74,921 research outputs found

    Forgetting Exceptions is Harmful in Language Learning

    Get PDF
    We show that in language learning, contrary to received wisdom, keeping exceptional training instances in memory can be beneficial for generalization accuracy. We investigate this phenomenon empirically on a selection of benchmark natural language processing tasks: grapheme-to-phoneme conversion, part-of-speech tagging, prepositional-phrase attachment, and base noun phrase chunking. In a first series of experiments we combine memory-based learning with training set editing techniques, in which instances are edited based on their typicality and class prediction strength. Results show that editing exceptional instances (with low typicality or low class prediction strength) tends to harm generalization accuracy. In a second series of experiments we compare memory-based learning and decision-tree learning methods on the same selection of tasks, and find that decision-tree learning often performs worse than memory-based learning. Moreover, the decrease in performance can be linked to the degree of abstraction from exceptions (i.e., pruning or eagerness). We provide explanations for both results in terms of the properties of the natural language processing tasks and the learning algorithms.Comment: 31 pages, 7 figures, 10 tables. uses 11pt, fullname, a4wide tex styles. Pre-print version of article to appear in Machine Learning 11:1-3, Special Issue on Natural Language Learning. Figures on page 22 slightly compressed to avoid page overloa

    Do not forget: Full memory in memory-based learning of word pronunciation

    Get PDF
    Memory-based learning, keeping full memory of learning material, appears a viable approach to learning NLP tasks, and is often superior in generalisation accuracy to eager learning approaches that abstract from learning material. Here we investigate three partial memory-based learning approaches which remove from memory specific task instance types estimated to be exceptional. The three approaches each implement one heuristic function for estimating exceptionality of instance types: (i) typicality, (ii) class prediction strength, and (iii) friendly-neighbourhood size. Experiments are performed with the memory-based learning algorithm IB1-IG trained on English word pronunciation. We find that removing instance types with low prediction strength (ii) is the only tested method which does not seriously harm generalisation accuracy. We conclude that keeping full memory of types rather than tokens, and excluding minority ambiguities appear to be the only performance-preserving optimisations of memory-based learning.Comment: uses conll98, epsf, and ipamacs (WSU IPA

    HOW SHOULD IMPLICIT LEARNING BE CHARACTERIZED - AUTHORS RESPONSE

    Get PDF

    Don't Blame Distributional Semantics if it can't do Entailment

    Get PDF
    Distributional semantics has had enormous empirical success in Computational Linguistics and Cognitive Science in modeling various semantic phenomena, such as semantic similarity, and distributional models are widely used in state-of-the-art Natural Language Processing systems. However, the theoretical status of distributional semantics within a broader theory of language and cognition is still unclear: What does distributional semantics model? Can it be, on its own, a fully adequate model of the meanings of linguistic expressions? The standard answer is that distributional semantics is not fully adequate in this regard, because it falls short on some of the central aspects of formal semantic approaches: truth conditions, entailment, reference, and certain aspects of compositionality. We argue that this standard answer rests on a misconception: These aspects do not belong in a theory of expression meaning, they are instead aspects of speaker meaning, i.e., communicative intentions in a particular context. In a slogan: words do not refer, speakers do. Clearing this up enables us to argue that distributional semantics on its own is an adequate model of expression meaning. Our proposal sheds light on the role of distributional semantics in a broader theory of language and cognition, its relationship to formal semantics, and its place in computational models.Comment: To appear in Proceedings of the 13th International Conference on Computational Semantics (IWCS 2019), Gothenburg, Swede

    On the Feasibility of Transfer-learning Code Smells using Deep Learning

    Full text link
    Context: A substantial amount of work has been done to detect smells in source code using metrics-based and heuristics-based methods. Machine learning methods have been recently applied to detect source code smells; however, the current practices are considered far from mature. Objective: First, explore the feasibility of applying deep learning models to detect smells without extensive feature engineering, just by feeding the source code in tokenized form. Second, investigate the possibility of applying transfer-learning in the context of deep learning models for smell detection. Method: We use existing metric-based state-of-the-art methods for detecting three implementation smells and one design smell in C# code. Using these results as the annotated gold standard, we train smell detection models on three different deep learning architectures. These architectures use Convolution Neural Networks (CNNs) of one or two dimensions, or Recurrent Neural Networks (RNNs) as their principal hidden layers. For the first objective of our study, we perform training and evaluation on C# samples, whereas for the second objective, we train the models from C# code and evaluate the models over Java code samples. We perform the experiments with various combinations of hyper-parameters for each model. Results: We find it feasible to detect smells using deep learning methods. Our comparative experiments find that there is no clearly superior method between CNN-1D and CNN-2D. We also observe that performance of the deep learning models is smell-specific. Our transfer-learning experiments show that transfer-learning is definitely feasible for implementation smells with performance comparable to that of direct-learning. This work opens up a new paradigm to detect code smells by transfer-learning especially for the programming languages where the comprehensive code smell detection tools are not available
    • …
    corecore