcation'
(HB) happens at the border between stable and unstable spiral points (Pgp = 1.6103419764
mV, indicated by open circle in Fig. 5.9(a) and (b)) where the real part of eigenvalues changes
the sign and the eigenvalues are purely imaginary Ao = +jw.

We demonstrate how the HB causes the system to lose stability. The exogenous input P
is chosen to be the bifurcation control parameter with the range of [1.68 1.50] mV. Continuous
white-noises are added to to the system following Eqs. (5.2.7). Figure 5.10 depicts the system

response to varying P (solid and dashed traces respectively).

'Sometimes called Andronov-Hopf bifurcation
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Figure 5.10: Induction of instability and state transition in spatially-homogeneous Wilson—Cowan model
via Hopf bifurcation (HB). Excitatory exogenous input P is used as bifurcation parameter. The system’s
state (E) and P are plotted versus time (solid and dashed traces). The System is stable for P > Pyp where
Pyp = 1.6103419764 mV. Waxing-and-waning oscillations occur in this range due to white-noise-induced
fluctuations. When the control parameter passes the Pyp, oscillations grow and enter to attraction
domain of stable node on the bottom branch of steady-state distribution graph.

While P is held fixed for 0.8 s, the system shows white-noise-induced waxing-and-waning
oscillations indicative of a stable focus point. By decreasing P, a small amplitude stable limit-
cycle emerges at Pyp via a HB mechanism'. Note that when the system passes the bifurcation
threshold, the linear stability analysis (as used previously for subthreshold regime) is no longer
valid. Decreasing P is accompanied with growth in the amplitude of a stable limit cycle. Since
this oscillatory state is not stable anymore (recall steady state distribution graph for P < Pyp),
the system enters the domain of attraction of the bottom branch and promptly settles there.

We are interested in subthreshold behaviour of the system where Wilson—-Cowan model can
be linearized into a Ornstein-Uhlenbeck formalism. The theoretical predictions regarding the
model response when approaching Hopf bifurcation point (HB) are plotted in Fig. 5.11. Steady
states are replotted in (a) showing HB point on the top branch. Reducing P drives the system
toward HB as indicated by the red arrow. The slow time-scale is defined as Tyjow = 1/|cr| where

is the real part of the eigenvalue. As shown in Fig. 5.11(b) and (d), the damping approaches zero

IThis type of HB is called supercritical Hopf bifurcation where loss of stability is coincident with emergence
of a stable limit-cycle. Subcritical Hopf bifurcation is the other type, where an unstable limit cycle shrinks to
a stable equilibrium and makes it unstable. See [Wilson, 1999; Izhikevich, 2007] for more details. All the Hopf
bifurcations in this chapter are supercritical, and we simply call them Hopf bifurcations.
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Figure 5.11: Theoretical analysis of the spatially-homogeneous Wilson—Cowan model prior to Hopf bifur-
cation (HB). (a) Steady state distribution with HB at P ~ 1.610341976400 mV on top branch. The HB
acts as a border between unstable (indicated by grey shadow)) and stable equilibria. Reducing P drives
the system toward HB as indicated by red arrow. (b) Damping as defined by oo = —real (eig) is reduced
while approaching HB. (¢) Frequency of oscillations as defined by f = wq/2m where wy = Im(eig/(27)).
(d) Slow time-scale as defined by Tyow = 1/a. A dramatic increase in Ty while approaching HB is
predictive of critical slowing prior to HB. Inset shows a zoomed view of the Ty, curve.

prior to HB. As a result a dramatic increase in slow time-scale occurs before Hopf bifurcation,
predicting critical slowing of the decay of white-noise-induced oscillations close to HB.

To capture the signs of slowing down as predicted by LSA, a series of numerical simulations
were performed; see Fig. 5.12.(a) for three different values of P approaching HB point (from
bottom to top in the figure). The observed oscillatory behaviour (with frequency of f = wp/27
where wy is the imaginary part of eigenvalues) is the result of complex eigenvalues as predicted
by LSA. Emergence of larger-amplitude oscillations (compared to noise amplitude) prior to HB
bifurcation is evident in numerical results. We plot the corresponding autocorrelation function
of the E time-series in Fig. 5.12.(b) (blue). Using ¥1; element of covariance matrix (5.2.14) we
superimpose the theoretically predicted one-sided autocorrelations (black), and find excellent
agreement.

We now examine the variance of fluctuations prior to Hopf bifurcation. Figure 5.13(a) shows
series of simulations of the Wilson—Cowan model using a geometrically spaced set of P values

to drive the system toward HB. The difference between each P and Pyp is selected as

_ P~ Pug

€ =1/47 wherej € {1, 2, ..., 8}
Pyp

The corresponding variance for each P is the mean of 12 experiments. Figure 5.13(b) shows that

variances increase when approaching HB point. The variances are replotted in a logarithmic
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Figure 5.12: Numerical and theoretical analysis of white-noise-induced fluctuations in the spatially homo-
geneous Wilson—Cowan model approaching Hopf bifurcation (HB) point. (a) Bottom to top are the firing
rate of E' neurons versus time approaching HB point. Values of control parameter P are shown for each
case in mV, and the time-step of numerical simulations is At=0.01 ms. Waxing and waning oscillations
emerge as the state is driven toward HB by increasing P. Frequency of oscillations is f = wg/27 where
wop is the imaginary part of eigenvalues at corresponding P as plotted in Fig. 5.11(c). (b) Temporal auto-
correlation functions of firing rate time-series of (a) are plotted (in blue) versus time-lag. Each blue trace
is produced by averaging the autocorrelations obtained from three numerical experiments. Approaching
the bifurcation point increases the peak value of autocorrelation function (equal to variance of the time
series), and broadens the envelope of autocorrelation functions indicating increase in decay-time. Black
curves are theoretically predicted one-sided autocorrelation functions described by X11(7) element of
covariance matrix (2.2.13).

graph in Fig. 5.13(c) with a superimposed line of slope —1. We find good agreement with the
theoretical power-law prediction prior to HB [Steyn-Ross et al., 2006]:

V&I‘{E} ~ 1/6 (5217)
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Figure 5.13: Variance of white-noise-induced fluctuations for the spatially homogeneous Wilson—Cowan
model prior to Hopf bifurcation (HB). Arrows indicate moving toward HB point by increasing P. (a)
From bottom to top are the time series of white-noise-induced fluctuations of E using different values of P
to drive the system toward HB. Proximity of the system to bifurcation point is indicated by emergence of
larger-amlitude oscillations (compared to noise amplitude). Frequency of these oscillations are in the range
of 16-29 Hz, as presented by imaginary part of corresponding eigenvalues in Fig. 5.11(c). See Table 5.3 for
parameter values. (b) Variance versus log(e) where €; = (P; — Pug)/Pus with Pug = 1.6103419764 mV.
Each variance is a mean value obtained from 12 stochastic simulations. Error-bars showing standard
deviation of variances in 12 experiments. (c) Logarithmic plot of variances versus e. Superimposed
dashed line has slope of —1.

5.3 Chapter Summary

A detailed investigation of the spatially-homogeneous Wilson—Cowan equations was introduced
as a basic model of a homogeneous cortex, with rich dynamics. We demonstrated that saddle-
node and Hopf bifurcations can occur in this model, and we studied their subthreshold dynamics
prior to phase transitions. We demonstrated numerically clear evidences of critical slowing prior
to state transitions in terms of increased variance and decay-time. The experimental findings

agree with predictions from linear Ornstein-Uhlenbeck theory. Assuming that seizure-like events
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emerge and terminate via different bifurcation types, we propose that leading indicators of
critical slowing may accompany seizure emergence and termination phases. The findings of this
chapter provide basic modelling support for our hypothesis about seizures. We will study space-
dependent Wilson—Cowan model in the next chapter in an attempt to capture more realistic

leading indicators.






Chapter 6

Subthreshold dynamics of

Wilson—Cowan cortical rod

The dynamical behaviour of the spatially-homogeneous Wilson—Cowan cortical model investi-
gated in Chapter 5 shows clear signs of critical slowing close to saddle-node and Hopf bifur-
cations. I now extend this work to investigate Wilson—-Cowan dynamics in 1-D space, looking
for signs of slowing down in both space and time as a potential precursor to state changes.
The inclusion of space allows new dynamics to emerge, namely: spatial Turing patterns and
spatiotemporal Turing—Hopf interactions.

After computation of the homogeneous steady states, our first step is to linearize the sys-
tem around its steady states in order to compute the Jacobian matrix and eigenvalues of the
linear system. This allows us to determine the stability of steady states and to perform bi-
furcation analyses. We extract dispersion curves from the wave-number-dependant Jacobian
matrix to provide information about stability of the system with respect to different wave num-
bers and predict the possibility of development of Turing pattern. In addition to occurrence
of saddle-node and Hopf bifurcations, we show that the spatially non-homogeneous cortex can
destabilize spatially in favour of Turing pattern under certain conditions. We will see that the
spatiotemporal instability via Turing—Hopf mixed mode instability can also be observed in this
model. As the next step, we will transform the governing stochastic equations of the system to
Ornstein-Uhlenbeck form with well-developed stochastic theories predicting its behaviour. This
transformation will provide valuable theoretical tools to study the system statistics both in time
and space. In a parallel step, we will adjust the parameters of the system to set it in a desired
subthreshold state, just before occurrence of different bifurcations (e.g., saddle-node, Hopf, Tur-
ing, and Turing-Hopf) and will perform numerical simulations to solve the system equations.
Then the temporal and spatial characteristics of the system will be investigated theoretically

and numerically in a search for signs of slowing down prior to state transitions.
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Figure 6.1: Schematic of the 1-D cortical sheet modelled by space-dependent Wilson-Cowan equations.
There are dense all-to-all synaptic connections between all neurons. The strength of connections decays
exponentially with distance. Connections are plotted completely just for central E and I neurons, with
excitatory and inhibitory connections indicated by arrows and circles respectively. The thickness of
connectors represent the strength of connection.

6.1 Space-dependent Wilson—Cowan model

Figure 6.1 depicts the structure of a network of laterally-connected localized aggregates of E
and I populations, representing a 1-D sheet of cortical tissue. We use the continuum form of

space-dependent Wilson-Cowan equations (5.1.5), repeated here for convenience,

TEaatE(a?,t) =—FE(x,t)+ Sg [wEE(x) ® E(x,t) —wip(z) @ I(z,t) + p}

) (6.1.1)
rig L@, t) = ~I(e.t) + S [wer(x) @ I, t) — wir(z) © Iz, 1) + Q|

See Section (5.1) for parameter definitions. Recall that the coupling strength is assumed to
decay exponentially with distance:
bjk

wjk(x) = ij exp(—|z|/ojk) (6.1.2)

where bj; (in mV.ms) represents the maximum synaptic coupling strength from population j
to k, and o (in pm) is the space constant that controls the spread of connectivity between
corresponding populations. A schematic diagram of the 1-D space-dependent Wilson-Cowan
model is displayed in Fig. 6.2. Compared with the structure of spatially-homogeneous model (see
Fig. 5.3), the scaling by constant maximum synaptic strengths bj;, are replaced by corresponding
convolutions with space-dependent synaptic densities wj;. Equations (6.1.1) are equivalent to

integro-differential forms
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Figure 6.2: The schematic diagram of space-dependent Wilson-Cowan model of 1-D cortical sheet as
described by Eqgs. (6.1.1). The P and @ are exogenous excitatory voltage inputs to E and I neural pop-
ulations respectively. Note that the main difference between this diagram and its spatially-homogeneous
counterpart in Fig. 5.3 is the replacement of constant bj; with wji(z), the space-dependent coupling
strengths from j to k. Firing rates are sigmoidal function of synaptic and exogenous voltage inputs.

L2
TEQE(x,t) = —FE(x,t) + SE[bEE/ E(@ t)yngg(z — ') dx’
ot —L/2

L)2
—b[E/ I(.Z',,t)n[E(.%'—{El) d.’L‘l—i-P],

—-L/2

5 b . (6.1.3)

T1—1I(z,t) :—I(w,t)—i—SI[bE]/ E(@' t)ngr(z — ') dx

ot —L/2

L2
by [ 1@ (e~ o) da' 4 Q)
~L)2
where L is the length of integration domain, and n;;, is defined as:
mu(e ') = o —exp(—lr ~ @'lfow), G, k) € (B, T}
jk 2Ujk ik )s ’ ) (6.1.4)

Assuming that L is much greater than the length of spatial spread of excitatory and inhibitory
connections (i.e. L > oy, i,j € {E,1}) the range of integrations in (6.1.3) can be extended
to oo (infinite brain assumption). We define ¢pr and ¢y as excitatory and inhibitory input

fluxes in (ms)~! to population of type k as

opk(x,t) = /_Oo E(@ t)ngg(x — 2') d2’,
N (6.1.5)
orr(z,t) :/ I(2' t)npp(x — 2') da’, ke{E I}
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Then ¢Ek(l‘a t)7 d)lk(l‘a t) Obeyl:

32
(A%k - a$2> dpk(x,t) = AEy E(x,1)

. (6.1.6)
(A%k - W) Gz, t) = A7, I(z,1)

where Aj;, = 1/0j; is the inverse length scale for connections. These equations are the wave
equations for ¢gy, 1 which describe, respectively, the propagation of flux activity from distant
excitatory and inhibitory populations into the type k synaptic inputs of cortical column. As a

result (6.1.3) can be written:

TEgtE(x,t) = —E(z,t) + Sp(bppérr(z,t) — bipdre(z,t) + P),

9 (6.1.7)
Tlaf(%t) = —I(z,1) + S1(berder(z,t) — brrdr(z,t) + Q)
We may thus summarize as follows:
aE t) = Bi(E
B (z,t) = Bi(E, ¢pE, d1E)
a[ t) = Bo(1l
ot (z,t) = Ba(I, ¢E1, $11)
02 (6.1.8)
k e{E, I}
0? 9
<A%k - 8302) bre(x,t) = Aq, I(x, 1)
where
By = 15[~ E(z,t) + Sp(bppope(z,t) — brére(z,t) + P)],
(6.1.9)
By =1 '[ = I(x,t) + S1(bprémr(z,t) — brrérr(z,t) + Q)]

Equations (6.1.8) and (6.1.9) define the space-dependent Wilson-Cowan continuum model of
Fig. 6.2, which will be called the WC from now on in this thesis. We start our analysis of this

system by determining its spatiotemporal equilibrium points in Section (6.2). After linearization

!See Appendix A.1 for proof
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of the system around its equilibria, we will see how the governing equations can be arranged as an
Ornstein-Uhlenbeck system, with well-known theoretical knowledge regarding its autocorrelation
and variance, based on the corresponding Jacobian matrix. We will see how the Jacobian matrix
is a function of wave-number as well, resulting in introduction of dispersion curves. We will use
P as a control parameter to extract the steady-state distribution and dispersion curves. A
similar approach as used in Chapter 5 will be used in this chapter to study dynamics of WC

model while approaching bifurcation thresholds.

6.2 Homogeneous equilibrium points of 1-D WC model

At homogeneous steady state, the E(x,t) and I(z,t) terms are replaced with their fixed-point
values, independent of time and space. By setting to zero all time and space derivatives of
Egs (6.1.8) and using the definitions given at (6.1.9), the excitatory and inhibitory equilibrium

firing rates (E°, I°) can be computed as a function of excitatory exogenous input P:
0=—E°+ Sp(bppdre(v,t) — bipdie(x,t) + P)

0=—1°+Si(bprder(x,t) — brrdrr(z,t) + Q)

(6.2.1)
Aoy, dpn(a,t) = Afy E°

A%k brr(z,t) = A%k; °

Noting that at steady state excitatory and inhibitory fluxes (¢pr and ¢yi) are equal to steady-
state excitatory and inhibitory firing rates £° and I°, we obtain nullcline equations which are

identical to those for the homogeneous case (see Eq (5.2.2)):

E° = Sg(bppE° — brgl® + P) (E-nullcline)

(6.2.2)
I° = S[(bE[EO —bI°+ Q) (I—nullcline)

which result in the same phase-plane diagram and vector-fields previously illustrated in Fig. 5.4.

Table 6.1 shows the parameter values of the model used in this chapter. Compared with the
previous parameter values of Table 5.1, some minor changes are evident. Specifically, I boosted
the inhibitory synaptic coupling strength by, in order to shift the Hopf bifurcation (HB) point

1

out of the multi-root region.” We will see in Section 6.3 how this modification is essential for

!Compare the position of Hopf bifurcation (HB) point on steady state distribution curves of Fig. 6.3(a) and
Fig. 5.5(a).
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Table 6.1: Symbol definitions and typical parameter values for the 1-D WC model. Parameter values are
similar to the values of spatially-homogeneous model as given in Table (5.1) with some minor changes.

Symbol Description Value Unit
E T Firing rates of E and I processes (ms)~!
TE,I Time constants of E and I responses 10, 8 ms
Se, ST Sigmoid functions mapping voltage to firing rate (ms)~!
bEE,EILIEIT Synaptic coupling strength 18, 19,19, 0 mV.ms
CEE.EIIEII Space constant 50, [119.1-148.5], [119.1-148.5], 20 pm
SEY Maximum firing rate 0.1, 0.15 (ms)~?
ag.1 Sigmoid slope at threshold 9 (mV)~!
Or,1 Threshold voltage for half-maximum firing 2.2 mV
P,Q Exogenous voltage inputs to £ and I populations [0.9-3.3], 1.35 mV

generation of mixed mode Turing—Hopf oscillations.

6.2.1 Linear stability analysis

Following Steyn-Ross [2002] and Steyn-Ross et al. [2003], our working assumption is that the
cortex normally operates in a state close to its homogeneous equilibrium. In this section I extract
the linear form of 1-D WC model for a given spatiotemporally homogeneous steady-state. This
gives the Jacobian matriz of the system at corresponding steady-state. Then I examine the
eigenvalues of the Jacobian matrix to determine stability.

Equations (6.1.8) are linearized by assuming that Z(z,t) — Z° + Z(x,t), where Z° is
the homogeneous stationary state, and Z is a small spatiotemporal perturbation of the form,
Z (x,t) = 5.eMel” around the steady state. Here 8, is the amplitude of spatiotemporal perturba-
tion (with same unit as Z°), e* is the temporal perturbation, and e*” is the spatial perturbation

mode at wave-number ¢, and Z € {E, I, ¢pi, ¢1}. Thus in (6.1.9),

Bi = Bi(E° + E, ¢%5 + dpp, 695 + ¢18)

By = Bo(I° +1, Pr1 +¢A>EI>¢?1 +¢A)H)

We expand Bj using Taylor series while keeping just the first-order terms:

0By
)

A 831 ~ 8Bl
b g1
+ O(bEE + 9o1m

o 0PEE

By = B1(E°, %R, 07r) +

b1E
o
where derivatives are evaluated at stationary states. Noting that at stationary state,

B1(E°, ¢gp, ¢Tr) =0
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we find
0B1| 0By | - 0B; | -
B =—| E+ +
1= 55 . DonE O¢>EE Do O<Z>IE
Similarly:
0Bs| » 0By | - 0By | ~
By = I+ + —
2= 57 It oo O¢E1 dorr O<Z5H
Thus equations (6.1.8) become!:
8 A aBl A 831 ~ 831 S
—F=—F
5 s Lt 8¢EE¢EE+ 6¢1E¢1E
0. OBy. OBy - 0By ~
ey ey
ot ol + 8¢E[¢EI + 0drr o1

(6.2.3)
A% 0% + <A2Ek + q2) bpr = Ap(E° + B)

A7 89 + (A%k + q2) b1, = AR (I°+1)

Noting A%, 0%, = A%, E° and A%,¢9, = A2,1°, the two last equations of (6.2.3) become:

A3, iy

bpr = 5Lk Ok = 5 — 1

and the system will collapse to two dimensions by substituting (6.2.4) into the first two equations

of (6.2.3) as:

=[5 + (i) iy S e+ [ (o) e e

70 = [ () iz e P+ [ + () g o)

(6.2.5)

where all partial derivatives at RHS of Eqs. (6.2.5) are calculated at steady state. Noting

E(x,t) = dpeMei® and I(x,t) = 6;eMel® equations (6.2.5) can be written in linear matrix

9 e o

5 = et = 2 (a
X X
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form:
[ 0By 0B1 AL 0B A3 i
OE  9¢pr (Mg +¢%) 0¢1E (Mg +q%)
d | opeM o2 | (62.6)
dt 5[e>‘t 5Ie>\t
8B2 AQEI 832 + aBQ A%I
Oppr (A%, + %) oI~ 9drr (A3, +¢?) |
Equation (6.2.6) can be written as
% (1) = () - (1)
at T
where
§ e)\t
a=| "
5Ee)\t
is the perturbation column and
oFE 0VEE (AZEE + q2) 0d1E (A%E + q2)
J(a) = (6.2.7)

0B, A2,
d¢rr (Mg +¢?)

8B, 0By A%

+

with units of (ms)~! is the g-dependent stability matrix of the system. Stability is determined

by the eigenvalues of J(¢) at wave number ¢g. The elements of J(g) evaluated at steady states
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with units of (ms)~! follow as:

abpr_exp(—a(bppdpe —bigdie + P —0)) ALL ]
2

1
J11 == |:_1+Emax
[1+ exp(—a(bpro¢rr — brdre + P —0)))° ALg + ¢

Te

Fi = -1 [E abrp_exp(—a(bep¢pe — bigdie + P —10)) Ap }

Te [1+exp(—a(bprpérr — brgir + P —0))* AL+ ¢

(6.2.8)

Jor = 1 [I abpr exp(—a(bpr¢pr — birg +Q —0)) A%, ]

Ti "1 4 exp(—alberdpr — b + Q — 0)° AL +¢?
= -1 abrr exp(—a(bpropr — brrorr + Q — 0)) A},
J22 =—1 + Imax 2 A2 2

i 1+ exp(—albpropr — b +Q —0))° Ajr+4q

6.2.2 Steady state distribution and homogeneous (g = 0) stability

Using a numerical iterative method!, we find the intersections of two nullclines described by
Eqgs. (6.2.2), and then locate the steady states as a function of varying external excitatory
voltage drive P. We assume ¢ = 0 to find the corresponding homogeneous eigenvalues using
Egs. (6.2.8).2 The steady-states curve and corresponding eigenvalues of the model is plotted as
a function of P in Fig. 6.3 which looks similar to steady-state diagram displayed in Fig. 5.5.
Both steady state curves have a three-root region enclosed by two single-root regions. The
corresponding eigenvalues have also similar structure. However the reader should note the
difference in the position of HB point in two figures which is due to boosted inhibitory synaptic
coupling strength byp = 19 mV.ms (previously byg = 10 mV.ms). This steady-state diagram
shows that state transitions can emerge via two bifurcation types, saddle-node (SN) and Hopf
(HB), as indicated by the eigenvalue structure. We will see in the next sections that how the g-
dependent eigenvalue analysis of the system reveals the existence of other types of bifurcations in
the 1-D WC model. Before studying this g-dependence, we perform some numerical simulations
to investigate the system response for the homogeneous case.

The homogeneous (¢ = 0) steady-state curve is replotted in Fig. 6.4 with stable and unstable
equilibria marked with black and red colours respectively. The phase plots at different P values
corresponding to four distinct steady states are superimposed on the figure. We performed
numerical simulations to test and demonstrate the validity of predictions of the linear stability

analysis about the homogeneous system dynamics at different regions of steady state curve:

1See Section 5.2.2 for details.
2The stability for nonzero wavenumbers is studied in the next section.
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Figure 6.3: Steady state and eigenvalues of 1-D WilCo model, similar to Fig. 5.5. Note that the po-
sition of Hopf bifurcation (HB) point is different from the one in Fig. 5.5 due to boosted b;p value
in this chapter. (a) Steady state firing rate (E°) as a function of external excitatory input volt-
age P. Saddle-node (SN) and Hopf (HB) bifurcations switch the stability of the steady state at
P =1.7892426576, 2.1971513755 mV respectively. See the caption for Fig. 5.5 for more descriptions. The
real and imaginary parts of the eigenvalues of the stability matrix are displayed in (b) and (c) respectively.

(a)

Stable node: For P = 1.2 mV, the two nullclines have one intersection corresponding to
a stable node that is predicted to attract all trajectories of the phase plane such as the
simulated one plotted in green.

Unstable focus, saddle, stable node: For P = 1.59 mV, the two nullclines have
three intersections b1 2 3. The linear stability analysis predicts that all trajectories will be
attracted to bs, which is confirmed by simulations (solid green curve) being attracted to
the bottom branch of the S-bend curve. Note that by is an unstable saddle, and by is an
unstable spiraling-out focus point.

Unstable focus: Panel (c¢) shows the phase plot diagram at the one-root region of the
S-bend corresponding to P = 2.1 mV, predicted to be an unstable focus point. Starting
from an arbitrary point in phase-plane, the numerical response settles down to a small-

amplitude limit-cycle which surrounds the unstable focus point (inset shows detailed view
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Figure 6.4: Confirmation of theoretical predictions about stability of homogeneous 1-D WC model with
numerical simulations. The homogeneous (¢ = 0) steady state curve is plotted again for convenience.
The nullclines and the numerically obtained system responses (green trajectories) in the vicinity of four
distinct P values (a, bi_3, ¢ , d) are superimposed on steady state curve. The simulation results confirm
theoretically predicted behaviour of corresponding equilibria as stated in Table 6.2. An Euler method
with fixed time steps of At = 0.05 ms is used to obtain 200 ms-length numerical results. (a) Stable node,
(b) unstable focus, saddle, and stable node, (¢) unstable focus leading to limit cycle, and (d) is a stable
focus.

of limit-cycle). Note that all trajectories will be attracted to this limit-cycle, regardless of
their starting point.

(d) Stable focus: Panel (d) shows the phase plot diagram at P = 2.75 mV which corresponds
to a stable spiraling-in focus. This point attracts all trajectories in the phase space. A
sample trajectory is plotted in this panel with the inset showing detailed view.

Table 6.2 summarizes the predicted dynamical behaviour of four points corresponding to Fig. 6.4.

Our numerical experiments confirm these theoretical predictions.

6.2.3 Stability for non-zero wavenumbers

The Eq. (6.2.7)—stability matrix of the 1-D WC model-—depends on wavenumber gq. We ob-
served in the previous section that the system collapses to the homogeneous case when we set
g = 0. I now explore the non-homogeneous 1-D WC model by studying the distribution of
g-dependent eigenvalues of the J(q) matrix.

Unlike the homogeneous steady state curves where the steady state are plotted versus P, we

now plot the real and imaginary parts of eigenvalues at a selected steady state as a function of
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Table 6.2: Stability and types of equilibrium points on Fig. 6.4 based on homogeneous (¢ = 0) eigenvalues.

Panel P eigl eig2 Stability & Type
a 1.2 —0.099 —0.124 stable node
1.59 0.059+0.249i 0.059-0.249i unstable focus

b 1.59 0.220 —0.114 unstable saddle
1.59 —0.092 —0.124 stable node

c 2.1 0.009-+0.296i 0.009-0.296i unstable focus

d 2.75 —0.062+0.1871 —0.062-0.187i stable focus

0.05

Dom eig [/ms]
<

-0.05

q/2m [waves/mm]|
Figure 6.5: Dispersion curves corresponding to point (¢) on Fig. 6.4. The solid « curve is the real part
of the dominant eigenvalue while the dashed w/27 curve displays the corresponding imaginary part.
The system is unstable for ¢/27 < 0.95 waves/mm, which is accompanied with temporal oscillations
indicated by w/2m curve. The system is also very close to spatial instability with spatial frequency of
q ~ 2.4 waves/mm

¢/2m in units of waves/(unit length). This graph defines the dispersion curve. Assuming that A

is the g-dependent dominant eigenvalue of the system at a selected P,

)| p = (alg) jw(9) |p (6.2.9)

we extract and plot a and w/27 as a function of ¢/27 using Eq. (6.2.7). We select P = 2.1 mV
(corresponding to point (c¢) of Fig. 6.4) and the resulting dispersion curve is shown in Fig. 6.5.
The positive values of the «a curve predict spatial instability with corresponding spatial frequency
in waves/mm, while the nonzero imaginary part (displayed as dashed w/27 curve) shows the
frequency of temporal oscillations in kHz.

We plot the dispersion curves of six distinct steady states as indicated in Fig. 6.6. The
shapes of the various dispersion curves allow us to make predictions about the spatiotemporal

dynamics of 1-D WC model at each P value:

o Panel (a): The real part is negative for all ¢ values indicating spatiotemporal stability of

the state. The imaginary part (not shown) is always zero.
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Figure 6.6: Distribution of steady states as a function of external excitatory input (P) along with disper-
sion curves at four different P values corresponding to six qualitatively distinct dynamics. Solid dark-blue
traces show the real part of the dominant eigenvalue as function of wave number ¢/27; dashed-blue traces
indicate oscillation frequency (in kHz) f = w/2m =Im(eig)/27. (b1) and (c) are temporally and spatially
unstable since both have positive values for real part of dominant eigenvalue at ¢ = 0 (temporal instabil-
ity) and ¢ = 0.002,0.0025 waves/um for b; and c respectively. (a) and (bs) are always temporally and
spatially stable, since the real part of dominant eigenvalues are negative for all ¢ values. (bg) is temporally
and spatially unstable. (d) is temporally and spatially stable with a non-zero oscillation frequency which
is the characteristic of a stable spiral point.

o Panels (by, by, b3): This is a three-root region, with different dynamics for each equilib-
rium. While the (by) and (bg) are spatiotemporally unstable, the system is spatiotempo-
rally stable at (bs).

o Panel (¢): The real part of dominant eigenvalue is positive at some ¢ values with nonzero
imaginary part. This results in mixed mode spatiotemporal oscillations.!

o Panel (d): The real part of eigenvalue is always negative, so the system is spatiotemporally
stable.

We see that the real part of the dominant eigenvalue can have two local peaks, one at the origin

and the other at ¢ # 0. Depending on the sign of the real part of the dominant eigenvalue, the

system can support different spatiotemporal patterns. This topic is studied in the next section

where we introduce Turing and mixed-mode instabilities of the 1-D WC model.

!Sometimes called Turing-Hopf oscillations
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6.3 Bifurcations of 1-D WC model of cortical tissue

Four different bifurcation types of 1-D WC model are studied in detail in this section:

1. Saddle-Node (SN) annihilation

2. Hopf bifurcation (HB)

3. Turing instability

4. Turing—Hopf instability
While the SN and HB can induce temporal instabilities, the Turing produces spatial instabilities.
In addition we will see that a Turing—Hopf bifurcation can induce spatiotemporal instabilities in

the model.

6.3.1 Temporal instabilities

The SN bifurcation! happens when the midbranch of the S-bend curve collides with the bottom
branch and annihilate at Psy = 1.7892426576 mV as displayed in Fig. 6.3(a). This bifurcation
results in the disappearance of a pair of steady states, forcing the system to move to an alternate
state. Assuming that the system is on the stable bottom branch (low firing rate), increasing
P will push the system toward and then beyond SN, causing the system to jump to the upper
branch which is an unstable focus point (see phase plot of a point on this branch in Fig. 6.4(c).
As a result, the SN bifurcation changes the qualitative behaviour of all neurons in 1-D WC rod.

The Hopf bifurcation occurs when the real part of the complex eigenvalue pair changes
sign at Pyp = 2.1971513755 mV as indicated in Fig. 6.3(b), (c). This bifurcation also changes

the qualitative behaviour of all neurons.

6.3.2 Spatial instabilities

The dispersion curves of the 1-D WC model corresponding to P = 2.34 mV are plotted in
Fig. 6.7. Changing the inhibitory synaptic range constants cgpy and orp alters the dispersion
curves. When opr g = 200 um, parts of the a-curve exhibit positive excursions implying the
formation of spatial oscillations with spatial frequency of ¢/27 ~ 1.6 waves/mm.

We perform a numerical simulation to test these theoretical predictions about spatial insta-
bility and the resultant spatial oscillations. The synaptic space constant linking excitatory and
inhibitory neurons is set at ogr, ;g = 200 pm. The length of the 1-D cortex is L = 3 mm with
spatial resolution of Ax = 2 pm. Initial states of the E and I neural populations are set to

their steady state values corresponding to P = 2.34 mV. Spatiotemporal white noise is added

!Sometimes called a fold bifurcation
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Figure 6.7: Prediction of emerged mixed mode oscillations in 1-D WC model at P = 2.34 induced by
increased inhibitory synaptic space constant. The real and imaginary parts of dominant eigenvalue are
plotted in blue and red respectively. Increasing the inhibitory synaptic space constants cgy, orp increases
the real part of dominant eigenvalue and causes its peak point to have positive values implying spatial
instability.

to both exogenous voltage inputs P, () to allow small deviations from steady state, encouraging
evolution of any incipient spatial patterns.

Figure 6.8(a) shows the time-space evolution of the cortical rod, starting from homogeneous
steady state F ~ 0.0859 mV (corresponding to P = 2.34 mV) and developing into a full Turing
pattern. The spatial Turing pattern has fully formed after about 0.5 sec. Panel (b) displays
firing rates of the cortical tissue at ¢ = 0.55 sec, clearly showing a spatial wave with spatial
frequency of 5 waves/3mm which agrees nicely with prediction of linear stability analysis as

shown by the location of the peak of the a-curve at Fig. 6.7 for ogr g = 200 pm.

6.3.3 Spatio-temporal instabilities

The Turing-Hopf spatiotemporal instability is a result of interacting Turing and Hopf bifurca-
tions. This interaction happens when the conditions for both bifurcations are met simultaneously—
i.e. the system is close to HB point, and the corresponding « dispersion curve has positive ex-
cursions at some nonzero ¢ values. In this section I set up the conditions for formation of this
pattern in the 1-D WC model, then validate the prediction by numerical simulation. I found
that the selected steady point should be located outside the multi-root region of steady-state
distribution curve; i.e. panel (c) of Fig. 6.6 is a proper choice, while panels (b;_3) are not. This
is because within the multi-root region, the state will be attracted to stable bottom branch,

preventing the formation of spatiotemporal oscillating patterns.
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Figure 6.8: Formation of Turing spatial instability in the WC cortical rod. (a) Demonstration of state
evolution of neurons from E =~ 0.0859 mV to full Turing pattern as displayed by colour-coded spatio-
temporal plot. (b) State of WC cortical rod at ¢ = 0.55 s clearly shows spatial waveform with spatial
frequency of 5 waves/3mm. A fourth-order Runge-Kutta method with time-step of At =0.05 ms is used
to simulate the 3 mm length cortical column with spatial resolution of Az =2 pm.

We select P = 2 mV to put the system in an unstable Hopf mode on the top branch, and
ogr, g = 112 pm to induce a Turing instability (positive a for ¢ # 0)!. (For the value of other
model parameters see Table 6.1.)

Note that the system has only one steady state at this point indicated by a green circle in
Fig. 6.9(a). The corresponding dispersion curve is shown in Fig. 6.9(b) with a pair of maxima
of a curve at ¢/2m ~ 2.62 and 0 waves/mm, indicating the possibility of simultaneous Turing
and Hopf instabilities. The red curve of Fig. 6.9(b) predicts temporal frequency of f ~ 47 Hz
at the origin of the dispersion curve.

Numerical simulation results are shown in Fig. 6.10. The simulation starts from the steady
state corresponding to P = 2 mV, and small amplitude continuous white noise is injected to each

grid point at every time step. The white-noise induced evolution of the network is displayed in

I'We select ogr, e values so that two peaks of a curve have similar magnitudes. Note that using higher ogr, 15
values increases the peak-value of a curve at ¢ # 0 compared to its peak value at ¢ = 0, making the Turing mode
dominant, preventing development of Turing—Hopf mixed-mode oscillations.
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Figure 6.9: Theoretical prediction of mixed-mode oscillations in the 1-D WC model. (a) Steady state
distribution curve and a selected point at P = 2 mV. The system has a Hopf instability at this state. (b)
Dispersion curve of the system at the same state. The synaptic range constant between excitatory and
inhibitory neurons are selected to be ogr, 1z = 112 pm. See Table 6.1 for other parameter values. The
dispersion curve shows the possibility of a Turing instability at spatial frequency of g ~ 2.62 waves/mm.
The dispersion curve also shows the frequency of temporal oscillations as f ~ 47 Hz. (See the w/27 value
at the origin on dispersion curve.)

Fig. 6.10(a) as the colour-coded time-space plot. This plot shows the dominance of temporal
Hopf oscillations at first. However a Turing instability emerges quickly until it pushes the
system into mixed-mode oscillatory behaviour at ¢ ~ 0.6 s. Panel (b) displays a snapshot of
1-D cortical tissue at selected instant of ¢t = 1 s. A basic examination of this graph reveals the
spatial frequency of about ~ 2 waves/mm which matches tolerably with predictions of linear
stability analysis as shown in Fig. 6.9 (b) with ¢/27 ~ 2.6 waves/mm. Better agreement may
be obtained by increasing the length of domain L, but one should not expect perfect agreement
between theory and experiments since the interaction between Turing and Hopf instabilities is a
strongly nonlinear phenomenon, reducing the validity of predictions of linear stability analysis.

The 1-s evolution of a 0.75 mm-length part of the rod is depicted as a 3-D graph in (c). This
graph shows how the temporal Hopf oscillations emerge and grow until they get mixed by spatial
Turing oscillations, giving birth to mixed-mode oscillations. Firing rates of two selected grid
points from the 1-D tissue are plotted in (d)!. The oscillatory behaviours at the two grid points
are very similar at first, then become distinguishable after emergence of spatial oscillations. The
differences can be described in terms of amplitude and phase, but their frequency is identical.
Spectral analysis on one of the firing rate traces of (d) provides insights about the oscillatory

behaviour?. We can partition the oscillatory behaviour into three distinct phases:

e emergence of Hopf

e Hopf-dominated

!The representing grid of the 1-D rod is composed of 1500 points with spatial resolution of Az = 2 pm. The
selected grid points are the 300th and 700th points.
2The grey trace of (d) is selected for spectral analysis.
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Figure 6.10: Mixed mode oscillation in 1-D WC model with P =2 mV and ogr, ;g = 112 pm. See Table
6.1 for other parameter values; steady state curve and corresponding dispersion curves at P = 2mV are
depicted in Fig. 6.9. (a) Spatio-temporal evolution of the 3-mm cortical column in mixed mode. The
simulation ran for 1.5 s, with spatial and temporal resolutions of At = 0.05 ms and Az = 2 pm, and
employed a fourth-order Runge-Kutta integrator. White noises was added to the system according to
Eq. (6.4.2). (b) A sample snapshot of firing rates of 1-D cortical tissue at ¢ = 1 s shows about 6 spatial
waves within the domain length of L = 3 mm which corresponds to ¢/2m ~ 2 waves/mm. (c) Detailed
view of a selected part of 1-D cortical tissue showing its spatio-temporal evolution during first second of
simulation. (d) Firing rates of two selected grid points from the network.

o mixed-mode
as highlighted in Fig. 6.11(a).

The figure shows the corresponding frequency of each phase. The initial state is selected
to be an unstable spiraling-out point. Spectral analysis in (f) shows that the frequency of the
emerged oscillations (stimulated by white-noise perturbation) is f ~ 45 Hz. This temporal
frequency agrees reasonably well with the LSA prediction of Fig. 6.9(b). Absence of higher-

order harmonics for ¢ < 0.3 s (evident in panel d) shows that the emerged oscillations are pure
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Figure 6.11: Spectral analysis of mixed mode oscillations in 1-D cortical rod. (a) Firing-rate trace of a
grid point selected from Fig. 6.10(d) and partitioned into three phases: emergence (red), Hopf (green),
and mixed-mode (black) periods. (b) The rms power spectral density for the time-series in (a). (c¢) High-
pass filtered (fup = 5 Hz, second-order Butterworth) view of firing rate shown in (a). (d) Time-frequency
plot for filtered firing rate shown in (c). The different frequencies are the result of interaction between
Hopf and Turing instabilities.

sine waves which again agrees with predictions of LSA. However the Turing instability interacts
quickly with Hopf oscillations, and reduces the initial frequency down to 20 Hz at ¢ ~ 0.5. This
is the result of a mixed-mode dynamics where temporal and spatial instabilities interact, leading
to strong harmonic components of 40, 60, 80, 100 Hz on spectral graph of Fig. 6.10(d). This
rich spectrum arises from nonlinear interacting dynamics, making the predictions of LSA less
reliable.

To conclude this section, we have studied the different bifurcations of the 1-D WC cortical
rod. Our numerical results confirmed predictions of theoretical analysis of the system regarding
the frequency of spatial and temporal oscillations. We have showed how the spatiotemporal
oscillatory behaviour of the system can be controlled using P and ogp, 1g parameters.

In the following sections we will drive the system toward its different bifurcation points using
the same control parameters. Considering our assumption about the role of different bifurcations
in seizure generation and termination, we will study the subthreshold fluctuations of the 1-D
rod close to different bifurcation types. We will demonstrate that the system undergoes a

critical slowing prior to all four bifurcation types: saddle-node, Hopf, Turing, and Turing—Hopf.

Our detailed examination of pre-bifurcation dynamics consist of theoretical investigations of the
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system using well-stablished stochastic methods, confirmed by stochastic analysis simulations.

6.4 Linearized stochastic differential equations of WC model

In this section I describe how the ordinary differential equations of the WC model can be trans-
formed into stochastic differential equations (SDEs) by adding white-noise perturbations. After
introducing stochasticity, the governing equations will be reformed into a well-known stochastic
process—the two-variable linear Ornstein-Uhlenbeck (OU) process—applying stochastic theory
to its subthreshold fluctuation behaviour, namely its spatial and temporal variances, autocor-
relations and power spectral densities. These theoretical predictions will be compared against
experimentally-obtained quantities based on numerical simulation of the stochastic model.

The set of stochastic differential equations for WC model of cortical column follow:

%E(%t) = B1(E, ¢gE, $1E)
0
af(%t) = By(I, ¢Er, ¢11)
o 2 (6.4.1)
Ak — @) ¢pK(r,t) = Apg E(z,1)
2 0> a2
(AT am2>¢1K(x>t) = Ajg I(2,1)
where
By = 7—51[ - E(x>t) + Sk (bE‘ECZ)EE(xyt) - bIE¢[E($,t) + P) + Clgl({[),t)],
(6.4.2)

By =17 [ = I(2,t) + S1(bp1dpr(z,t) — brrdrr(z,t) + Q) + caa(z,t)]

with two stochastic terms 2, selected to be independent zero-mean Gaussian-distributed 9-

function-correlated spatiotemporal white-noise sources [Steyn-Ross et al., 2003],

(E(x,t)) =0, (Enlz,t)en(a’ 1)) = 6pnd(z — 2")o(t — t') (6.4.3)

where 0,,, is the dimensionless Kronecker delta, §(-) is the dirac delta with a dimensionless

3

total area under its curve, and the (- --) is to be thought of as a “mean of” operator. As a
result the variance term (&, (z,t)&,(2',t')) of Eq. (6.4.3) carries units of 1/(ms-pm). Therefore
each ¢(x,t) noise source has units of 1/,/msum. Considering Eqgs. (6.4.2) the ¢ 2! must carry

units of \/pm/ms. Samples from a zero-mean, unit-variance Gaussian random number generator

1The c1,2 are small constants to ensure that the fluctuations are small.
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(implemented by MATLAB’s randn function) are scaled as

Ry (m,n)

St = rea

(6.4.4)

to approximate an infinite-variance white-noise source &(z, t) in numerical simulations at discrete
position and time coordinates © = mAx, t = nAt. Here Az is the grid spacing or the spatial
resolution of the grid (in pm) and At is the time increment (in ms). To maintain consistency
of units, the R, noise samples are scaled as Eq. (6.4.4). The {(z,t) noises have variance of
0? = (AzAt)™!, with 02 — oo in the continuous limit Az — 0, At — 0. Following a similar

method presented in Section 6.2.1, the linearization of Egs. (6.4.1-6.4.2) results in

o | Ext) | E(z,1)
O\ f(x,t) ERY
0B, A2, OB, 0By, A%
5 5 + 5 5 (6.4.5)
a(ZSEI (AE] +q ) oI 0¢H (AH +4q ) i

(c1/7E)
(c2/71)

(z,1)

gl 3
&(a,t)

We make Eq. (6.4.5) amenable to theoretical analysis by transforming it into a two-variable

Ornstein-Uhlenbeck (OU) system of equations as described by Chaturvedi et al. [1977] and
Gardiner [2004]

g =—A(q) +vD (@) (6.4.6)

where D is a diagonal 2 x 2 diffusion matrix

p_ | @m0 (6.4.7)

0 (c2/1)?

and A is the g-dependent drift matrix of the form

F 0By 9B A}y —0B1 A}y ]
OE  0¢pp (Aip+q2) 0de (A2p+ ¢?)
A(q) = (6.4.8)
~0By _ Agy —0B
i 0¢pr (A% +¢?) or .
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where we have assumed that Aj; = 0, i.e., there is no self-inhibition in the system. The partial

derivatives appearing in A(q) are

0B

87E = —TE < 0

9B _ 1 abpp exp(—a(bpp¢rr — bip¢re + P —0)) -0
oopr ¥ [1+ exp(—a(bpporr — bipdre + P —6)))?

0B _ —abrg exp(—a(bepdrr — bip¢ie + P —0))

S5~ T8 Emax ~ N ——2 <0 (6.4.9)

OIE [1 +exp( a(bEEquE b1E¢1E+P 9))]

0By “1g abpr exp(—a(bpropr — brgrr +Q —0)) 50

)

Oppy LM (14 exp(—a(bprépr — brrdrr +Q — 0))]

0Bs

-1
W:—TI <0

which can be used to compute the g-dependent eigenvalues of the system. Regarding the sign of

the partial derivatives, we simplify the drift matrix A(q), by defining five new positive constants

* B 0B 0B
1 aE7 2 8¢EE7 3 8¢[E
(6.4.10)
"\ O N
4_8¢E[7 5 — oI’

Considering that b;; = 0 and og; = org in our model!, and recalling that A = 1/o, the drift

matrix can be written as

[ az - Afp az-Afp T
a1 —
(A%p +6?) (A7 +4?)
A(q) = (6.4.11)
—ay - A2

24 o a5

L (A +¢°) |

which contains positive constants oy, g, - - -, as>.

Equation (6.4.6) is a two-variable OU process with well-documented stationary statistics. In
the following sections I first derive the theoretical expressions for spatial power spectral density,
autocorrelation and variance of Eq. (6.4.6). Next I will discuss a method showing how the

temporal autocorrelation and variance of the system can be derived.

1See Table 6.1

?Knowing the sign of elements of A simplifies the computation of its space-domain counterpart using inverse
Fourier transform.
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6.4.1 Theoretical expressions for spatial power spectral density, autocorrelation

and variance

The g-dependent 2 x 2 stationary covariance matrix of a two-dimensional system (sometimes
referred to as the zero-time correlation matrix) is defined as [Chaturvedi et al., 1977; Gardiner,

2004]

_ (B(a,0)B(d,t)  (E(@.t)I(d,1) _
G(g,¢) = Jim =2m6(q +¢')G(q) (6.4.12)
(1@, DB D) (I(a,)I(d1)

where the (- ) operator signifies the expected value. Following the stochastic methods described
by Chaturvedi et al. [1977] and Gardiner [2004], the 2 x 2 steady-state Fourier-domain spatial

covariance matrix! G of a system governed by Eq. (6.4.6) is computed as

_ det(A)D + [A — tr(A)IID[A — tr(A)I)T
B 2tr(A)det(A) (6.4.13)

G(q)

in which A is the g-dependent drift matrix, I is the 2 x 2 identity matrix; det(-) and tr(-)

are the determinant and trace operators respectively?. Each element of the G matrix conveys

spatial covariance information about fluctuation behaviour of the system. Namely [G(q)]11

is the spatial power spectral density of the excitatory firing rate E of the system. The inverse

Fourier transform of [G(g)]11 gives the spatial autocorrelation of E fluctuations based on Wiener—

3

Khinchin theorem® as:

[G(2)); = F H{[G(q)]u1} (6.4.14)

Also the area under the curve of power spectrum density function is equal to spatial variance of
the process:
+oo _
spatial var = / [G(q)]11 dg (6.4.15)
—0o0
These different statistical spatial measures, along with similar temporal measures, will be used
extensively in our examination of pre-bifurcation dynamics of the WC system in the rest of the

current current chapter.

The G(q) matrix can also be interpreted as the spatial power spectrum of the system.

>The G(g) has units of [E]? x [z] where E is the excitatory firing rate in (ms) ™' and  is the space variable,
and the [- - -] should be thought as “units of” operator. In our case [G(g)] =pm/(ms)?.

3Wiener-Khinchin theorem: The power spectrum density and the covariance functions are Fourier duals of

each other [Chatfield, 2013].
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We attempt to extract an analytical form for z-dependent spatial autocorrelation of excita-
tory firing rate [G(x)]1; using Eq. (6.4.14) in a similar approach as employed in Steyn-Ross et
al. [2003]. By expanding Eq. (6.4.13) we obtain

_ _ Dll _ i _ A~%2D11~+ %%2D22~ ~
11 2(A11+Ag)  2(A11+ Ax)(A11A%%n — ApAg) (6.4.16)

G(9)]

where all quantities are evaluated at steady state. Before transforming the [G(q)]11 to the space
domain, some algebraic manipulations are carried out on Eq. (6.4.16). Note that all elements of
A matrix except [A] 99 are g-dependent. Replacing the elements of A by their equivalent from

(6.4.11), the spatial power spectral density of E neurons [G(q)]11 can be written as

= D1y
G, = ; +
11 oy - A2,
2o — T 9 Tas
App+q
) ( o )2 (6.4.17)
azDi1 + | 5——= | D22
Afp +¢°
g - AQEE a0y - AQEE 30y - A%E
2l — 55— +a5)(o1as —
( Ve TN T e Y )
By defining a new variable! as
Q= A2+ ¢ (6.4.18)
the expression for [G(g)]11 can be re written as a function of Q
= D1y
{G(q)]n - 2 +
a9 - AEE
2 (Oq - D) D) + Ck5>
Q—-Ap+Agp
2 (6.4.19)
2 a3
azD11 + (> Do
° Q
as - Agg QQCVSA]QEE CV3044A%E
2| a1 — + Oé5> <a1a5 — +
< Q- Afp+A%p Q — Afp +A%p (Q)*

!This new definition reduces the order of the equation.
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After some algebraic manipulations we find

[G(Q)} _ Dll(Q - A%E + A%?E)
o2 ((041 +a) - (Q—Afg+ Ayp) —as - A%E)

l (a3D11Q* + Apa3Doy)(Q — Afp + A%EV]

(01 +05)(Q — A3y + A% ) — aahYy, (6.4.20)

1
[(Q — Afp + Afp)(a100Q? + Ajpasay) — A%EO‘Q%QQ]

Unfortunately, attempts to find analytically the inverse Fourier transform of Eq. (6.4.20) fail,
despite the simplifications and algebraic manipulations made on [G(g)]11. The reason is that
partial fraction decomposition cannot be used here to facilitate the inverse Fourier transforma-
tion of the Eq. (6.4.20) because of the cubic polynomial in the denominator of the second term.
As a result a general theoretical formula cannot be extracted for the spatial autocorrelation
function.! However, the numerical value of the inverse Fourier transform can be found straight-
forwardly if all parameters are replaced by their numerical values, and this is the approach used

in this chapter (e.g., see Figs. 6.17(d-f), 6.21(g-1)).

6.4.2 Theoretical expressions for temporal autocorrelation and variance

Following Chaturvedi et al. [1977] and Gardiner [2004], one can express the 2 x 2 steady-state
correlation matrix T exactly as the product of matrix exponential exp(—A(g)-7) with covariance

matrix G(q):

T(q,7) = exp(~A(q) - 7)G(g), 7>0 (6.4.21)

with symmetry property T(q, —7) = [T(q, 7)]*. The [T(g,7)]11 element of T(g, 7) matrix gives
the theoretical expression for ¢ and 7 dependent autocorrelation function. We set the parameters
of the model to bring the state of the system to the proximity of Hopf bifurcation and plot the

scaled form of [T(q, 7)]11 function in Fig. 6.12 defined as:

Ts(g,7) = T(g, )/t (6.4.22)

In addition to standard tables of Fourier transform pairs, I tried Mathematica software package in an attempt

to find an analytical expression for the inverse Fourier transform of [G(q)]i1-
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Figure 6.12: Theoretical 7 and ¢ dependent one-sided autocorrelation of E variable in linear regime, before
emergence of Hopf instability. (a) The scaled autocorrelation of E variable as described by Eqgs.(6.4.21),
(6.4.22). Scaling is performed by dividing the autocorrelation values by noise intensity. Each temporal
slice of this function is integrated over g-space to produce the temporal autocorrelation at the corre-
sponding lag times. (b) Same scaled autocorrelation function plotted in 2-D. The vertical white stripe
around 7 = 0 ms in this diagram shows considerable contributions of higher wave-numbers ¢ for small 7
values. The external excitatory input voltage is P = 2.2416 mV.

where ¢, is the amplitude of white noises introduced previously in Eqgs. (6.4.2)!. The noise-
induced oscillations in both 7 and g domains are evident. To obtain numerical estimates for
the theoretical temporal autocorrelation of the system at selected 7 values, we integrate the T
function along ¢ dimension for selected T values. More specifically we calculate the theoretical

temporal autocorrelation at different 7 values as:

gmax _
/ T(q, 7 = 0) dg = C(0),
0

dmax _
[ Far =) da = c(m),

. (6.4.23)
/O T(g,7 = ) dg = C(m),

to produce the temporal autocorrelation function C(7). Note that the theoretical temporal
variance of the system can also be calculated: it is equal to the value of temporal autocorrelation
at 7 =0 ms as:

var{E} = C(0) (6.4.24)

After introduction of the required theoretical tools to investigate spatiotemporal dynamics

of the system, we are ready to perform a detailed examination of the WC model prior to its

'The ¢; coefficient is used for normalization since the [T(g, 7)] is the autocorrelation of the F time-series. One
can use cz to normalize the autocorrelation of the I time series.
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bifurcation thresholds, both theoretically and numerically.

6.5 Spatiotemporal slowing down in noise-driven WC model

This section contains the theoretical and numerical examination of the 1D WC model prior to
onset of different bifurcation types; we are looking for signs of critical slowing of fluctuations
statistics. When the bifurcation type is Hopf or saddle-node, slowing down will be a temporal
phenomenon captured by increased temporal variance, larger and wider temporal autocorrela-
tions, and larger values of power spectral density at certain temporal frequencies. When there
is a possibility of emergence of Turing pattern, the slowing down manifests as increased spa-
tial variance, a larger and wider spatial autocorrelation function, and increased power spectral
density at certain spatial frequencies. As we saw in the previous section, the 1D WC model is
capable of producing mixed-mode oscillations in which the slowing down will be a spatiotempo-
ral phenomenon. In the following sections I will use appropriate spatial and temporal measures
(both theoretical and numerical) to examine network dynamics prior to four bifurcation classes

that lead to state changes in the model.

6.5.1 Temporal dynamics prior to Hopf instability

The temporal autocorrelation function is a proper tool to study the temporal dynamics of the
system prior to Hopf bifurcation. In Section 6.4.2, we discussed how one could compute the
theoretical temporal autocorrelation of the WC model. We use the same integration method
here to express the theoretical temporal autocorrelation, and normalize its value to make it
independent of applied white-noise intensity as defined in Eq. (6.4.22). The ¢ and 7 dependent
autocorrelation function was previously shown in Fig. 6.12. In order to make the theoretical
predictions comparable with numerical results, we build a theoretical g vector based on spatial
characteristics of 1-D network. By considering the properties of Fourier transform and keeping
the Nyquist theorem in mind, one can determine the maximum spatial frequency gumq, and the

spacing in ¢ domain Agq as
number of grid points
length of network (6.5.1)

Qmax -

or equivalently

Jmax = A (6.5.2)
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Figure 6.13: Demonstration of linear stability analysis of 1-D Wilson—Cowan model approaching Hopf
instability. (a) Steady-state diagram of excitatory E variable as a function of excitatory external input
P. The stable and unstable states are indicated by black and red color respectively. The Hopf bifurcation
(HB) point is indicated by an open circle and the arrow expresses the approach to HB point by reducing
the P value. The noise-induced dynamics of the system will be examined in three steady-state points as
indicated by three vertical lines. See the legend of (b) for corresponding P values. (b) The dispersion
curve of the system at three selected states close to HB threshold. For each P value the real part of
dominant eigenvalue (« curves) and the scaled part of imaginary part (w/2m curves) are plotted as a
function of spatial frequency or wave number (¢/27). The upward arrow displays how steady state
approaches the HB bifurcation.

where Ax is the spatial resolution of the 1-D network. The spacing in ¢ domain is

Ay — 1
= length of network (6.5.3)

By considering Fig.6.12(b) in which the colour map has been manipulated for display purposes?,

one can see the significant contributions from higher ¢ values in the autocorrelation at small
time lags.

The steady state distribution for the 1-D WC model is plotted again in Fig. 6.13(a) for
convenience showing that the system undergoes Hopf bifurcation at Popr = 2.1971513755 mV
indicated by an open circle. We perform three experiments where the system’s stable state is
driven towards a Hopf bifurcation. This is accomplished by decreasing the excitatory exogenous
input P down to Pyoepr. The three corresponding dispersion curves are plotted in Fig. 6.13(b)
showing the approach to the Hopf instability. The frequency of temporal oscillations is theoret-
ically predicted and displayed by the value of w/27 curves at ¢ = 0:

f ~0.045 x 1000 = 45 Hz (6.5.4)

Following the theoretical methods discussed in Section 6.4.2, the theoretical trend of temporal

variance of F firing rates is extracted from the value of T(7) function at its origin?. Figure 6.14

T manipulated the default colour map by shrinking it to a smaller range. This is helpful in terms of adding
more details to the regions of the image with ¢ > 0.01 1/pm.

2The temporal variance can also be directly calculated from the value of G(q, 7)11 function at the origin. Note
that the spatial variance at (¢ = 0,7 = 0) will be equal to the temporal variance.
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Figure 6.14: Theoretically predicted temporal variance of 1D WC model approaching Hopf instability.
The theoretical variance is equal to the values of either G(g,7)1; or C(7) functions at their origin. The
diagram shows the variances vs € in a loglog graph where € is a measure of distance from threshold of
Hopf instability. The direction of approach to threshold is indicated by leftward arrow. As the system
moves towards threshold, a dramatic increase in the variance of E time-series is observed. A line of
slope —1 is superimposed on the graph indicating the slope of —1 for a middle range of € values in
agreement with the behaviour of homogeneous WC model studied in Chapter 5. The three points a =
(—0.9675,—3.5934),b = (—1.3946, 3.5686), c = (—3.2454, —3.3979) indicated by star symbols correspond
to numerically obtained temporal variances whose detailed analysis is shown in Fig. 6.15.

displays the theoretical temporal variance in E fluctuations of the WC system with the arrow
indicating the system’s approach toward the threshold of Hopf instability. The variance is plotted
as a function of €, on a log-log graph; € is a measure of the distance of control parameter (P)

from Hopf threshold:
6 = ———Topt (6.5.5)

A line of slope —1 is superimposed on the theoretical trend showing a power-law growth for
variance of white-noise-induced fluctuations prior to Hopf bifurcation. This is consistent with the
asymptotic variance trend for the WC model of spatially-homogeneous cortical tissue (as shown
in Chapter 5), and with the point-neuron model of a Wilson resonator studied in Steyn-Ross et

al. [2006],
var{E} ~ 1/e (6.5.6)

We see power-law behaviour for 10719 < ¢ < 10*. The saturated behaviour observed for
€ < 10719 is spurious and due to numerical limitations.

The result of numerical simulations of the 1D network are plotted in Fig. 6.15(a-c) as time-
space graphs for the 1-D cortical rod. We see emergence of temporal oscillations as a vertical
striped pattern whose contrast becomes amplified on approach to the Hopf point. See Appendix
C.4 for a MATLAB code capable of reproducing Figs. 6.15(a-c).
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Figure 6.15: Growth of correlated fluctuations close to Hopf instability. (a-c) Time-space plots of E of 1-
D WC model obtained using numerical simulation. A fixed-step Euler method (At = 0.005 ms) is used to
numerically update the equations. The length of 1D network is L = 1.005 mm, with spatial resolution of
Az = 1.5 pm. By decreasing the external excitatory voltage P, the system is driven toward the threshold
of Hopf bifurcation. In the vicinity of Hopf bifurcation, the white-noise induced perturbations result in
temporal oscillation as evident by vertical striped pattern in the graphs. (d-f) The corresponding scaled
theoretical and experimental temporal autocorrelation (tACC) functions. The scaled tACC is obtained
by dividing tACC value by noise intensity. The theoretical tACC (red) is obtained using Eqs. (6.4.23).
The experimental tACC is computed as the average of tACCs (thin grey traces) corresponding to 100
individual elements of the network evenly distributed along the cortical rod.

To extract the numerical autocorrelation trend, we calculate the normalized autocorrelation
function of 670 grid points of the network using MATLAB’s xcorr function (some are plotted
as thin grey trends in Fig. 6.15 (d-e)), and report their average value as the corresponding
experimental autocorrelation (thick black curve). We superimpose the theoretical temporal
autocorrelation C(7) (thick red). Good agreement between the theoretical and experimental
results is obtained for these pre-Hopf experiments. The approach to the Hopf threshold (from
left to right in Fig. 6.15), is accompanied with an increase in the temporal variance as evident
from the value of autocorrelation functions at 7 = 0 ms. However a significant increase in the
amplitude of the side lobes of autoccorrelation function is observed prior to Hopf bifurcation as
a sign of slowing down.

I found that extracting the experimental variance trend is very challenging for small € values.
This is because of the extreme sensitivity of the system to any perturbation (including the applied
white noise, or the round-off error of numerical method), and the need for very small time steps

to update the stochastic differential equations using a fixed-step Euler integrator.
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6.5.2 Approaching saddle-node annihilation

The saddle-node bifurcation occurs when the stable bottom branch and unstable mid-branch
steady states collide and annihilate at P = 1.7892426576 mV as shown in Fig. 6.16(a). Three
dispersion curves with corresponding P values are plotted in Fig. 6.16(b). Increasing P shifts
the « dispersion curve upward (indicated by vertical arrow), while it is always monotonic and
negative. Note that the w/27 curves are always equal to zero as expected of a stable node.

Numerical simulations of the stochastic equations using a fixed-step Euler integrator with
At = 0.1 ms results in the time-space graphs displayed in Fig. 6.17(a-c). The length of 1D
network is L = 3000 pm, with spatial resolution of Ax = 1.5 pm. A visual inspection of
these numerical results reveals emergence of a dynamical pattern in the form of low frequency
(asymptotically with zero frequency) fluctuations both in time and space; these become more
strongly developed on close approach to the SN.

Some statistical measures can be used to quantify the pattern formation. We extract the
spatial autocorrelations of excitatory firing rate of entire 1-D rod at 2000 selected instants
(evenly spread between 0 and 10 s) and report their average value as the experimental spa-
tial autocorrelation of the network. The theoretical spatial autocorrelation is calculated using
the inverse Fourier transform of G(¢)11 function. The results are plotted as one-sided spatial
autocorrelations in Fig. 6.17(d-f).

The theoretical (red) and experimental autocorrelations are in good agreement, with both
exhibiting fast and slow decay rates. The approach to SN (d to f) is accompanied with a
significant increase in the slow decay times of the system. A slight increase in the variance
of the system (equal to the value of autocorrelation function at the origin) is also evident. A
significant increase would be expected in the very near vicinity of the threshold. However,

such experiments are very challenging due to the need for very long numerical simulations.
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Figure 6.16: Linear stability analysis of 1-D Wilson—Cowan model approaching a saddle-node (SN) an-
nihilation. (a) The steady state diagram is plotted again here with the arrow indicating the approach
toward SN. (b) The dispersion curves of three steady-state points corresponding to three different P
values. The real part of dominant eigenvalue « (blue) is always negative indicating a stable point, while
the scaled imaginary part w/2m (red) is always zero, characteristic of a stable node. By increasing P the
a curves moves upward approaching the threshold of saddle-node instability. (¢) The selected P voltages
and corresponding « values indicating approach to SN threshold.
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Figure 6.17: Slowing down in space and time in a 1-D Wilson—-Cowan model prior to saddle-node anni-
hilation. (a—c) The numerically obtained space-time diagram of the model approaching the threshold of
saddle-node (SN) annihilation which happens at P ~ 1.7892426576 mV (see Fig. 6.3). By approaching the
SN, a spatiotemporal low frequency pattern emerges due to continuously applied white noises to elements
of the network. A fixed-step Euler method with time steps of At = 0.1 ms is used to numerically update
the model equations. (d—f) The experimental (black) and theoretical (red) spatial autocorrelations of F
variable corresponding to experiments (a—c). The experimental curve is extracted as the average of 2000
individual spatial autocorrelations of entire 1-D network, captured in evenly distributed instants from
t =0 tot=10s. Some of these individual autocorrelations are superimposed in the figures (thin grey
traces). The theoretical autocorrelation is extracted based on the inverse Fourier transform of [G(q)]11
function as described by Eq. (6.4.14). (g-i) The corresponding experimental (black) and theoretical (red)
temporal autocorrelations. The experimental autocorrelation is the average of temporal autocorrelations
obtained from 300 elements evenly distributed on the length of the cortical rod. I used the approach
described in Section 6.4.2 to obtain the theoretical temporal autocorrelations. The temporal autocor-
relations are displayed in two scales for each case. (The autocorrelations have been normalized by the
intensity of applied white noise.)
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The corresponding experimental and theoretical temporal autocorrelations are also displayed
in Fig. 6.17(g-1) with two scales for each case. Driving the system towards the SN threshold
(as moving from left to right panels in the figure) results in widening of the autocorrelation,
appearance of side lobes and a slight increase in the autocorrelation amplitude in the origin.
One should note the agreement between theoretical predictions and numerical results for the
temporal autocorrelation. Considering the fact that the amplitude of both temporal and spatial
autocorrelations at the origin are equal to the variance of the system, an excellent agreement
has been achieved between the middle and bottom panels in the figure in terms of the variance

value.

6.5.3 Approaching Turing threshold

We performed a series of experiments on the 1-D WC model while driving the system toward the
threshold of spatial instability induced by formation of a Turing pattern. We set the excitatory
stimulus voltage to a fixed value of P = 1.74 mV as indicated by star symbol on the steady state
digram in Fig. 6.18(a). This choice of P sets the elements of the network on the stable part of the
top branch where the type of steady state is stable focus. The dispersion curves of the system
for different inhibitory space constant values ogy 1 are plotted in Fig. 6.18(b). The « curve has
a peak in ¢ # 0 with a negative value, indicative of proximity to a Turing bifurcation. We drive
the system toward the threshold by increasing the ogy g values. See table in Fig. 6.18(c) for
values of the parameters; the last column of the table displays the expected spatial frequency
of the waves. Comparing the values at the two peaks of the a curves, one notices that between
Hopf and Turing instabilities, the Turing is expected to be dominant.

I performed a series of three experiments corresponding to three selected ogrr values

as shown in Fig. 6.18(c). The results are displayed in Fig. 6.19(a-c). See Appendix C.4 for
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Figure 6.18: Demonstration of approach to Turing instability in 1-D Wilson—-Cowan model. (a) Steady-
state diagram of the model is plotted again for convenience. We set P = 1.74 mV to fix the state of
the system at the stable values F = 0.078, I = 0.082 (ms)~'. (b) The dispersion curves of the system
showing the real part « (blue) and scaled imaginary part w/2m (red) of dominant eigenvalue of the system
at P = 1.74 mV. By increasing the inhibitory space constants og; ;g as indicated by upward arrow, the
peak of « curve approaches zero at ¢ # 0. (¢) The values of inhibitory space constants and the resultant
peak values of dominant eigenvalue with corresponding wave numbers.
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Figure 6.19: Theoretical and numerical demonstration of critical growth of spatial fluctuations prior to
Turing instability in 1-D Wilson—Cowan model. (a—c) Spatiotemporal evolution of E variable of 1-D
network on approach to Turing instability. The 1-D rod is set to a stable steady state as demonstrated in
Fig. 6.18(a). Although the system is in a stable state, the proximity to spatial threshold of instability (see
Fig. 6.18(b)) is responsible for emergence of white-noise induced spatial oscillations. A fixed-step Euler
integrator with time steps of At = 0.005 ms is used for numerical simulation. The spatial spectral analysis
of 1-D network approaching Turing instability is displayed in (d—f). The scaled average experimental
spectrum (black) is obtained through averaging the spatial spectrum of 1-D network at 10000 distinct
instants (some shown in thin grey). The scaled theoretical spatial spectrum (red) is superimposed on the
graphs for comparison.

MATLAB implementation of numerical simulation. The spatial oscillations are evident as hori-
zontal stripped patterns which strengthen with increasing ogr ;g. To quantify observed spatial
dynamics, we extracted the spatial power spectral density; see Fig. 6.19(d-f). The theoretical
PSD (red) is computed using [G(q)]11 function. The experimental PSD (black) is obtained via
averaging individual spatial PSDs (thin grey). The individual PSD’s are calculated from the F
values of entire 1D network at 10000 instants evenly distributed between t =0 and t = 5 s.
Very good agreement between theoretical and experimental PSDs is observed in these results.

We note that the approach to the threshold of Turing instability is accompanied by significant

increases in the peak value of spatial PSDs.

6.5.4 Approaching Turing-Hopf interaction instability

Here I inspect the behaviour of the 1-D WC network near emergence of mixed-mode Turing-
Hopf instabilities. The parameter values of the system (except P and ogy ) are displayed in

Table 6.1. In order to set the system near mixed-mode instability, the state of the system should
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Figure 6.20: Linear stability analysis of 1-D Wilson—Cowan model approaching mixed-mode Turing-Hopf
instability. (a) Steady-state diagram of the system is plotted again for convenience, displaying three (I
to III) settings for P to drive the state of the system toward Hopf bifurcation at P = 2.1971513755 mV.
(b) Dispersion curves at three different parameter settings. By changing the inhibitory space constants
ogr1,0rE the system is kept in the proximity of Turing instability as well. The blue curves are the real
part of the dominant eigenvalue « of steady state F; the red curves are the imaginary part w of the same
dominant eigenvalue divided by 27. Frequency of the spatial Turing oscillations are predicted by the
value of x axis at local maximum of & curves. Temporal Hopf frequency is predicted by the value of w/27
curve at origin. (c) The values of two bifurcation parameters (P and ogr,rg) used to drive the system
toward the threshold of Hopf-Turing instability. The two last columns show the spatial and temporal
frequency of oscillations.

approach simultaneously both Hopf and Turing instability thresholds. Excitatory external input
(P) can be adjusted to push the system towards Hopf bifurcation. We select three P values
(indicated by I — I1I in Fig. 6.20(a)) to move toward the Hopf threshold. For each P value,
we adjust the op;, 1g parameter in order to simultaneously move the system toward Turing
instability. See the resultant dispersion curves and the value of parameters in Fig. 6.20(b, c).
The dispersion curves indicate the temporal and spatial frequency of noise-induced subthreshold
oscillations of the system. These frequencies are displayed as two last columns of the table in
Fig. 6.20(c).

We performed a series of three numerical simulations corresponding to the parameter settings
shown in Fig. 6.20(c). The results are displayed as time-space plots in Fig. 6.21(a-c): we see
emergence of spatiotemporal patterns in response to white-noise stimulation. This pattern is
composed of mixed vertical and horizontal stripes as a result of proximity to Hopf and Turing
bifurcations respectively.

An analysis of spatial characteristics of the network is performed and the results are displayed
as the normalized spatial power spectral density (sPSD) plots in Fig. 6.21(d-f). The normalized
theoretical sPSD is calculated using the corresponding [é(q)]u function, and is plotted in red
showing two peaks at ¢ = 0 and ¢ = 2.642,2.642,2.6100 waves/mm for three experiments. We
calculated the spatial PSD of the numerically simulated 1D network at 10000 individual instants
(evenly distributed between ¢ = 0 and ¢ = 0.5 s) and normalize them by the spatial PSD of
applied white noise. Some of individual PSDs are displayed as thin grey trends. The average
of all individual PSDs is plotted as thick black trend showing a reasonable agreement with
theoretical predictions. A significant increase in the spatial PSD is observed as the system is

driven toward the instability threshold.
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Figure 6.21: (a-c) Colour-coded plots of spatiotemporal evolution of the 1-D WC network. The white-
noise induced oscillations in time and space emerge by approaching threshold of mixed-mode instability. A
fixed-step Euler method (At = 0.005 ms) is used to numerically solve the stochastic differential equations
of the network with domain length of L = 6 mm and spatial resolution of Az = 1.5 ym. (d-f) Normalized
spatial power spectral density (PSD). The average PSD (black) is extracted by averaging individual spatial
PSD curves corresponding to 10000 distinct instants captured at every 0.05 ms (some are shown in thin
grey). The scaled theoretical spatial spectrum (red) is superimposed on the graphs for comparison. (g-i)
The scaled temporal autocorrelation functions. The theoretical trend (red) calculated using Egs. (6.4.23)
and scaled by the intensity of applied white noise. The individual experimental autocorrelations (some
of them displayed as thin grey trends) obtained from related time-series of 400 individual elements of the
network evenly distributed along the 1-D network. Scaled experimental temporal autocorrelation (black)
is the average of 400 individual scaled experimental autocorrelations.

We perform a temporal investigation of the system by calculating the theoretical and exper-
imental temporal autocorrelation (tACC) functions. The results are displayed in Fig. 6.21(g-i),
showing the scaled theoretical and experimental tACCs in red and black respectively. The
theoretical tACCs are computed using an approach described by Egs. (6.4.23) and the experi-
mental tACCs are computed as the average of numerically obtained time series of 400 individual

excitatory neural elements evenly distributed along the entire 1D rod.
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Figure 6.22: The normalized steady-state ¢ and 7 dependent autocorrelation of E variable Ts(q, T) as
described by Eq. (6.4.21). (a-c) The T4(g, ) function as the 1-D WC system approaches the threshold
of Hopf-Turing instability, corresponding to three experiments displayed in Figs. 6.20 and 6.21. The
Turing instability induces a regional increase of correlation function at ¢ ~ 2.6 waves/um, while the
Hopf instability induces an oscillatory behavior at small ¢ values. The interaction of Turing and Hopf
instabilities is evident in all diagrams.

A significant increase in the amplitude of side-lobes of tACC functions is evident while
approaching the threshold of mixed-mode instability (from (g) to (i)). The emerged temporal
frequency in (i) is in agreement with the one stated in Fig. 6.20(c) for experiment I71. Figures (d)
to (i) show a reasonable agreement between theoretical and experimental results, namely in terms
of the values of spatial or temporal frequencies. However a discrepancy between the results is
observed in Fig. 6.21(f, i) where the state is very close to the threshold of mixed-mode oscillations.
Although the observed mismatch can be improved by increasing the size of cortical rod and the
duration of simulation, one should not expect to eliminate the discrepancy completely. This is
because the linear OU theory cannot expect to capture the nonlinear interactions between Hopf
and Turing instabilities.

A plot of the corresponding T(g,t) autocorrelation functions as described by Eq. (6.4.21)
is displayed in Fig. 6.22. One can observe the interaction of Turing and Hopf instabilities in
these graphs. The slowing down phenomena are also observable in these graphs as indicated
by very weak decays of Turing-induced regional peak at ¢ ~ 2.6 waves/mm and Hopf-generated

oscillatory region for small ¢ values.

6.6 Chapter summary

By introducing a spatial dimension, the Wilson-Cowan model of spatially homogeneous neural
mass model was extended to a one-dimensional neural mass model in this chapter. The cou-
pling strengths between E and I are no longer constants, but are now a decaying functions of
distance between populations. Inclusion of space introduces excitatory and inhibitory fluxes as
new variables to the system. We demonstrated that the fluxes obey the diffusion equations,
giving a rich dynamics to the system. The analysis of the system started with determination

of the homogeneous steady-states; these describe the time-and-space-independent response of
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the system. The resulting steady-state diagram was slightly different from the one obtained for
homogeneous model in previous chapter. The dissimilarity was due to some modifications in
the value of model parameters (namely external excitatory voltage P and maximum inhibitory
synaptic coupling strength bgr, byp). These changes were needed in order to allow the possibility
of spatial instabilities.

The steady-state analysis revealed two temporal bifurcations of the system: saddle-node
(SN) and Hopf (HB) bifurcations. Using linear stability analysis we derived the g-dependent
stability matrix of the linearized system. The behaviour of ¢g-dependent dominant eigenvalues of
the stability matrix is displayed by dispersion curves, predicting spatial behaviour of the system
for different wave numbers. The possibility of Turing and mixed-mode Turing—Hopf instabilities
was demonstrated. In the next step the zero-mean infinite-variance white-noise fluctuations
were added to the E and I populations. The inclusion of white-noise transformed the model
equations to stochastic differential equations. We presented the Ornstein-Uhlenbeck (OU) form
of the stochastic model. Formal stochastic methods for the OU process were employed to derive
analytical forms of some temporal and spectral characteristics of the Wilson—Cowan model,
namely the variance, autocorrelation and power spectral density functions in time and space
domains.

At this stage I was ready to pursue the main aim of the chapter; viz, looking for spatial and
temporal evidence of critical slowing down prior to different bifurcation types in the Wilson—
Cowan cortical rod. Four individual experiments were designed and carried out in which the
system was driven towards one of the four possible bifurcations: Hopf, saddle-node, Turing, and
Turing—Hopf. The dynamical behaviour of the system was investigated based on:

o spatial and temporal analysis of numerically obtained system responses

o theoretical predictions regarding behaviour of the system
while approaching the bifurcation points. Supported by the results of both approaches, we
found clear symptoms of critical slowing down in time and space domains. More specifically we
found that the variance, autocorrelation and power spectral density of E fluctuations grow in
time and/or space before occurrence of phase transitions. These results are in good agreement
with previously reported experimental and theoretical signs of critical slowing down in different
biological, environmental and financial systems. This work shows that how the rich dynamics of
Wilson—Cowan model of cortical rod provides a unique platform to investigate the subthreshold
dynamics prior to distinct classes of bifurcations.

The theoretical and modelling investigations of this thesis is terminated here. Based on this

theoretical background, I now describe how I attempted to observe experimental signs of critical
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slowing down in slices of neural tissue extracted from cortical and hippocampal regions of mouse

brain.






Chapter 7

Neural Dynamics in Mouse Brain Slices

A detailed study of neural models across different scales was presented in previous chapters of this
thesis with an emphasis on the instabilities underlying state transitions. Using mathematical
models I examined the subthreshold behaviour of neural systems prior to bifurcation points,
where a sudden qualitative change of dynamical behaviour can occur.

Modelling results showed critical slowing down in the response to small perturbations, mean-
ing that it takes increasingly longer for the system to recover its steady state. This increased
sensitivity is manifest as increased fluctuation variance and correlation time, with increased
fluctuation power at certain frequencies.

Ideally such theoretical predictions should be validated by relevant neurobiological experi-
ments. This chapter demonstrates a series of in wvitro experiments designed to seek empirical
evidence for slowing-down phenomena prior to an impending state transitions.

The highly challenging nature of capturing early warning signals in real physical systems is
consistent with the very small number of research reports in this field. Most of the empirical
work has been done on lake ecology [Carpenter et al., 2011], climate systems [Dakos et al., 2008],
social and financial transformations [Richter and Dakos, 2014], and recently on interconnected
yeast populations [Dai et al., 2013], dielectric fluids [Zhang and Zahn, 2014], cancer studies
[Korolev et al., 2014], percolation systems [Chen et al., 2014], and human depression [van de
Leemput et al., 2014]. To my knowledge, only one study' has reported slowing down as an early
warning signal before qualitative transitions in biological neural systems, in spite of its potential
significance.

This chapter describes some experimental procedures employed to study subthreshold dy-
namical behaviour of cortical and hippocampal mouse brain slices prior to seizure initiation.
Some successful observations of early warning signs prior to seizure onset are reported. At the
end of the chapter a neural probing experiment is presented in which signs of critical slowing

are captured using an active stimulation-based method.

"Wilson et al. [2008] looked at critical slowing down on leadup to an up state in slow-wave oscillations, in vivo.
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7.1 Zero-Magnesium seizure-like events, an in vitro model of
epileptic seizure

My motivation in studying epileptic seizures comes from the fact that epileptic seizures

e are one of the most common pathological transformers of normal neural activity, and

e represent a neurological phase transition.

The possibility of seizure prediction is of significance both for neuroscientists and for people
suffering from epilepsy. In this chapter I study zero-Magnesium (zero-Mg) seizure-like events
(SLEs) in cortico-hippocampal slices of the mouse brain in search of signs of seizure precursor.

The SLEs generated in slices of brain tissue have been used as an in vitro model of human
seizure for a long time [Anderson et al., 1986; Swartzwelder et al., 1988; Tsau et al., 1998|.
Although in vitro models of epilepsy cannot exhibit motor and behavioural responses during
seizure, a considerable advantage is that the temperature and constituents of the extracellular
environment can be precisely controlled in these models in contrast to the in vivo case. SLEs
can be induced by various pharmacological manipulations of the neural tissue. A common
method is to remove the Mg?* ions from the artificial cerebrospinal fluid (aCSF) used to keep
the tissue alive in vitro. Elimination of extracellular Mg?* activates excitatory N-methyl-D-
aspartate (NMDA) ion channels. This results in a higher propensity for the tissue to produce
recurrent excitatory currents which can result in the generation of SLEs. Another excitatory
agent is carbachol' which activates muscarinic acetylcholine receptors and, via a G-protein-
coupled mechanism, blocks potassium channels. This causes cell depolarization and excitation.
I used a 100 mM solution of carbachol in most of my experiments to further promote seizure
activity in brain slices which are already perfused with zero-Mg solution.

SLEs can be generated in both hippocampal and cortical tissue. Although many in wvitro
epileptogenesis studies are conducted on hippocampal SLEs?, cortical SLEs have been inves-
tigated in Electrophysiology Laboratory of University of Waikatofrom 2009 [Voss et al., 2009,
2010; Jacobson et al., 2010; Voss et al., 2012, 2013, 2014].

One main difference between cortical and hippocampal tissue is that the hippocampus can
generate very long seizure-like events compared to the cortex (lasting for minutes rather than
seconds). This may be due to the special structural arrangement of the excitatory and in-
hibitory neurons within the hippocampus [Traub and Miles, 1991; Andersen et al., 2006]. These
hippocampal structures are composed of recurrent neural networks which produce longer and

larger SLEs with greater morphological complexity.

!Carbachol binds and activates the acetylcholine receptor. This drug can be used to alter the excitation level
of the cortical tissue [Voss et al., 2012].
2Tt is believed that the majority of partial seizures originate in hippocampus [Loscher, 1997].



7.2 Methods 141

Figure 7.1: Coronal mouse brain slices containing both cortical and hippocampal parts. See Section 7.2.1
for details of slice preparation.

Most hippocampal SLE experiments are carried out on rat hippocampal slices after extrac-
tion and isolation of the hippocampus and preparation of 400-pm slices [Andersen et al., 1980;
Whittington et al., 1995]. Although it is possible to prepare mouse hippocampal slices using
similar methods, due to its smaller size, the tissue is more easily damaged during the preparation
process.

To overcome the size and fragility issues in hippocampal extraction and slice preparation
from the mouse brain, an alternative method is employed in this thesis. Examination of coronal
cortical slices shows that occipital slices (belonging to the occipital lobe of the brain, which lies
underneath the occipital bone) contain hippocampal regions. Figure 7.1 displays sample coronal
slices that contain both cortical and hippocampal parts. Using these slices makes it possible to
record simultaneous cortical and hippocampal SLEs from mouse brain slices without the need

for isolation of the hippocampus.

7.2 Methods

This section describes the methods employed in these experiments. Some modifications to the
standard methods for acquiring local field potential (LFP) activity were needed in order to
capture signs of slowing down. These included

o careful optimisation of electrode configurations and grounding systems. As a result, the

need for notch and high-pass filtering was eliminated, giving the possibility of DC mode
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recording. This resulted in LFP signals containing DC and very low frequency components,
thought most likely to contain the critical slowing down (CSD) signatures;

o very slow changes in the composition of aCSF. This slow modulation of aCSF was found to
be essential in order to approach gradually the brink of seizure generation, which is crossed
too abruptly if the increment in the seizure-inducing (or bifurcation control) parameter is

uncontrolled.

I also performed simultaneous hippocampal and cortical recordings from which it became clear
that stronger and more developed SLEs could be recorded from the hippocampus, compared
to the cortex, thus increasing the likelihood of capturing signs of slowing-down. The details of
slice preparation are discussed in the following section, then the electrical recording protocol is

presented.

7.2.1 Animal and slice preparation

Standard solutions are prepared according to Nowak and Bullier [1996] and Voss et al. [2013]
as needed, and are discarded after five days. These solutions are similar to the cerebrospinal
fluid and keep the slices in a functioning condition for hours. They also act as a medium for

delivering different drugs to the tissue. There are three standard solutions:

o DBrain extract
o Normal artificial cerebrospinal fluid (aCSF)
e Zero-Mg aCSF

See Table 7.1 for the composition of the fluids. All fluids were bubbled with a mixture of 5%
carbon dioxide and 95% oxygen gas (carbogen) for at least 20 min before use. The oxygen is
needed for cell metabolism and the carbon dioxide buffers the pH of the solution.

After obtaining approval from the Waikato Animal Ethics Committee, 35 wild-type mice,
15-45 days old were used for the study regardless of their sex. A deep level of CO5 anaesthesia
was induced in the animal via delivery of carbon dioxide for 10 s. The responsiveness of animal
was examined using the paw-pinch test. When irresponsive, decapitation was performed quickly,
and the whole brain (excluding the brainstem) extracted in 3-4 minutes.

The extracted brain was transferred directly to ice-cooled brain-extract solution. Using a
razor blade, the frontal and some part of occipital regions of the brain were cut away, and
the brain glued to the base of the vibratome, which is used for slicing the brain tissue. The
fixed brain was transferred to the holder of the vibratome containing ice-cooled carbogenated
brain-extract solution. About 6-10 coronal slices of width 400 pm were cut from the brain and

transferred directly to the holding chamber as shown in Fig. 7.2(a).
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Table 7.1: Composition of the biological fluids used in different stages of slice preparation and maintenance
in zero-Mg in witro experiments. The displayed amounts of chemical component should be dissolved
individually in 1 litre of distilled water to obtain the desired concentrations.

Brain extract Normal aCSF zero-Mg aCSF

Chemical compound Concentration Mass Concentration Mass Concentration Mass

(mM] [g] (mM] [g] [mM] [g]
NaCl 92.7 5.42 125 7.31 124 7.25
KCl1 3 0.22 2.5 0.19 5 0.37
MgCly 19 1.8 1 0.1 0.0 0.0
CaCly 0.0 0.0 2 0.22 2 0.22
NaH;POy4 1.2 0.14 1.25 0.15 1.25 0.15
NaHCOs3 24 2.02 26 2.18 26 2.18
Glucose 25 4.5 10 1.8 10 1.8

The holding chamber contained continuously carbogenated normal aCSF, or zero-Mg aCSF,
depending on the type of the experiment. The slices are rested for at least an hour in the chamber
to recover from trauma of the brain extraction and slicing. The composition of the holding fluid
keeps the slices alive for several hours'. At this stage the slices are ready to be transferred to
the recording chamber which also contains either continuously carbogenated normal or zero-Mg
aCSF solution.

Figure 7.2(b, ¢) shows an individual slice resting on a nylon mesh in the recording chamber
with the electrodes inserted in the cortical region. The recording is performed while the slice
is either slightly immersed in the aCSF fluid, or kept at the interface of air and solution. The
experimental setup (excluding main bioamplifiers, analogue-to-digital converter and the fluid
circulation system) is shown in Fig. 7.2 (d), displaying the recording chamber, electrode holders
and micromanipulators, headstages (preamplifiers) and the microscope, all inside a Faraday
cage?. The room was also double-shielded on six sides by steel and aluminum layers to minimize
interference from external electromagnetic sources. A brief review of the electrical aspects of

the recording procedure is presented in the following section.

7.2.2 Electrophysiology setup and measurements

This section sets out the procedures used to record the local field potentials (LFPs) from the
coronal cortical slices of the mouse brain. I first review the origin and significance of LFPs, then
describe the configuration of the recording and ground electrodes, and the subsequent filtering,

amplification, and noise management strategies.

T have been able to record from slices for up to 24 hours before they stop producing electrical activity.
2Faraday cage specifications:

¢ Dimensions: 80 x 90 x 100 cm (H x W xD)

o Material: Galvanized steel mesh, with solid brass grounding block
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Figure 7.2: Experimental setup for recording local field potentials (LFP) from mouse brain slices in vitro.
(a) The 400-pm coronal brain slices in the holding chamber. (b) A close-up view of the slice in the
recording chamber resting on a mesh, slightly immersed (~ 1 mm) in the aCSF. The tips of the recording
electrodes are visible. (c) The recording chamber, slice, metal microelectrodes with their gold-plated
pin-headers and the temperature sensor (thick wire). (d) The recording chamber, electrode holders and
micromanipulators, and the microscope all mounted inside a Faraday cage.

Local field potentials

The LFP is the electrical potential generated by populations of neurons, and can be recorded
using microelectrodes (metal, silicon or glass micropipettes) placed in the extracellular space
within the excitable tissue. Intracellular and electroencephalogram (EEG) recordings provide
single unit and wide-field population activity of neurons, respectively. The LFP on the other
hand provides an ensemble average of the activity of neurons confined mainly within a localized
distance about 200-400 pm from recording electrode [Destexhe and Bedard, 2013]}. As a result,
independent LFPs can be recorded by electrodes separated by only a few hundred micrometers.
LFPs are widely used by neuroscientists since they are:
e recordable through different electrode types and different recording configurations

o widespread in many brain regions

! Although there is some evidence that LFPs may spread over a centimeter scale [Kajikawa and Schroeder,
2011]
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e recordable in vivo and in vitro

o unaffected by high-frequency filtering characteristics of the skull (unlike the EEG)

The EEG signal is strongly low-pass filtered due to signal propagation through CSF, skull and
skin, resulting in loss of high-frequency content. However, this not an issue for LFP signals which
are recorded directly from the neural tissue. Despite the differences between EEG and LFP
signals, both show similar oscillatory behaviours since they both originate from synchronized
synaptic currents of pyramidal neurons [Nunez and Srinivasan, 2006]. It has been shown that
individual action potential spikes do not contribute significantly to the formation of LFP and
EEG signals [Destexhe and Bedard, 2013]; this is due to the strong attenuation with distance of
the high-frequency components comprising the action potential spike. Contribution from spikes
is only possible when the tip of the recording electrode is placed in close proximity (within a few
microns) of a neuron [Destexhe and Bedard, 2013]. Also it seems that technical factors like the
position of the reference electrode can affect the interpretation of LFPs. For example, when the
reference electrode is located in a distant position relative to the recording electrode, all signal
generators between the pair could contribute to the recorded LFP [Kajikawa and Schroeder,

2011]. In the next sections I describe the electrodes and their configuration.

Electrode configuration

Considering the small physical working space between the microscope objective and the brain
slice, the recording gear—including electrodes, electrode holders, micromanipulators, temper-
ature sensor and ground electrode—mneed to be arranged and set up in a space-efficient way.
Although increasing the number of recording channels provides more information about the
state of the tissue, the constrained working area limits the number of the recording electrodes
that can be used. Single monopolar recording is simple, but differential amplification is pre-
ferred because the differential method eliminates any common-mode noise contaminations such
as DC drift. This makes it possible to record very low frequency components and reduces the
need for high-pass filters. However, care should be taken not to eliminate the signal of interest
by differential amplification: Ideally one electrode should detect the signal of interest plus the
ambient noise, and the other should detect only the ambient noise.

Figure 7.3 illustrates four different configurations of a differential recording pair to obtain
cortical LFP signals from the neocortical area of a mouse brain slice. The first electrode (indi-
cated by @) is placed in the tissue where the signal of the interest is likely to be generated, (e.g.,
cortical area); the second electrode (indicated by (=) can be placed (a) in the cortex very close

to the first electrode, or (b) far from the first electrode in the cortex, or (c) in another brain
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Figure 7.3: Different configurations of differential recording pairs from a brain slice. Two electrodes are
indicated by (+) and (—) signs. The assumption is that the signal of interest is a cortical signal and is
picked up from the cortical region where the (+) electrode is positioned. At least four configurations of the
recording pair are possible based on the location of the (—) electrode. (a) Two electrodes are positioned in
close proximity. The differential amplification eliminates both noise and the signal of interest since they
are common to both two electrodes. (b) The (—) electrode is far from the (+) one, but is in a cortical
area. Although ambient noise is removed in this case, all common biological signals will be eliminated as
well. (c) The (—) electrode is placed in a non-cortical region far from the (+) electrode. The common
signal including the ambient noise and common biological signals are eliminated. (d) The (—) electrode
is placed in the solution in the vicinity of the slice, and receives only the ambient noise.

area such as thalamus, or (d) out of brain tissue immersed in the bath. These configurations
are displayed in Fig. 7.3 (a-d) respectively.

I propose that the best configuration of the differential electrodes depends on the character-
istics of the signal of interest. If we are looking for signs of critical slowing down, and assuming
that this property is a general change in the characteristics of the whole slice, the arrangements
as illustrated in Fig. 7.3 (a-c) may result in elimination of the signal of interest, since both
electrodes are recording from the tissue. However the last configuration displayed in (d) may

have more chance of picking up the signs of critical slowing since this signal is only picked up by
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Figure 7.4: Schematic diagram of the LFP recording system. The bath is grounded by the Ag/AgCl disk
electrode which is connected to the ground pin on one of the headstages. The ground pins on the other
headstages should remain unconnected to ground electrode thus preventing formation of ground loops.
(Ground loops provide a route for unwanted noise current due to subtle differences in the ground level
voltage of different headstages and their related amplifier. Ground loops are also capable of conducting
unwanted inductive noise.) The dedicated earth is completely independent of the mains earth that services
the rest of the building. All three recording electrodes and the only reference electrode—relative to which
the voltages are measured— are identical 50-pm Ag/AgCl electrodes, apart from slight differences in their
lengths and some unavoidable microscopic differences in tip shape

@ electrode, and the common ambient noise! is differentially eliminated by the recording pair?.

The configuration displayed in Fig. 7.3(d) was used in this thesis.

Reference electrode

The reference electrode (different from the (©) electrode), which is connected to the ground
connection point on the bioamplifier, is immersed in the fluid in the recording chamber away from
the recording site. This electrode is used to shunt all undesirable inductive signals, preventing
them from being picked up by the recording pair. A silver/silver-chloride (Ag/AgCl) electrode
is a common choice for ground electrode in many biological recordings, and was used in this

work. Considering that the biological fluids used in these experiments contain ample chloride

!The ambient noise includes all noise sources from surrounding solution, tissue-electrolyte-electrode interface,
and any inductive noise picked up by electrodes.

2We assume that the solution and the slice are affected similarly by the ambient noise and the biological signal
generated by tissue is not conducted by the solution towards the () electrode.
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ions, the electrical conductance through the Ag/AgCl electrode is described by the equilibria
[Janz and Ives, 1968]

Ag(SOIid) = Ag(+solution) + e(metal phase) (721)
Agzgolution) + Cl(solution) = AgCI(SOIid) (722)

Recording electrodes

Glass micropipettes and fine insulated tungsten microelectrodes are the most common electrode
types used to record LFPs in vivo and in vitro. Different diameters (typically less than 100
nm) and tip profiles (standard, heat tapered, extra fine, or blunted tip) are widely used in
experiments depending on the recording site and number of recording channels. In addition to
tungsten, electrodes can be made from silver, stainless steel, platinum /iridium or pure iridium.
Metal electrodes are insulated by a fine layer (< 3 pm) of teflon, Parylene-C or other polymer
to provide electrical and moisture insulation and stiffness. The only conductive part of the
exposed electrode is its tip. Tungsten and stainless steel are very stiff materials with high
resistance against corrosion, making them biocompatible materials. Recently the noble metals
and their alloys such as iridium and platinum/iridium have attracted interest in microelectrode
fabrication, since they are extremely inert and resistant to corrosion. These electrodes also
have very low tip electrical resistance making them excellent candidates for stimulus-recording
purposes in neural implants.

Since I had selected Ag/AgCl as reference electrodes, and in order to minimize DC drift
currents, I decided to use 50-pm insulated Ag/AgCl electrodes to record LEPs. Such electrodes
are not normally used in in vivo experiments because of the possibility of production of toxic
materials at the recording sites which is harmful for live animals. I fabricated the Ag/AgCl
electrode by soldering an insulated 50-pm teflon-coated pure silver wire to a gold-coated pin-
header. Before using the electrode, the silver tip was coated with a thin layer of AgCl by either
electroplating or bleaching:!

o Electroplating with chloride (NaCl 0.9% or KCI 3M): making the silver wire positive with

respect to the chloride solution, pass a current of about 1 mA /cm? for 10-15 seconds until
a grey coating is formed
o Chloride bleaching: Soak the clean silver wire tip in household bleach (5% sodium hypochlo-

rite) for about 20 minutes until a grey colour is observed

nstructions from Warner Instrument Corporation,
www.warneronline.com/pdf/whitepapers/chloriding wire.pdf
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The spectral analysis of recordings from active seizing and silent cortical regions showed
no significant difference in the performance of Ag/AgCl electrodes made by either method (see
Appendix B.1 for results). Consequently, I used the simple bleaching method for electrode
chloriding.

I now address the problem of DC drift and its minimization.

Baseline drift at DC and low frequency

A common phenomenon in low-frequency biological measurements is the slow drifting of the
baseline voltage, frequently leading to saturation of the amplifiers. In many experiments it
is desirable to record the full range of low frequencies, but the drift problem makes this very
challenging. The drift voltage arises from the difference in the half-cell potential of the recording
electrode pairs. For example, based on a table of half-cell potentials [Petrucci et al., 1993], the

potential drop between an Ag/AgCl reference electrode and a tungsten electrode is

40.223 — (—0.58) = 0.803 (V) (7.2.3)

This potential difference between the two electrodes is large enough to cause a small DC cur-
rent to flow between the electrodes, which may have very slow oscillating characteristics over
time. Since the amplitude of the signal of interest is very small, the DC drift can be a major
low-frequency noise source. (A sample recording containing baseline drift can be observed in
Fig. B.1(a, b) of Appendix B.1; the drift is eliminated in Fig. B.1(c) by applying a 1-Hz high-
pass filter.) Since the value of the half-cell potential is much larger than the measured signal
(803 mV compared to 100-300 pV amplitude of SLEs) this DC voltage can easily saturate the
preamplifier headstage. I found that the drift voltage can be minimized by carefully eliminating
the possible sources of half-cell potentials between electrode pairs by—

e using the same materials for recording and ground electrodes

e removing contamination from the electrode tip

« electrical compensation of residual DC offset!

e minimizing movements of the electrodes, sample or recording bath to reduce the resultant

change in the configuration of the charges in the electrode-electrolyte interface
o using geometrically identical microelectrodes (same tip profile, length and diameter)

« limiting the range of temperature changes at the recording site?

!The A-M Differential Amplifier used in my experiments has a DC offset knob which provides a variable DC
offset voltage, and is summed with the input voltage. This feature may be used to compensate for DC offset.

2The temperature change is mainly due to variable temperature of circulated biological solutions. This circu-
lation process is necessary to continuously provide a carbogenated solution to the alive tissue. See Fig. B.2 to
observe the correlation between the temperature and DC drift in a slice experiment.
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Figure 7.5: Near elimination of baseline drift in DC recordings. (a) A driftless three-channel cortical
record of an active seizing slice. (b) Similar record as in (a) from a different slice containing some drift,
but still small enough compared with the amplitude of individual SLEs. The LFPs were recorded using
50-pm Ag/AgCl electrodes, and low-pass filtered with frp = 1000 Hz. Sample rate was 10000 per second
per channel.

Employing this set of strategies made it possible to perform hour-length DC-mode recordings
from seizing brain slices with very small drift voltages. This was not achievable using tungsten
electrodes!. Figure 7.5 displays a three-channel cortical LFP recording containing almost no

drift in (a), and a small but controllable drift in (b).

Bioamplifiers

A suite of single-channel A-M AC/DC Differential Amplifier, Model 3000 was used to amplify
the LFPs. The instrument is designed for low-noise recordings from excitable tissue and offers
different levels of amplification (up to x10,000) with different settings of low- and high-pass
filtering. This amplifier is designed to be used with or without preamplifiers or headstages; all
the experiments reported here were performed using the headstage. The headstage is a small-gain
(x50) high input-resistance amplifier, positioned as close as possible to the signal source—tissue
microelectrode in our case—within the Faraday cage. The high input-resistance of the headstage
reduces the current drawn from the signal source thus minimizing signal distortion. I used four
amplifiers to simultaneously record from four different regions of the brain slice.

All amplifiers should function identically to ensure comparable results. A custom-made low-
amplitude signal generator was used to verify the identity of signal amplification by all four
amplifiers. The signal generator is capable of producing 1-Hz and 10-Hz sinusoidal, triangular,
square-wave test signals of amplitude of ~90 nVy,, which is in the range of typical EEG or LFP
signals. (See Appendix B.3 for the schematic diagram of the signal generator and its output

signals recorded using bioamplifiers.)

'Note that the change in the concentration of ions in the vicinity of electrode-electrolyte interface also con-
tributes to DC drift. One can use Vycor glass to enclose the electrodes. This special type of glass provides
electrical connectivity while preventing ionic mixing, keeping the ionic concentration of the solution fixed.

2A-M Systems, Inc., http://www.a-msystems.com
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Noise management

The small range of LFP background activity (< 25 pV) means the recordings can become
contaminated easily by unwanted electrical noise. The noise sources include but are not limited
to:

o capacitive electrical noise picked up by the electrodes through their stray capacitance

¢ inductive noise currents due to the existence of ground loops

o thermal noise of the electrodes
The complete elimination of noise is impossible but efforts should be made to minimize it as
much as possible. My experiments were carried out in a double-shielded room which strongly
attenuates external electromagnetic fields entering the room. Capacitive and inductive inter-
ference can be reduced by performing the experiments inside a Faraday cage. As shown in
Fig. 7.4, the recording bath, preamplifiers and the microscope were placed inside a Faraday cage
to prevent any electrical fields contaminating the records.

The formation of a ground loop is illustrated in Fig. 7.6 where two devices share a common
ground point G. Assume that A is an electrical system consuming electricity, and B is the buffer
circuit of the headstage of the amplifiers. Ideally the output of buffer circuit Vi, should be
equal to the LFP recorded from the slice. However if the common point connection to the earth

has high resistivity, a voltage drop Vi appears on G where

Ve=V1i— Rl (7.2.4)

This voltage-drop forms a non-zero potential ground point, making the output voltage dependent
on Vp

Vour = LFP — Vo = LFP — Vi + Ry (7.2.5)

This dependency creates an electrical connection between A and B. For example if A is a mains
operated device, 50-Hz artifacts can easily contaminate Vo,t. Reducing R will reduce the effects
of the ground loop. The voltage of the ground point can be minimized using an earth bar to
ground all measuring devices via low-resistance cables.

The mains ground connection of the building may not be “clean” due to poor connections or
the induced effect of other electrical devices via formation of multiple ground loops in the other
parts of the building. A dedicated external earthing pin was installed during construction of
the electrophysiology lab to provide a reliable ground reference that is completely independent

of the building multiple-earth-neutral common connection.
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Figure 7.6: Formation of a ground loop

The bioamplifiers have inherent noise which cannot be reduced unless they are replaced by
alternative low-noise devices. The inherent noise of amplifiers and associated ADC used in
recording the LFPs are displayed in Fig. B.5.

I was able to minimize the noise levels by using the mentioned approaches. Specifically the
50-Hz interference and its harmonics (up to 200 Hz) were attenuated significantly, eliminating

the need for 50-Hz notch filters when recording LFPs (see Fig. B.7).

7.3 Fluctuation-induced precursors of phase transitions in mouse
brain slices

The electrical signals recorded from neural system always contain spontaneous background volt-
age fluctuations, arising from random variability in the structural and functional characteristics
of ion channels and other neural elements. Other sources such as thermal fluctuations and
spontaneous release of neurotransmitter at presynaptic vesicles also contribute to background
fluctuations [Colquhoun and Sakmann, 1981; White et al., 2000; Qian et al., 2014]. This noisy
behaviour results in some uncertainty in the spiking threshold of individual neurons. However
these small fluctuations can also provide useful information about the closeness of the system
to its tipping point or phase transition.

In a zero-Mg-induced seizing brain slice, I classify the phase transitions of LFPs into four
categories. Two types of phase transitions can occur during the formation of an individual SLE
as illustrated in Fig. 7.7(a):

al Onset of an individual SLE

a2 Termination of an individual SLE
A phase transition can also be assumed for the long-term LFPs recorded in (quiescent = seizing)

cycles as displayed in Fig. 7.7(b):
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Figure 7.7: Phase transitions in seizing cortical slices in (a) an individual seizure-like event (SLE) and
(b) long-term active/quiescent cycle. The SLEs in (a), (b) are induced by lowering the magnesium level,
recorded from the cortical area of mouse brain slice, using 50-um Ag/AgCl microelectrodes in DC mode,
but from different animals. Increasing the magnesium level by slow application of brain extract solution
induces the transition from the seizing to quiescence.

b1 Transition from seizing to quiescence

b2 Transition from quiescence to seizing
In this thesis only the al transition of a single SLE is examined in detail. The study of the
transitions displayed in Fig. 7.7(b) are not practical based on my recorded data due to the very
challenging task of inducing a completely quiescent state, sandwiched between seizing periods.

The small spike-form activities as observed in the quiescent period of Fig. 7.7(b) may indicate
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Figure 7.8: Qualitative analysis of the initiation and termination phases of hippocampal SLEs. (a) SLE
with a sharp initiation and small growing events on the tail. The beginning and termination epochs are
extracted and displayed in (b), (c¢). The corresponding phase plots are displayed in (d) and (e) with small
arrows showing the start point and the direction of movement of trajectories in the phase plane. The
phase plots are produced by plotting the first difference of the recorded voltage values ALFP as a function
of recoded voltage LFP. Same analysis on a second SLE (f) with the results displayed in (g-j), showing
qualitative differences in initiation and termination phases. LFPs are recorded using 50-pm Ag/AgCl
microelectrodes, in DC mode with low-pass cutoff frequency of 1000 Hz and sampling rate of 10000 Hz.

that a phase transition to the completely quiescent state has not occurred yet.

7.3.1 Qualitative study of phase transitions in seizure like events

In this section I provide some qualitative evidence for state transitions in an epileptic neural
system in vitro. By using phase space diagrams one can perform a qualitative analysis of a
dynamical systems. I use phase diagrams to reveal the existence of phase transitions in epilep-
tic mouse brain slices, then discuss experimental signs of critical slowing down prior to state
transitions.

Two hippocampal SLEs are displayed in Fig. 7.8 (a), (f). Both events are likely to be the
result of activity of bursting neurons in the vicinity of the electrode tip in the CA1 region of the

hippocampus. These events show a state transition from quiescence to seizing, which persists
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Figure 7.9: Qualitative dynamical analysis of hippocampal SLEs. (a) Same hippocampal SLEs as dis-
played in Fig. 7.11. Four selected 2-sec length epochs from different phases of LFP are extracted and
displayed as (b, f) quiet inter-ictal, (c, g) sensitive pre-ictal, (d, h) seizure initiation, and (e, i) ictal or
active seizing state. The raw signal is shown as the grey background and the smooth part of it is displayed
in black in each case. The phase diagrams are plotted as the first difference of LFP time-series (ALFP)
versus the LFP time-series in nV.

for about 2 s, followed by a transition back to the resting state. A closer look at the initiation
and termination phases reveals some interesting differences between the two events. The first
(a, b) starts with a sudden emergence of a large-amplitude limit cycle (d), while the second (f,
g) initiates with a gradually growing-amplitude limit cycle (i). The limit cycles were generated
by plotting the first difference of recorded voltage values (ALFP) versus the LFP time-series.
The transition from the silent resting state to oscillating limit cycle displayed in (d) is remi-
niscent of a saddle-node, saddle-node on invariant circle (SNIC) or subcritical Hopf bifurcation.
The limit cycle in (i) suggests a supercritical Hopf bifurcation. Note that it is not possible to
make further arguments regarding the type of bifurcations in these experiments only based on
the presented phase plots. One may use spectral analysis of the voltage time-series to reveal any

existing resonance which may indicate a Hopf bifurcation.
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Bifurcation from limit cycle to the resting quiescent state at the end of the two SLEs is also
quite different for the two events. The first bifurcates to silence via an increase in the amplitude
of the limit cycle (c, e) , while the second one bifurcates through a smooth reduction in the
amplitude of the limit cycle (h, j). These transitions are also suggestive of different bifurcation
types as described by the theory of dynamical systems.

Here I present the results of another qualitative analysis of epileptic data. Figure 7.9 demon-
strates a sample hippocampal LFP containing consecutive SLEs and the corresponding phase
diagrams. Four different epochs are selected for qualitative analysis and are displayed in (b-e).
The gray trace in the background is the raw signal and the superimposed black trace is the
corresponding smooth part of the signal extracted using a Whittaker smoother!'. Each epoch is
representative of a distinct mode of neural activity:

(b) Quiet interictal period

(c) Increased sensitivity pre-ictal phase

(d) Seizure initiation

(e) Active seizing (ictal state)
The corresponding phase diagrams are displayed in Fig. 7.9(f-i). The qualitative difference be-
tween phase plots reveals several state transitions in this epileptiform LFP. The visually irregular
pattern (higher complexity) in (f) expands and shows small-amplitude limit cycles (decreased
complexity or increased regularity) in (g) as a result of increased sensitivity in the preictal
period. The seizure initiation is reflected in the sudden and rapid transformation of the phase
diagram in (h) where small-amplitude limit-cycles give birth to large-amplitude ones. The phase
plot in (i) displays regular repetitive trajectories corresponding to the active seizing state. Note
that an extra loop developed in (i) corresponding to bursting activity (inset displays a selected
burst activity in (i)). I observed comparable sequential state changes in many similar records—
containing strong SLEs with rich morphological patterns. Similar qualitative observations are
also reported for hippocampal seizures in rat and mouse slices by Jiruska et al. [2010] and Filatov
et al. [2011].

These observations provide experimental evidence for the existence of phase transitions in

2

the epileptic mouse brain“. My attempts to capture warning signals prior to these observed

phase transitions are presented in the next section.

1See Appendix C.1 for more details.
’In a comprehensive work one could quantify the state changes using entropy or complexity measures in a
series of in vitro experiments.



7.3 Fluctuation-induced precursors of phase transitions in mouse brain slices 157

(a) (b)
800 [ , , ‘ ‘ — 1 : : : : : : :
Maldls 4/
— o
o
i = o |
1 | u | |
400 J D ! ! “‘
_ (©) (d)
2 A, S NN
= F €
° £,
e 10+ 8
© c
5 g
30_11, g
g o
[e] D
= S
0
Moo
> 2
c
g 3
(o
o 4
L
5
0 10 20 30 40 50 60 70 80 90
Time [s] Time [s]

Figure 7.10: Variance and spectral analysis of cortical SLEs. The zero-Mg induced seizures (a, b) are
recorded using 50-pm Ag/AgCl electrodes. The low- and high-pass filter settings, amplification and
sampling rate are 1000 Hz, DC, x1000, 10 kHz respectively. The instantaneous variance (c, d) and the
time-frequency (e, f) plots are obtained using a 4-sec rolling window, with 90% overlap. The logarithm
of variance is displayed for more clear demonstration of any existing trend.

7.3.2 Spectral and variance analysis of LFPs prior to the onset of individual SLEs

The modelling results of Chapters 3, 5, and 6 indicated increased variance, autocorrelation and
power spectral density in certain frequencies prior to state transitions. Inspired by these results
and the methods employed in other research fields to unmask the precursors of state transitions,
I use similar methods to analyze the LFPs prior to SLE occurrence. The spectrum and variance
are the two analytical tools that are used to uncover the possible signs of critical slowing down
(CSD) prior to onset of individual SLEs.

Figure 7.10 (a, b) displays two sample cortical LFPs each containing several SLEs recorded
from two slices, each from a different animal. The SLEs are induced by application of zero-Mg
solution. There is no obvious increase in fluctuation variance prior to SLE initiation, in the
instantaneous variance graphs in (c), (d)!. Note that the estimated variance (calculated using
the MATLAB var function) is equal to the real variance only if the time-series is of infinite length.

As a result one should not expect to obtain an accurate estimate of variance from the relatively

!The instantaneous skewness and kurtosis also did not show any trend prior to individual SLEs (results not
shown).
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short time series corresponding to the brief quiescent periods between consecutive SLEs. The
power spectral density (PSD) curves of the time-series are displayed in (e) and (f), and they
show slightly different behaviour. While the low frequency activity occurs almost randomly
before appearance of each SLE in (e), a gradual increase in the low-frequency activity before
initiation of some SLEs is evident in (f). This low-frequency activity pattern was not observed
consistently in other cortical SLE recordings in this study. However I noticed that this precursive
low-frequency activity was more likely to be captured when the corresponding SLE had a large
amplitude, long period, or a rich morphology. A morphologically rich SLE is a long event (> 2
s) having a large initial deviation followed by multiple smaller events on the tail.

Motivated by these observations, two methods were employed to increase the chance of
capturing evidence of critical slowing down:

o Enhancing SLE activity by adding carbachol to the perfused zero-Mg aCSF

o Focusing on hippocampal (rather than cortical) SLEs to obtain stronger and longer SLEs

sustained by the recurrent excitatory neural networks within the hippocampus

Figure 7.11(a) displays three consecutive SLEs recorded from the hippocampal CA1 area.

The SLE events are zero-Mg induced seizures strengthened by application of carbachol (100

mM). These large amplitude (~600-pm peak-to-peak) and long-lasting (~20 s) SLEs with their
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Figure 7.11: Increased tissue sensitivity prior to seizure onset in hippocampal area CAl. (a) Represen-
tative LFP showing consecutive zero-Mg SLEs recorded from coronal slices containing hippocampal area
CA1l. The large-amplitude and long SLEs are the result of very slow (1 mL/min) application of carba-
chol. The volume of zero-Mg solution was 50 mL before addition of carbachol. LFPs are recorded using
50-nm Ag/AgCl microelectrodes, in DC mode with low-pass cutoff frequency of 1000 Hz and sampling
rate of 10000 Hz. Increased background activity is evident in the LFPs ~25 s prior to seizure onset. The
superimposed red trace is the low-frequency trend of the signal (see inset for details). (b) Corresponding
detrended LFP signal. (c) Instantaneous variance of the detrended signal in a logarithmic scale. The
(estimated) variance is obtained using a rolling window algorithm, with window length of 4 s and 90%
overlap. The fluctuation variance increases by about an order of magnitude prior to each SLE.
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Figure 7.12: Low-frequency activity prior to seizure onset in hippocampal area CA1l. (a) Same events as
displayed in Fig. 7.11(a). (b) The corresponding power spectral density function showing appearance of
low-frequency activity and characteristic “down-chirp” (drift to lower frequencies) in spectral activity as
SLE onset is approached (arrows). The power spectral density is obtained using MATLAB’s spectrogram
function using window length of 4 s with 90% overlap.

rich morphological structure may have been recorded from the vicinity of a seizure source. An
increased “fizziness” is evident in the time-series before the initiation of each event. Using a
Whittaker smoother, I extracted the trend or low-frequency part of the LFP (red), and super-
imposed it on the raw signal. I detrended the signal by subtracting the DC drift to produce a
signal with a stable baseline as displayed in (b). Now a rolling-window variance extractor can
be employed to track the instantaneous variance of the detrended signal. Figure 7.11(c) shows
an increase in the variance of the signal prior to SLE initiation plotted on a logarithmic scale.

The spectral analysis of these SLE time-series, displayed in Fig. 7.12, shows appearance of
low-frequency activity prior to SLE onset. This activity has spectral energy that initially extends
to ~20 Hz, but drops to lower frequencies as onset approaches, forming a characteristic “down-
chirp” pattern. This increased variance and power density at low-frequencies is a consistent
feature across 40 consecutive hippocampal seizure-like events spanning a time period of ~2.5
hours.

Figure 7.13 displays the result of the variance analysis on 40 consecutive inter-SLE periods.
The first inter-SLE period is displayed in (a). Three epochs are extracted belonging to the
first, third and last second of the inter-SLE period (epochl, epoch2, epoch3). Every epoch was
divided into four non-overlapping 250 ms segments, and the variance of detrended segments
(using Whittaker smoother) was calculated.

The variance of the epoch was calculated as the average value of the variances of five seg-
ments. As a result three variance values (varl, var2, var3) were extracted for every inter-SLE

period. The trend of three variances is displayed in Fig. 7.13 (b). The bar plot displayed in
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Figure 7.13: Increased variance prior to hippocampal seizure like activities (SLEs). (a) A sample inter-
SLE period. Three epochs are selected belonging to the first, third and last second of the period. The
variance of each epoch is calculated (see text for more details). (b) The trend of corresponding variances
of three epoch displayed in (a) across 40 pre-SLE periods. (c) Average value of the trends displayed in
(b). The error bars correspond to the variances of the trends in (b). See Fig. 7.11 for the experimental
method.

Fig. 7.13 (c) corresponds to the average value of three variances and summarizes the analysis
results. A consistent increase (~88%) in the variance of inter-SLE fluctuations prior to SLE
occurrence over 40 samples is evident.

The increased variance and low-frequency activity prior to SLE generation is also conserved
across analysis of another data set obtained from a different mouse as presented in Fig. 7.14,
again showing an increase in low-frequency power and fluctuation variance prior to hippocampal
seizure onset (the experimental method is described in the caption of Fig. 7.11). Figure 7.14(a)
displays an ~11-min LFP record from hippocampal CA1l region on a mouse brain slice. The
DC part of the signal is removed using a Whittaker filter, and the driftless signal is plotted
in black. The power spectral density is displayed as a color-coded time-frequency graph in
(b) showing increased low-frequency activity prior to individual SLEs with the more obvious
increases highlighted by by arrows. A further analysis is done on one of the SLEs and the results
are displayed in Fig. 7.15. The appearance of low-frequency activity and increased variance is

evident in the figure.

7.3.3 Bistability and flickering prior to seizure initiation

Bistability is a common feature of dynamical systems with coexisting multiple steady states
in which the system’s output can alternate between states due to the effect of intrinsic or
external subthreshold stimulation. There is increasing evidence supporting the bistability of

neural systems under epileptic conditions [Wu and Shuai, 2012; Barnett et al., 2013; Koppert
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et al., 2013]. Flickering is defined as a transient rapid alternation of the state of the system,
and can precede the corresponding bifurcation point in bistable or multistable systems. This
phenomenon is considered as another precursor of state transitions [Scheffer et al., 2009] and
interestingly is observed prior to occurrence of some SLEs in our experiments.

Figure 7.16 displays four selected SLEs preceded by flickering activity. Individual flickers
marking isolated events are indicated by arrows. These precursor events show how the neural
activity apparently toggles between quiescent and seizing regimes prior to seizure initiation. The
observed flickers suggest the extreme sensitivity of the neural tissue to noise-induced perturba-
tions, and its tendency to phase transition. The region (b) of the steady state diagram presented
in Fig. 6.6 of Chapter 6 might be appropriate for investigating flicker dynamics underlying bista-
bility in a neural model. But note that flickering is a suprathreshold event and is not modelled

in this thesis.

7.4 Prolongation of evoked potentials in the seizure promoting
state

Inspired by modelling and experimental evidence for critical slowing down, I identified noise-
induced precursors of phase transitions in the Izhikevich and Wilson-Cowan models in Chapters
3, 5, 6 respectively, and in in wvitro experiments in the current chapter. These results predict
existence of critical slowing signs in a system probed by external impulses. Kalitzin et al. [2002]
first performed a probing experiment in which they analyzed magnetoencephalogram (MEG)

and EEG signals while periodic light stimulation of visually sensitive epileptic patients. They
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Figure 7.14: Increased spectral power prior to some hippocampal seizures. (a) The raw and DC-removed
hippocampal LFP signal containing consecutive SLEs. (b) Power spectral density of DC-removed signal
showing increased low-frequency activity prior to some of SLEs (arrows).
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Figure 7.15: Spectral and variance analysis of an individual hippocampal seizure event. (a) DC removed
LFP. (b) Spectrogram and (c) instantaneous variance showing incresed spectral power and variance prior
to seizure initiation.

introduced rPCI (relative phase clustering index) as a measure of phase clustering of harmoni-
cally related frequency components of evoked MEG/EEG responses, and showed enhanced phase
clustering in gamma band frequency (30-120 Hz) before transition to seizing. They extended
their previous method using subthreshold electrical stimulation as a probe for neural excitability
[Kalitzin et al., 2005]. They showed enhanced rPCI values in seizure onset sites, and demon-
strated the correlation between rPCI and the time to next seizure occurrence in a group of six
patients with temporal lobe epilepsy. This study provided a proof of principle for neural probing
approach.

Freestone et al. [2011] introduced a cortical probing method in which the excitability of
cortical circuits (as reflected by larger EEPs) was used to anticipate the proximity to seizure
occurrence. They introduced mean phase variance (MPV) of EEPs as a measure of excitabil-
ity and demonstrated the correlation between higher excitability and possibility of impending
seizure.

We hypothesize that results of probing experiments may be correlated with universal slowing-

down properties prior to phase transitions. It seems reasonable to relate the concept of increased



7.4 Prolongation of evoked potentials in the seizure promoting state 163

(a) (b)

800 : 800 \‘ :
< \‘ \ 400
\>§ 400
o
5 0 N

200

- , - -400 ‘ ‘ ‘ ‘
0 50 100 150 0 50 100 150 200

(c)

800

400

0

-400
0

Figure 7.16: Flickering or bistability prior to seizure onset in hippocampal area CA1l. Four represented
hippocampal CA1 SLEs preceded with flickering activity. The flickers are indicated by arrows. See
caption of Fg. 7.11 for more more description about the data.
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excitability (larger EEPs) to elevated noise-induced spatiotemporal variances, thus linking the
previous work in this thesis to the in vivo neural probing experiments of Kalitzin et al. [2002,
2005] and Freestone et al. [2011].

Using an in vitro setting, we report a prolongation of evoked potentials (EPs) while the
neural populations are nudged towards the seizing mode by slow application of the zero-Mg
solution in this section. This serendipitous observation was made during an experiment in the
electrophysiology laboratory of University of Waikato by Dr Logan Voss. See Appendix B.5 for
methods.

The extracted and time-aligned EPs are displayed in Fig. 7.17(a). The colour shades from
black to light grey representing the EPs recorded from the beginning (normal aCSF) to the
end (zero-Mg) of the experiment, respectively. Comparing the light-grey traces with the darker
ones, an amplification and prolongation of the EPs is evident when the tissue is biased towards
the threshold of the seizing state by application of zero-Mg solution. The bird’s-eye view of all
aligned EPs is displayed in (b) where the amplitude of the EPs is colour coded using an arbitrary
scaling to demonstrate the temporal evolution of the EPs. Comparing the amplitude of EPs in

normal and zero-Mg aCSF modes reveals the gradual increase in amplitude and period of EPs
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Figure 7.17: Prolongation of electrically evoked potentials (EPs) after gradual introduction of zero-Mg
solution to mouse brain slices. Fifty EPs were recorded in normal aCSF, then zero-Mg solution was
introduced to recording bath with the rate of 0.2 mL/s. The slice failed responding to electrical stimuli
after producing 180 EPs.

as indicated by the dark-blue and dark-red colours.
Amplification and prolongation of evoked potentials is evident in this experiment. The
gradual introduction of zero-Mg solution acts as a control parameter of the system and forwards

it towards the threshold of state transition—seizure production in this case. Based on the
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modelling work presented in previous chapters, and the experimental observations showing noise-
induced signs of critical slowing prior to bifurcation points, I would expect to see corresponding
precursors in stimulus or probing experiments as well. Based on these preliminary results, one
could perform a comprehensive experimental in vitro study using a large number of animals to

examine the effectiveness of neural probing for seizure prediction.

7.5 Chapter summary

The transition from the quiescent to the seizing state is a major qualitative change in the state
of an epileptic neural circuit. In the theory of dynamical systems such changes are known
as phase or state transitions, and bifurcation theory can be used to classify and study the
behaviour of systems prior to such phase transitions. Prediction of phase transitions is shown
to be theoretically possible, due to the occurrence of critical slowing down prior to the initiation
of a phase transition at a turning point. For a critically slowed system, it takes divergently
longer times to relax to rest in response to small perturbations. I presented slowing down
in the Izhikevich and Wilson-Cowan models of individual neurons and neural populations in
Chapters 3, 5 and 6, manifest as increased variance, autocorrelation and spectral power (at
certain frequencies) as signs of close approach to the bifurcation point. Supported by this
theoretical background, and motivated by the importance of seizure prediction, I have presented
some preliminary experimental evidence for critical slowing down in the current chapter.

An in vitro animal model of human epilepsy was studied in which seizure-like events (SLEs)
were induced in cortical and hippocampal circuits of mouse brain slices. The 400-pm coronal
slices containing both cortical and hippocampal regions were perfused with an artificial cere-
brospinal fluid (aCSF) to provide the in wvitro platform for this study. By washing out the
magnesium ions, excitatory NMDA receptor blockade was removed from the neurons, resulting
in the development of cortical and hippocampal SLEs.

By constructing phase-plot diagrams, I performed a qualitative analysis of different stages
of the epileptic neural activity, i.e., interictal, pre-ictal, seizure initiation, ictal, and seizure
termination periods. This suggested the existence of a cascade of consecutive state transitions
during progress through seizure generation, maintenance and termination. Distinct bifurcation
types may be responsible for seizure generation and termination. Based on similar results Jirsa et
al. [2014] have recently presented their “Epileptor” model and identified some universal features
shared by the various seizure types.

The next step was to capture evidence of critical slowing down prior to state transition. I
studied the LFP time-series before transition from the quiescent to seizing state. The challenging

task of tracking the subtle changes in the variance, autocorrelation and power spectrum of the
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time-series underscored the importance of recording clean LFPs. By applying proper electrical
grounding and shielding methods, appropriate bipolar recording configurations, and selecting
the same material for recording and ground electrodes, I recorded LFPs that were minimally
corrupted by ambient noise, with negligible baseline drift. This allowed the frequency content
of the biological signals to be kept intact in the range of 0-1000 Hz. The very low frequency
components of the signal are of importance since they are presumed to carry information about
critical slowing down.

I observed that precursors of bifurcations are more evident in larger and well-separated SLEs
which also contain more morphological complexity in their pattern. Consequently, I focused
on these hippocampal SLEs, intensified by the application of carbachol. This resulted in the
generation of very long (~20 s) seizure episodes. I was able to demonstrate signs of critical
slowing in terms of increased variance and low-frequency spectral power. Flickering as another
warning symptom was also observed in the recordings. I learned that uncovering signs of critical

slowing is a very challenging task in slice experiments, and requires—

e minimization of noise sources in order to reduce the need for high-pass, low-pass, and
notch filtering and consequent information loss, particularly at low frequencies

o elimination of DC drifts by using matched Ag/AgCl electrodes

« carefully paced slow delivery of seizure-inducing perfusion fluids to ensure very slow driving

of the neural tissue towards seizure threshold

Considering all these factors, I found that only the generation of the strong, long and morpho-
logically rich seizures are accompanied with identifiable precursor signals. In agreement with the
“sick column” hypothesis presented by Stead et al. [2010], I argue that the slowing down signals
may be captured if the LFP recording is obtained from the sick column or seizure-generating
zone. This may describe why seizure precursors are not evident prior to every SLE. The chapter
concluded with the presentation of the results of a neural probing experiment. Electrical stimuli
were delivered to the cortical region, while the seizure promoting factor (removal of magnesium
ions) was applied. The characteristics of the evoked potential (EPs) were investigated. An
increase in the amplitude of the EPs and its temporal prolongation were observed while the
system was being forwarded towards the seizing state.

To my knowledge these preliminary results for spontaneous tissue responses are the first
reported observations of critical slowing down in an in vitro neural system. Its significance is
in the confirmation of model predictions, and providing basic knowledge and background for

developing novel seizure prediction algorithms.

'The sick column hypothesis states that the sparse small (comparable with the size of cortical microcolumns)
cortical columns are the anatomical substrate of focal neocortical epilepsy.



Chapter 8

Summary and Future Work

8.1 Summary

This thesis has investigated some of the underpinning mechanisms of phase transitions in neu-
ral systems using mathematical and computer-based modelling as well as in vitro approaches.
Employing concepts from dynamical systems theory, I was looking specifically for precursor in-
dicators of sudden regime shifts. Phase transitions were studied at three different scales: single
neuron, network and continuum. Models of single spiking neurons and networks of these were
constructed using the Izhikevich formalism. Modifications were made to the original cortical
and thalamic forms to generate realistic neural phenomena such as burst-suppression, gamma
oscillations and sleep spindles. Precursor signs prior to phase transition were observed.

The spiking-neuron investigations were complemented by investigation of the Wilson—Cowan
(WC) mean-field description of cortical networks. A range of spatiotemporal phase transitions
were identified, and clear indications of critical slowing down prior to transition were observed
both in time and space.

Motivated by these theoretical findings, the thesis moved onto a series of in vitro investiga-
tions of phase transition-like behaviour in slices of neural tissue. Different bifurcation classes
were proposed to be responsible for the genesis and suppression of seizure-like events (SLE) in

mouse brain slices. Promising signs of slowing down were observed prior to SLE onset and offset.

Phase transition in single spiking neurons

Two cortical (excitatory regular spiking RS, and inhibitory fast spiking FS) and two thalamic
(excitatory thalamic relay TC and inhibitory reticular nucleus RTn) neural types were investi-
gated with an emphasis on their subthreshold dynamics. The original Izhikevich RS model was
altered to demonstrate metabolic-rate related cortical burst-suppression. The thalamic TC neu-
ron was modified by incorporating a slow hyperpolarization-activated cation current (1) which
plays an important role in sleep spindles. The types of bifurcation responsible for spike genera-

tion was identified for each neuron class. Noise-induced subthreshold fluctuations showed signs
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of slowing down prior to spike generation. Increased sensitivity was observed for the modified

RS neuron prior to burst-suppression, and for the modified TC neuron prior to bursting.

Precursors of phase transition in networks of spiking neurons

Two networks were constructed using both the original and modified forms of the Izhikevich
spiking neuron:
¢ A cortical network composed of RS and FS neurons capable of producing gamma oscilla-
tions. A form of local field potential (LFP) was extracted from the network showing 30-Hz
gamma oscillations as an emergent network activity. Transition from gamma to lower fre-
quencies due to induction of anaesthesia was investigated. The network LFP displayed
flickering (as a precursor of regime shift), bistability and hysteresis across the transition
from gamma to slow oscillations.
¢ A three-neuron thalamocortical network composed of RS, TC and RTn neurons that gen-
erates sleep spindles. The output was comparable with in vitro results. The subthreshold
fluctuations of the TC neuron showed increased variance as an early warning of spindle

initiation.

Subthreshold dynamics of spatially homogeneous Wilson—Cowan model

A detailed investigation of the spatially homogeneous Wilson—Cowan (WC) mean-field model
was presented. Saddle-node and Hopf mediated phase transitions were observed in the excitatory
firing-rate time-series. Numerical analysis showed clear signs of slowing down in form of increased
variance and autocorrelation functions prior to bifurcation. These numerical findings were in

agreement with predictions from linear Ornstein—Uhlenbeck theory.

Spatiotemporal phase transitions in Wilson-Cowan cortical rod

The homogeneous WC model was extended to a one-dimensional neural mass (a “rod”) by
incorporating space-dependent excitatory and inhibitory fluxes. Obeying diffusion equations,
these fluxes brought a rich dynamics to the system, supporting four type of phase transition:
temporal saddle-node and Hopf, spatial Turing, and a mixed-mode Turing—Hopf interaction.
Noise-induced subthreshold fluctuations demonstrated signs of critical slowing both in time and

space, consistent with Ornstein—Uhlenbeck predictions.
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In vitro experimental evidence of slowing down

These model-based theoretical findings encouraged me to look for experimental evidence of phase
transition precursors. Zero-magnesium induced seizure-like events (SLEs) in mouse corticotha-
lamic slices were selected as an in vitro model of neural phase transition. By ensuring proper
differential recording methods with a carefully selected arrangement for recording, reference and
ground electrodes, “clean” local field potential (LFP) signals were recorded from cortex and
hippocampus, minimally contaminated with DC drift and 50-Hz interference. This ensured the
fidelity of the SLEs in the frequency range 0-1000 Hz. A qualitative phase-plot analysis of
the SLEs suggested a cascade of state transitions during onset, maintenance and termination
of seizure events. Precursor signs of SLEs were observed only on large-amplitude, long and
morphologically rich SLEs, and were evident as increased variance and spectral power at low
frequencies. In addition to noise-induced signs of slowing down, I presented evidence for critical
slowing in a neural probing experiment. An increase in the amplitude of the electrically evoked
potentials was observed while the brain slice was being forwarded towards the seizing state by

wash-out of magnesium ions.

8.2 Future Work

An obvious limitation of the neuron-by-neuron modelling studies of Chapter 4 is the small
size of the presented networks. Networks with larger numbers of neurons should be developed
to examine precursor signs prior to anaesthesia-induced phase transition, and before spindle
initiation. In addition, the robustness of obtained results should be examined after introduction
of heterogeneity to neuron parameter values.

Hopf-Turing instability was introduced as the only mixed-mode oscillation of 1-D WC model
of cortical tissue in Section 6.3. It would also be interesting to study the dynamics of other
codimension-2 mixed-mode interactions such as the saddle-node-Turing instability.

Section 7.4 demonstrated prolongation of evoked potentials prior to phase transition in mouse
brain slice. The uniformity of presented results should be investigated in a comprehensive in vitro
study using a large number of slice measurements. In parallel it would be informative to develop
the equivalent mathematical and computer-based models of these experiments, and study the

dynamics of the spatiotemporal indicators of phase transition onset.






Appendix A

A.1 \Verification of wave equations in 1-D Wilson—Cowan model

Recall the definition of excitatory and input fluxes to population of type K as
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Here we proof the equations stated in 6.1.6, Chapter 6. Define Fourier transforms:
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Considering the first equation in Eq. (A.1.1) as a convolution, its Fourier domain equivalent is

&Ek(q, t) = 27rE(q, t)-n(q) (A.1.4)

Substitute (A.1.2, A.1.3) in first equation of (6.1.6)
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Equating integrands:

(A%, + 3 @pr(q,t) = A%LE(g,t)

using (A.1.4):

Note: From (6.1.4) :

1 A +o00 .
a(g) = 5 (2]'“/ dx e—Aane—W)

)
— Ajk {/0 dr eAjkxfiq:r_F/oo dx eAjkziqac}
2(27) /- 0
B Ajk eAjkl’—iqx 0 e—A]-ka:—iqx +oo
2(2m) | | Ajk —igq —(Ajk +iq) |,
A |1 1

— + -
2(2m) | Ajr —iq  Aji +iq

_ Ajk _Ajk—i-iq—i-Ajk—iq] . 1 < AJQ'k )

2(2m) | A?k + ¢2 T o A?k + ¢?

(A.L6)

(A.1.7)

(A.1.8)

which is the same result as (A.1.7). Thus n(z) = %e‘AEk"x' and @ gy (z,t) satisfy Eq. (6.1.6).



Appendix B

B.1 Chemically versus electrically chlorided Ag/AgCI
microelectrodes

Figure B.1 shows that the two Ag/AgCl electrodes made by two chloriding methods have com-

parable performance when recording from brain tissue in its silent regime (normal aCSF'). These

results are based on simultaneous recordings from two different points on a slice.
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Frequency (Hz)
Figure B.1: Comparison between the performance of electrically (black) and chemically (blue) chlorided
50 micron Ag/AgCl electrodes. (a-c) The voltage signals from a non-seizing cortical slice with different
high-pass filter settings, 0, 0.1, 1 Hz respectively. The low-pass cut-off frequency is 1000 Hz for all records.
Both signals look similar in terms of peak to peak amplitude. The corresponding spectral graphs shown
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Figure B.2: ACSF temperature and baseline drift. Top to bottom are the temperature of the recording
bath and the three LFP signals recorded from distinct points on the cortical region of an active seizing
mouse brain slice. The 50 pm Ag/AgCl electrodes are arranged in differential mode to record LFPs.
The settings for dc recording and low-pass filter are 0 and 1000 Hz respectively. A small variation of
the temperature of recording bath induces baseline drift in all three channels. The individual spikes are
zero-magnesium seizure-like events.

B.2 Correlation between temperature and DC offset

Here I demonstrate a possible correlation between aCSF temperature and the DC offset voltage
in brain slices. Figure B.2 displays the temperature of the recording chamber (top) and simul-
taneous LFP records from three distinct cortical points in the mouse brain slice (three bottom

traces). A visual inspection suggests a correlation between temperature and baseline drift.

B.3 Low-amplitude signal generator

The low-amplitude signal generator! was used to test the operational performance of the bioam-
plifiers. The reference signal produced with this device can be fed into different bioamplifiers and
their outputs monitored for possible discrepancies. The schematic diagram of the low-amplitude
signal generator is displayed in Fig. B.3. The main component of the device is the MAX038CPP
9741 integrated circuit (IC 1 in the figure), a precision function generator configured here to gen-
erate 1-Hz and 10-Hz sinusoidal, triangular, square-wave test signals of amplitude of ~90 pVp,

which is in the range of typical EEG and LFP signals.

'Designed by Jon Henderson, built by technician Stewart Finlay
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B.3 Low-amplitude signal generator
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(a) Sine waveform (b) Triangle waveform (c) Square waveform

Amplitude [mV]

1.2
time [sec]

Figure B.4: Low voltage calibration signals. (a) sine, (b) triangle, and (c) square waveforms as recorded
with bioamplifiers. The output frequency is 10 Hz. The amplification is x 10,000 and the cutoff frequency
settings on the bioamplifier are 0.1 and 3000 Hz for high- and low-pass filters. To plot the recorded signals,
the amplitudes have been divided by the gain of the amplifier.

A sample record of the three different 10-Hz waveforms produced by this small-amplitude

signal generator is shown in Fig. B.4.

B.4 Inherent noise of A-M bioamplifiers and CED
analogue-to-digital converter

Figure B.5 shows the result of simultaneous recordings by four different amplifiers and a direct
recording via analogue-to-digital converter (ADC) with their respective inputs configured as
short circuits. This figure shows the results of an experiment to ensure that the performance
of amplifiers is similar and comparable. Since all amplifiers have identical settings, one expects
similar outputs which represent the amplifier’s internal noise levels. Any channel showing dif-
ferent behaviour should be considered faulty and may need repair or calibration. Based on
the connection diagram on the top panel of Fig. B.5, the input terminals of each of the four
headstages (preamplifiers with fixed gain of x50) were connected together to make the short
circuit. Headstage outputs were connected to the amplifiers with a bandpass range of 0-1000
Hz and amplification gain of x200. Each amplifier output was fed into the ADC with sampling
frequency of 2 kHz. The sample records are displayed in Fig. B.5 (b—e), corresponding to the
internal noise levels of each amplifier. The power spectra are depicted on the right panel (g-j).
Note that all voltage traces and power spectra are comparable, indicating matched amplifiers.
Panels (f) and (k) show the result of the record from a short-circuit connection applied directly

to one of the ADC channels in order to capture the noise level of the ADC.

B.5 Methodology of neural probing experiments

This experiment was performed on a 400-pm slice of coronal mouse brain tissue. Electrical
stimulation was delivered to white matter underlying the cortex using a voltage source capable of
delivering a preset voltage waveform regardless of variations in the impedance of the target tissue.

The voltage stimulation is applied via a bipolar configuration of 75-pm tungsten electrodes. The
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Figure B.5: Simultaneous monitoring of the inherent noise levels of A-M bioamplifiers and the CED
analogue to digital converter (ADC). (a) Schematic diagram of the experimental setup showing a con-
nection between a headstage (HDSTG), a bioamplifier and the ADC. The experiments are carried out
using same amplifier gains (x1000) and frequency ranges (0-1000 Hz), without using the notch filter.
The four bioamplifiers are connected to four input channels on the ADC. A short circuit is applied to
the headstages. The four resultant digital outputs of ADC are displayed in panels (b—e). The inherent
noise level of the ADC is obtained by applying a short-circuit to its fifth input and the resultant voltage
is displayed in (f). For each voltage trace, the related power spectrum is displayed on the right panels

(g-k).

evoked potentials (EPs) were recorded from neocortex directly above the stimulation area (using
a 25-um tungsten recording electrode in the tissue and a platinum electrode as the reference
electrode in the recording bath) in bipolar mode. A large circular Ag/AgCl electrode was used
as the ground in the bath. The recorded signal was filtered, amplified, digitized and recorded for
further analysis. The high- and low-pass filter settings, amplifier gain and sampling frequency
were 0.1 Hz, 1000 Hz, x1000, 1 kHz respectively. The stimulation voltage was set to be a biphasic
+1 V square impulse pair, 100 ms per pulse, with a pulse separation of 1 ms as displayed in

Fig. B.6.
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Figure B.6: The biphasic voltage stimulation in evoked potential experiment

This biphasic stimulus pattern was delivered every 10 s. The tissue was kept shallow sub-
merged, but was prevented from drying. About 50 EPs were recorded while the slice was perfused
with normal aCSF. Thereafter, the normal solution was replaced by zero-Mg solution while the
stimulation and recording processes were continued for about 200 more EP tracks. At that point
the slice failed to generate EPs due to mechanical disturbance generated in the holding bath.
Large-amplitude artifacts were removed from the LFP recording by visual inspection. Individual
EPs were extracted and time-aligned based on the stimulus start point. Data were recorded us-
ing Spike2 software, and the event extraction and other preliminary signal processing methods

were implemented in MATLAB.

B.6 Performance of notch filter

The A-M bioamplifiears have a notch filter designed to eliminate 50 Hz mains interference while
keeping other frequency content intact. The specific attenuation of the notch filter is —50 dB.
The User Manual emphasizes that the notch filter should only be used if other noise reduction
techniques such as proper grounding and shielding are inadequate, since this filter causes some
signal distortion for frequency components below 100 Hz. Here I demonstrate the effect of
the notch filter to remove 50 Hz interference. Two 10 s voltage signals (one with notch filter
off and the other with notch on) are recorded from artificial cerebreospinal fluid (aCSF), and
the resulting power spectra displayed in Figure B.7 in logarithmic (a) and linear (b) frequency
scales. The spectra show the result of notch filtering as an attenuation around 50 Hz, and
an attenuation of only the second harmonic at 100 Hz; all other harmonics of 50 Hz are still
present. Note that using differential (rather than monopolar) electrode configuration enables
us to attenuate the 50-Hz interference considerably without using the notch filter: see Fig. B.8.
The low frequency component of the background noise (f < 10 Hz) is also reduced considerably

compared to monopolar record.
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Figure B.7: Spectra of sample records from normal artificial cerebrospinal fluid (aCSF) in the recording
bath to demonstrate the effect of notch filtering. The signal was recorded using a monopolar configuration
while the door of Faraday cage and door of the shielded room were left open, causing the trace to be
contaminated by 50-Hz mains noise. (a) Resulting power spectra without (solid line) and with (dashed
line) 50-Hz notch filter in logarithmic, and (b) linear frequency scales. The sampling frequency was 10
kHz and the signal length was 10 s. The signal was recorded using 50 nm Ag/AgCl recording electrode
and a disk shaped reference electrode made from the same material.
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Figure B.8: Differential mode eliminates the common-mode 50-Hz interference. The recording is similar to
the ones demonstrated in Fig. B.7, but here a differential mode is used instead of monopolar configuration.
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Appendix C

C.1 Whittaker smoother

The Whittaker smoother is a computationally efficient method to extract the trend of fluctuat-
ing data. It is mainly used for noise-removal purposes, but is used as a trend extractor in this
thesis. See Eilers [2003] for more details. The method can easily be implemented in MATLAB as

below:

Whittaker.m
function [xsmooth, xrough] = whittaker(x, Fs, smo)

% function [xsmooth, xrough] = whittaker(x, Fs, smo)

% Decompose x into smooth and rough components using Whittaker filter
% ASR: Feb 22, 2006, based on Jamie Sleigh’s code

% JWS: Input Fs and smoothing parameter smo (usually ~50)

lambda = smo*Fs;
m = length(x);

E = speye(m);

D diff(E, 2);
if size(x, 1) ==

X = x’;
end
z = (E + lambda * (D’ * D)) " x;
xsmooth = z;
xrough = x - z;

C.2 Spindle extraction

Here I describe the algorithm and MATLAB code to automatically extract simulated spindles
as displayed in Fig. 4.8(a). I apply a low-pass filter to extract a smooth waveform from the
mean-removed and rectified membrane voltage of the regular spiking (RS) cortical neuron. The
amplitude of the filtered signal is compared against a threshold to locate the onset and termina-
tion of a spindle, corresponding to a bundle or burst of action potentials. The filter characteristics
and the threshold setting were determined by trial-and-error. I obtained good results using a

third-order Butterworth filter with normalized cutoff frequency of 0.00008. The mean-removed
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rectified signal is filtered in forward and reverse directions (using MATLAB filtfilt) to elimi-
nate phase distortion. Then a threshold value of 2.6 mV is used to detect spindle events. The
corresponding MATLAB code is presented here. After locating the spindles, it is easy to calcu-
late their width and interspindle gaps (see Fig. 4.8(b, ¢)). Except for the false identification of
an event as a spindle (the first “spindle” in Fig. 4.8), the spindle extraction is generally quite

reliable.

Spindle-extraction.m
function [spindle] = Spindle-extraction(vrs) % vrs is the voltage of RS neuron

% design a simple first-order Butterworth filter

[B,A] = butter(3, 0.00008); % order, normalized cut-off freq
vrs = vrs-mean(vrs);

vrs = vrs.*(vrs>0);

% apply Butterworth filter to synthetic data

y2 = filtfilt(B, A, vrs); % zero phase distortion filtering

% apply threshold test to y2 to locate the spindles

spindle = (y2 > 2.6);

C.3 Steady state locator

The steady-state-locator.mis a MATLAB function capable of locating steady states of Wilson—
Cowan model. Based on an iterative numerical algorithm and employing MATLAB’s standard
fzero function, steady-state-locator.m requires two input arguments (P external excita-
tory stimulus and Nsearch number of search iterations) to return any existing excitatory and

inhibitory steady states.

Steady-state-locator.m
function [E_root, I_root] = WiCo_ss_finder (P, Nsearch)

if nargin ==
[P] = deal(0.075);
Nsearch = 8000;
end
global H; A = cell(3,5);
H = WiCo_init_globs_q; % recall model parameters and constants
n_roots = O;
Nsearch_max = 5000000;
while ((n_roots == 0) && Nsearch <= Nsearch_max)
% define search span of E and I
E_1 = [linspace(O+eps, le-3, 1e6) linspace(le-3, H.Emax-le-3, 1leb),...
linspace (H.Emax-1e-3, H.Emax-eps, 1e5)]’;
I_1 = [linspace(O+eps, le-3, 1le6) linspace(le-3, H.Imax-le-3, 1leb),...
linspace(H.Imax-1e-3, H.Imax-eps, 1e5)]’;
[err E] = E _resid(E_1, P);
% Count the number of E roots (look for sign-change in residuals)
chs_ E = err_E(1:end-1) .* err_E(2:end);
chs_E_index = find(chs_E < 0);
n_roots = length(chs_E_index);
if (n_roots == || n_roots == 2)
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Nsearch = 2xNsearch;
disp([’Doubling Nsearch to ’ num2str(Nsearch)]);
end
end
if n_roots ==
msgl = ’...failed to find a root at’;
msg2 = ’ [H.Pcent, H.Qcent, R, P] =’;
fprintf(’"n¥%s "n %s "n [ %g %g %g %g ] ---skipped!"n"n’,
msgl, msg2,
[H.Pcent, H.Qcent, H.R, P]);
end
% Form a bracketting interval for each root
if n_roots >= 1
brack_ E = [E_1(chs_E_index ) E_1(chs_E_index + 1)];
% Check for NaN at either end of bracket
if any(isnan(brack_E(:)))
error(’Detected NaN in a bracket!’);
end
end
% Polish each E root, and retrieve corresponding I root
[E_root I_root] = deal(NaN*ones(n_roots, 1));
for i = 1: n_roots
E_root(i) = fzero(@ E_resid, brack _E(i,:), [1, [1, P);
b using dE/dt isocline to find I_root:
I_root(i) = dE_dt_isocline(E_root(i), P);
end
[E_ root, IX] = sort(E_root, ’descend’);
I_root_temp = NaN(size(I_root));
for i=1:length(IX)
I_root_temp(i) = I_root(IX(i));
end
I_root = I_root_temp;

% Solve the dE/dt and dI/dt isocline equations, and report discrepancy
% between initial E_1 values and derived E_3 values.

function [err_E] = E_resid(E_1, P)

I 2 = dE_dt_isocline(E_1, P);

% now solve dI/dt=0 isocline using I_2 to give E_3

E_3 = dI_dt_isocline(I_2, P);

err E =E_3 - E_1;

end

% Given E_ss, solve the dE/dt isocline equation for I_ss.

function I_ss = dE_dt_isocline(E_ss, P)

global H

I_ss = (invEsig(E_ss) - H.bb(1, 1)*E_ss+H.bb(1, 3)*P - H.Pcent)./-H.bb(1, 2);
if I_ss>H.Imax; I_ss = H.Imax-eps;end

if I_ss<0; I_ss = eps;end

end

% Given I, solve the dI/dt isocline equation for E.
function E_ss = dI_dt_isocline(I_ss, P)
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global H
E_ss = (invIsig(I_ss) + H.bb(2, 2)*I_ss + H.bb(2, 3)*P - H.Qcent)./H.bb(2, 1);
if E_ss>H.Emax; E_ss = H.Emax-eps;end
if E_ss<0; E_ss = eps;end
end
e
% Inverse of excitatory sigmoid function; output in millivolts
function invsig = invEsig(val)
global H
invsig = NaN*ones(size(val));
ok = find(val > 0 & val < H.Emax);
% without these checks, the algorithm fails
% to find the third root which is very close to the origin:
invsig(ok) = H.theta - (1/H.a)*log(H.Emax./val(ok) - 1);
invsig(val < 0) = H.theta - (1/H.a)*log(H.Emax./eps - 1);
invsig(val > H.Emax) = H.theta - (1/H.a)*log(H.Emax./(l-eps) - 1);
end
o
% Inverse of excitatory sigmoid function; output in millivolts
function invsig = invIsig(val)
global H
invsig = NaN*ones(size(val));
ok = find(val > 0 & val < H.Imax);
% without these checks, the algorithm fails
% to find the third root which is very close to the origin:
invsig(ok) = H.theta - (1/H.a)*log(H.Imax./val(ok) - 1);
invsig(val < 0) = H.theta - (1/H.a)*log(H.Imax./eps - 1);
invsig(val > H.Imax) = H.theta - (1/H.a)*log(H.Imax./(H.Imax - eps) - 1);
end
Y
% Matlab’s standard fzero function:
function b = fzero(FunFcn, x, tol, trace, varargin)
% A copy Matlab’s standard fzero function comes here
end
C.4 Numerical simulation of 1-D Wilson—Cowan network
The Euler implementation of 1-D Wilson—Cowan model is presented in this Appendix. The

code demonstrates pre-Turing and pre-Hopf simulations (using TurHopf flag) in response to

delta function or continuously applied white noise (using ImpStoch flag). One can reproduce

Figs. 6.15(a-c), Fig. 6.19(a-c) by setting ImpStoch=0.

Initial values for F and [ firing rates set to the steady state values extracted from intersection

of model nullclines.

Lines 48-53 demonstrate how white noise is added to the initial steady-state values. To

expedite Turing emergence, the network is energized with boosted noise at the first time-step,

then the noise amplitude is attenuated (line 48) thereafter.
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The fixed-step Euler method uses model derivatives (computed by nested function EI_derivs
on line 92) to update E and I activities. Spatiotemporally uncorrelated white noise is generated

using Matlab’s randn function at every time step (lines 98, 99), but is inactivated (sf=0 for the

impulse runs).

Very long simulations are needed (Last=1000, 5000 for pre-Hopf and pre-Turing cases re-

spectively) with very fine time-steps (dt=0.005 ms) in order to obtain fully evolved patterns

similar to Figs. 6.15(a-c), Fig. 6.19(a-c).

function JMNS_demo_code
% Demonstration code for integrating the Wilson-Cowan 1-D neural equations

%% flags
ImpStoch = 1; % 1 for impulse response, O for stochastic simulation
TurHopf = 1; % 1 for pre-Turing, O for pre-Hopf simulation

%% Define the 1-D space domain

L = 6000; % length of cortical rod (um)

dx = 1.5; % spatial resolution (um)

X = [-L/2: dx: L/2]7; % cortical rod as a column vector (um)
N = length(X); % number of elements in the rod

%% Define the Eq. (4) connectivity kernels
if TurHopf ¥ pre-Turing:
[b_.EE b_EI b_IE b_II] deal(18, 10, 19, 0); 7% synaptic strength
[sigEE sigEI siglE sigII] = deal(50, 148.5, 148.5, 20);’% synaptic range
else % pre-Hopf:
[b.EE b EI b_IE b_II]
[sigEE sigEI siglE siglI]

deal(18, 10, 19, 0); % synaptic strength
deal(43, 42, 42, 20); 7% synaptic range

end

wEE = b_EE/(2*sigEE) * exp(-abs(X)/sigEE);

wEI = b_EI/(2*sigEI) * exp(-abs(X)/sigEI);

wIE = b_IE/(2*siglIE) * exp(-abs(X)/sigIE);

wII = b_II/(2*siglI) * exp(-abs(X)/sigII); % (not used since b_II = 0)

%% Set up the time-base

dt = 0.005%10; % integration time step (ms)
Last = 1000; % duration of simulation (ms)
tspan = 0: dt: Last; Nsteps = length(tspan);

%% Initialize the noise attenuation and the noise scaling factor
if ImpStoch, noise_att = 0; else noise_att = 1e-10; end
sf = noise_att./sqrt(dt*dx); % noise scaling factor

%% Sigmoid definitions
[a, theta] = deal(9, 2.2); % sigmoid gain (1/mV) and threshold (mV)
[Emax Imax] = deal(0.1, 0.15); % maximum firing rates (1/ms)

SigmoidE = @(v) Emax./(1 + exp(-ax(v - theta)));
SigmoidI = @(v) Imax./(1 + exp(-a*x(v - theta)));

%% Initial conditions and other parameter settings

[tau_E, tau_I] = deal(10, 8); % ms

E = zeros(N, Nsteps); I = zeros(N, 1);

if TurHopf % pre-Turing (refer to Fig. 4 and Table 1 for P, Q values):
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[P, Q] = deal(2.4, 1.35); % mV
E(:, 1) = 0.087034901273651 + randn(N, 1)*sf; sf = 0.1x*sf;
I(:, 1) = 0.081851136336899 + randn(N, 1)*sf;

else % pre-Hopf (refer to Fig. 4 and Table 1 for P, Q values):
[P, Q] = deal(2.1984, 1.35); % mV
E(:, 1) = 0.083346268256679 + randn(N, 1)*sf;
I(:, 1) = 0.069458670491093 + randn(N, 1)*sf;

end

if ImpStoch % apply delta-like spike to central grid point
E(round(N/2),1) = 0.1; I(round(N/2),1) = 0.110;

end

%% Euler integration of Wilson-Cowan equations
for i = 2:length(tspan)

EI_derivs = WilCo_dot();

E(:, i) = E(:, i-1) + dt*(EI_derivs(:, 1)); % record E-activity

I =1+ dt*x(EI_derivs(:, 2)); % (but don’t save I-activity)
if mod(i, 100) == % show progress graphs
if TurHopf

figure(2); clf; hold on; plot(X, [E(:, i)1);

title(sprintf (’pre-Turing E-activity:: i = %d/%d’, 1i,...
length(tspan)), ’fontsize’, 16);

xlabel(’X (um)’, ’fontsize’, 14); zoom on; grid on;

else

figure(2); clf; hold on;

plot(tspan(1:i-1), E(round(N/2), 1:i-1));

xlabel(’t (ms)’); ylabel(’E (1/ms)’);

title(sprintf (’pre-Hopf activity, central point:: i = %d/%d’...

,i,length(tspan)), ’fontsize’, 16);
end
end
end

%% Plot the time-space graphs
figure(5); clf; imagesc(tspan(length(tspan)/10:end), X,
E(:, (length(tspan)/10):end)); colorbar;
xlabel(’t (ms)’); ylabel(’X (um)’);
if TurHopf, title(’pre-Turing’); else title(’pre-Hopf’); end

%% Stochastic Wilson-Cowan DEs in one spatial dimension,
% with uncorrelated noise in time and space
function EI_derivs = WilCo_dot ()

Evolt = ifftshift( cconv(wEE, dx*E(:, i-1), N) - ...
cconv(wIE, dx*xI, N) ) + P;
Ivolt = ifftshift( cconv(wEI, dx*E(:, i-1), N) ) + Q;

derivl = ( -E(:, i-1) + SigmoidE(Evolt) + randn(N, 1)*sf)/tau_E;
deriv2 ( -I + SigmoidI(Ivolt) + randn(N, 1)*sf)/tau_I;

EI_derivs = [derivl, deriv2];
end

end
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