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Do Not Forget:Full Memory in Memory-Based Learning of Word Pronunciation �Antal van den Bosch and Walter DaelemansTilburg University, ILKP.O. Box 90153, NL-5000 LE TilburgThe Netherlandsfantalb,walterg@kub.nlAbstractMemory-based learning, keeping full memoryof learning material, appears a viable approachto learning nlp tasks, and is often superiorin generalisation accuracy to eager learningapproaches that abstract from learning mate-rial. Here we investigate three partial memory-based learning approaches which remove frommemory speci�c task instance types estimatedto be exceptional. The three approaches eachimplement one heuristic function for estimat-ing exceptionality of instance types: (i) typi-cality, (ii) class prediction strength, and (iii)friendly-neighbourhood size. Experiments areperformed with the memory-based learning al-gorithm ib1-ig trained on English word pro-nunciation. We �nd that removing instancetypes with low prediction strength (ii) is theonly tested method which does not seriouslyharm generalisation accuracy. We concludethat keeping full memory of types rather thantokens, and excluding minority ambiguities ap-pear to be the only performance-preserving op-timisations of memory-based learning.1 IntroductionMemory-based learning of classi�cation tasks is abranch of supervised machine learning in which thelearning phase consists simply of storing all en-countered instances from a training set in mem-ory (Aha, 1997). Memory-based learning algorithmsdo not invest e�ort during learning in abstract-ing from the training data, such as eager-learning(e.g., decision-tree algorithms, rule-induction, orconnectionist-learning algorithms, (Quinlan, 1993;Mitchell, 1997)) do. Rather, they defer investinge�ort until new instances are presented. On be-ing presented with an instance, a memory-based�This research was done in the context of the \Induc-tion of Linguistic Knowledge" research programme, par-tially supported by the Foundation for Language Speechand Logic (TSL), which is funded by the NetherlandsOrganization for Scienti�c Research (NWO). Part of the�rst author's work was performed at the Department ofComputer Science of the Universiteit Maastricht.

learning algorithm searches for a best-matching in-stance, or, more generically, a set of the k best-matching instances in memory. Having found sucha set of k best-matching instances, the algorithmtakes the (majority) class with which the instancesin the set are labeled to be the class of the newinstance. Pure memory-based learning algorithmsimplement the classic k-nearest neighbour algo-rithm (Cover and Hart, 1967; Devijver and Kittler,1982; Aha, Kibler, and Albert, 1991); in di�erentcontexts, memory-based learning algorithms havealso been named lazy, instance-based, exemplar-based, memory-based, case-based learning or reason-ing (Stan�ll and Waltz, 1986; Kolodner, 1993; Aha,Kibler, and Albert, 1991; Aha, 1997))Memory-based learning has been demonstratedto yield accurate models of various natural lan-guage tasks such as grapheme-phoneme conver-sion, word stress assignment, part-of-speech tagging,and PP-attachment (Daelemans, Van den Bosch,and Weijters, 1997a). For example, the memory-based learning algorithm ib1-ig (Daelemans andVan den Bosch, 1992; Daelemans, Van den Bosch,and Weijters, 1997b), which extends the well-knownib1 algorithm (Aha, Kibler, and Albert, 1991)with an information-gain weighted similarity met-ric, has been demonstrated to perform adequatelyand, moreover, consistently and signi�cantly betterthan eager-learning algorithms which do invest ef-fort in abstraction during learning (e.g., decision-tree learning (Daelemans, Van den Bosch, andWeijters, 1997b; Quinlan, 1993), and connectionistlearning (Rumelhart, Hinton, and Williams, 1986))when trained and tested on a range of morpho-phonological tasks (e.g., morphological segmenta-tion, grapheme-phoneme conversion, syllabi�cation,and word stress assignment) (Daelemans, Gillis, andDurieux, 1994; Van den Bosch, Daelemans, andWeijters, 1996; Van den Bosch, 1997). Thus, whenlearning nlp tasks, the abstraction occurring in de-cision trees (i.e., the explicit forgetting of informa-tion considered to be redundant) and in connec-tionist networks (i.e., a non-symbolic encoding anddecoding in relatively small numbers of connection



weights) both hamper accurate generalisation of thelearned knowledge to new material.These �ndings appear to contrast with the generalassumption behind eager learning, that data repre-senting real-world classi�cation tasks tends to con-tains (i) redundancy and (ii) exceptions: redundantdata can be compressed, yielding smaller descrip-tions of the original data; some exceptions (e.g., low-frequency exceptions) can (or should) be discardedsince they are expected to be bad predictors for clas-sifying new (test) material. However, both redun-dancy and exceptionality cannot be computed triv-ially; heuristic functions are generally used to esti-mate them (e.g., functions from information theory(Quinlan, 1993)). The lower generalisation accura-cies of both decision-tree and connectionist learning,compared to memory-based learning, on the above-mentioned nlp tasks, suggest that these heuristic es-timates may not be the best choice for learning nlptasks. It appears that in order to learn such taskssuccessfully, a learning algorithm should not forget(i.e., explicitly remove from memory) any informa-tion contained in the learning material: it should notabstract from the individual instances.An obvious type of abstraction that is not harm-ful for generalisation accuracy (but that is not al-ways acknowledged in implementations of memory-based learning) is the straightforward abstractionfrom tokens to types with frequency information.In general, data sets representing natural languagetasks, when large enough, tend to contain consider-able numbers of duplicate sequences mapping to thesame output or class. For example, in data repre-senting word pronunciations, some sequences of let-ters, such as ing at the end of English words, occurhundreds of times, while each of the sequences ispronounced identically, viz. /�8/. Instead of storingall individual sequence tokens in memory, each setof identical tokens can be safely stored in memoryas a single sequence type with frequency informa-tion, without loss of generalisation accuracy (Daele-mans and Van den Bosch, 1992; Daelemans, Van denBosch, and Weijters, 1997b). Thus, forgetting in-stance tokens and replacing them by instance typesmay lead to considerable computational optimisa-tions of memory-based learning, since the memorythat needs to be searched may become considerablysmaller.Given the safe, performance-preserving optimisa-tion of replacing sets of instance tokens by instancetypes with frequency information, a next step of in-vestigation into optimising memory-based learningis to measure the e�ects of forgetting instance typeson grounds of their exceptionality, the underlyingidea being that the more exceptional a task instancetype is, the more likely it is that it is a bad predic-tor for new instances. Thus, exceptionality should insome way express the unsuitability of a task instancetype to be a best match (nearest neighbour) to new

instances: it would be unwise to copy its associatedclassi�cation to best-matching new instances. In thispaper, we investigate three criteria for estimatingan instance type's exceptionality, and removing in-stance types estimated to be the most exceptionalby each of these criteria. The criteria investigatedare1. typicality of instance types;2. class prediction strength of instance types;3. friendly-neighbourhood size of instance types;4. random (to provide a baseline experiment).We base our experiments on a large data set ofEnglish word pronunciation. We briey describethis data set, and the way it is converted into aninstance base �t for memory-based learning, in Sec-tion 2. In Section 3 we describe the settings of ourexperiments and the memory-based learning algo-rithm ib1-ig with which the experiments are per-formed. We then turn to describing the notionsof typicality, class-prediction strength, and friendly-neighbourhood size, and the functions to estimatethem, in Section 4. Section 5 provides the experi-mental results. In Section 6, we discuss the obtainedresults and formulate our conclusions.2 The word-pronunciation dataConverting written words to stressed phonemic tran-scription, i.e., word pronunciation, is a well-knownbenchmark task in machine learning (Stan�ll andWaltz, 1986; Sejnowski and Rosenberg, 1987; Shav-lik, Mooney, and Towell, 1991; Dietterich, Hild, andBakiri, 1990; Wolpert, 1990). We de�ne the task asthe conversion of �xed-sized instances representingparts of words to a class representing the phonemeand the stress marker of the instance's middle let-ter. To generate the instances, windowing is used(Sejnowski and Rosenberg, 1987). Table 1 displaysexample instances and their classi�cations generatedon the basis of the sample word booking. Classi�ca-tions, i.e., phonemes with stress markers (henceforthPSs), are denoted by composite labels. For exam-ple, the �rst instance in Table 1, book, maps toclass label /b/1, denoting a /b/ which is the �rstphoneme of a syllable receiving primary stress. Inthis study, we chose a �xed window width of sevenletters, which o�ers su�cient context information foradequate performance, though extension of the win-dow decreases ambiguity within the data set (Vanden Bosch, 1997).The task, henceforth referred to as gs (grapheme-phoneme conversion and stress assignment) is sim-ilar to the nettalk task presented by Sejnowskiand Rosenberg (1986), but is performed on a largercorpus of 77,565 English word-pronunciation pairs,extracted from the celex lexical data base (Bur-nage, 1990). Converted into �xed-sized instance, the



instance left focus right classi�cationnumber context letter context1 b o o k /b/12 b o o k i /u/03 b o o k i n /-/04 b o o k i n g /k/05 o o k i n g /�/06 o k i n g /8/07 k i n g /-/0Table 1: Example of instances generated for the word-pronunciation task from the word booking.full instance base representing the gs task contains675,745 instances. The task features 159 classes(combined phonemes and stress markers). The cod-ing of the output as 159 atomic (`local') classes com-bining grapheme-phoneme conversion and stress as-signment is one out of many types of output cod-ing (Shavlik, Mooney, and Towell, 1991), e.g., dis-tributed bit coding using articulatory features (Se-jnowski and Rosenberg, 1987), error-correcting out-put coding (Dietterich, Hild, and Bakiri, 1990), orsplit discrete coding of grapheme-phoneme conver-sion and stress assignment (Van den Bosch, 1997).While these studies point at back-propagation learn-ing (Rumelhart, Hinton, and Williams, 1986), us-ing distributed output code, as the better per-former as compared to id3 (Quinlan, 1986), a sym-bolic inductive-learning decision tree algorithm (Di-etterich, Hild, and Bakiri, 1990; Shavlik, Mooney,and Towell, 1991), unless id3 was equipped witherror-correcting output codes and additional man-ual tweaks (Dietterich, Hild, and Bakiri, 1990). Sys-tematic experiments with the data also used in thispaper have indicated that both back-propagationand decision-tree learning (using either distributedor atomic output coding) are consistently and sig-ni�cantly outperformed by memory-based learningof grapheme-phoneme conversion, stress assignment,and the combination of the two (Van den Bosch,1997), using atomic output coding. Our choice foratomic output classes in the present study is moti-vated by the latter results.3 Algorithm and experimental setup3.1 Memory-based learning in IB1-IGIn the experiments reported here, we employ ib1-ig(Daelemans and Van den Bosch, 1992; Daelemans,Van den Bosch, and Weijters, 1997b), which hasbeen demonstrated to perform adequately, and sig-ni�cantly better than eager-learning algorithms onthe gs task (Van den Bosch, 1997). ib1-ig con-structs an instance base during learning. An in-stance in the instance base consists of a �xed-lengthvector of n feature-value pairs (here, n = 7), an in-formation �eld containing the classi�cation of that

particular feature-value vector, and an information�eld containing the occurrences of the instance withits classi�cation in the full training set. The lat-ter information �eld thus enables the storage of in-stance types rather than the more extensive storageof identical instance tokens. After the instance baseis built, new (test) instances are classi�ed by match-ing them to all instance types in the instance base,and by calculating with each match the distance be-tween the new instance X and the memory instancetype Y , �(X;Y ), using the function given in Eq. 1:�(X;Y ) = nXi=1 W (f i)�(Xi; Yi); (1)where W (fi) is the weight of the ith feature, and�(xi; yi) is the distance between the values of theith feature in the instances X and Y . When thevalues of the instance features are symbolic, as withthe gs task (i.e., feature values are letters), a simpledistance function is used (Eq. 2):�(Xi; Yi) = 0 if Xi = Yi else 1: (2)The classi�cation of the memory instance type Ywith the smallest �(X;Y ) is then taken as the clas-si�cation of X. This procedure is also known as1-nn, i.e., a search for the single nearest neighbour,the simplest variant of k-nn (Devijver and Kittler,1982).The weighting function of ib1-ig, W (f i), repre-sents the information gain of feature fi. Weight-ing features in k-nn classi�ers such as ib1-ig is anactive �eld of research (cf. (Wettschereck, 1995;Wettschereck, Aha, and Mohri, 1997), for compre-hensive overviews and discussion). Information gainis a function from information theory also used inid3 (Quinlan, 1986) and c4.5 (Quinlan, 1993). Theinformation gain of a feature expresses its relativerelevance compared to the other features when per-forming the mapping from input to classi�cation.The idea behind computing the information gainof features is to interpret the training set as an in-formation source capable of generating a number ofmessages (i.e., classi�cations) with a certain proba-bility. The information entropy H of such an infor-mation source can be compared in turn for each of



the features characterising the instances (let n equalthe number of features), to the average informationentropy of the information source when the value ofthose features are known.Data-base information entropy H(D) is equal tothe number of bits of information needed to knowthe classi�cation given an instance. It is computedby equation 3, where pi (the probability of classi�-cation i) is estimated by its relative frequency in thetraining set. H(D) = �Xi pilog2pi (3)To determine the information gain of each of the nfeatures f1 : : : fn, we compute the average informa-tion entropy for each feature and subtract it fromthe information entropy of the data base. To com-pute the average information entropy for a featurefi, given in equation 4, we take the average informa-tion entropy of the data base restricted to each pos-sible value for the feature. The expression D[fi=vj ]refers to those patterns in the data base that havevalue vj for feature fi, j is the number of possiblevalues of fi, and V is the set of possible values forfeature fi. Finally, jDj is the number of patterns inthe (sub) data base.H(D[fi ]) = Xvj2V H(D[fi=vj ]) jD[fi=vj ]jjDj (4)Information gain of feature fi is then obtained byequation 5. G(fi) = H(D) �H(D[fi ]) (5)Using the weighting function W (f i) acknowledgesthe fact that for some tasks, such as the current gstask, some features are far more relevant (impor-tant) than other features. Using it, instances thatmatch on a feature with a relatively high informa-tion gain are regarded as less distant (more alike)than instances that match on a feature with a lowerinformation gain.Finding a nearest neighbour to a test instance mayresult in two or more candidate nearest-neighbourinstance types at an identical distance to the test in-stance, yet associated with di�erent classes. The im-plementation of ib1-ig used here handles such casesin the following way. First, ib1-ig selects the classwith the highest occurrence within the merged set ofclasses of the best-matching instance types. In caseof occurrence ties, the classi�cation is selected thathas the highest overall occurrence in the training set.(Daelemans, Van den Bosch, and Weijters, 1997b).3.2 SetupWe performed a series of experiments in which ib1-ig is applied to the gs data set, systematically editedaccording to each of the three tested criteria (plus

the baseline random criterion) described in the nextsection. We performed the following global proce-dure:1. We partioned the full gs data set into a trainingset of 608,228 instances (90% of the full dataset) and a test set of 67,517 instances (10%).For use with ib1-ig, which stores instance typesrather than instance tokens, the data set was re-duced to contain 222,601 instance types (i.e.,unique combinations of feature-value vectorsand their classi�cations), with frequency infor-mation.2. For each exceptionality criterion (i.e., typ-icality, class prediction strength, friendly-neighbourhood size, and random selection),(a) we created four edited instance bases byremoving 1%, 2%, 5%, and 10% of themost exceptional instance types (accordingto the criterion) from the training set, re-spectively.(b) For each of these increasingly edited train-ing sets, we performed one experiment inwhich ib1-ig was trained on the editedtraining set, and tested on the originalunedited test set.4 Three estimations ofexceptionalityWe investigate three methods for estimating the(degree of) exceptionality of instance types: typ-icality, class prediction strength, and friendly-neighbourhood size.4.1 TypicalityIn its common meaning, \typicality" denotesroughly the opposite of exceptionality; atypicalitycan be said to be a synonym of exceptionality. Weadopt a de�nition from (Zhang, 1992), who proposesa typicality function. Zhang computes typicalitiesof instance types by taking both their feature valuesand their classi�cations into account (Zhang, 1992).He adopts the notions of intra-concept similarity andinter-concept similarity (Rosch and Mervis, 1975) todo this. First, Zhang introduces a distance func-tion similar to Equation 1, in which W (f i) = 1:0for all features (i.e., at Euclidean distance ratherthan information-gain weighted distance), in whichthe distance between two instances X and Y is nor-malised by dividing the summed squared distance byn, the number of features, and in which �(xi; yi) isgiven as Equation 2. The normalised distance func-tion used by Zhang is given in Equation 6.�(X;Y ) =vuut1n nXi=1(W (f i)�(xi; yi))2 (6)



The intra-concept similarity of instance X withclassi�cation C is its similarity (i.e., 1�distance)with all instances in the data set with the same clas-si�cation C: this subset is referred to as X's family,Fam(X). Equation 7 gives the intra-concept simi-larity function Intra(X) (jFam(X)j being the num-ber of instances in X's family, and Fam(X)i the ithinstance in that family).Intra(X) = 1jFam(X)j jFam(X)jXi=1 1:0��(X;Fam(X)i)(7)All remaining instances belong to the subset of un-related instances, Unr(X). The inter-concept simi-larity of an instance X, Inter(X), is given in Equa-tion 8 (with jUnr(X)j being the number of instancesunrelated to X, and Unr(X)i the ith instance inthat subset).Inter(X) = 1jUnr(X)j jUnr(X)jXi=1 1:0��(X;Unr(X)i)(8)The typicality of an instance X, Typ(X), is the quo-tient of X's intra-concept similarity and X's inter-concept similarity, as given in Equation 9.Typ(X) = Intra(X)Inter(X) (9)An instance type is typical when its intra-conceptsimilarity is larger than its inter-concept similar-ity, which results in a typicality larger than 1.An instance type is atypical when its intra-conceptsimilarity is smaller than its inter-concept similar-ity, which results in a typicality between 0 and 1.Around typicality value 1, instances cannot be sen-sibly called typical or atypical; (Zhang, 1992) refersto such instances as boundary instances.In our experiments, we compute the typicality ofall instance types in the training set, order themon their typicality, and remove 1%, 2%, 5%, and10% of the instance types with the lowest typicality,i.e., the most atypical instance types. In addition tothese four experiments, we performed an additionaleight experiments using the same percentages, andediting on the basis of (i) instance types' typicality(by ordering them in reverse order) and (ii) their in-di�erence towards typicality or atypicality (i.e., thecloseness of their typicality to 1.0, by ordering themin order of the absolute value of their typicality sub-tracted by 1.0). The experiments with removing typ-ical and boundary instance types provide interestingcomparisons with the more intuitive editing of atyp-ical instance types.Table 2 provides examples of four atypical, bound-ary, and typical instance types found in the train-ing set. Globally speaking, (i) the set of atypicalinstances tend to contain foreign spellings of loan

words; (ii) there is no clear characteristic of bound-ary instances; and (iii) `certain' pronunciations, i.e.,instance types with high typicality values often in-volve instance types of which the middle letters areat the beginning of words or immediately followinga hyphen, or high-frequency instance types, or in-stance types mapping to a low-frequency class thatalways occurs with a certain spelling (class frequencyis not accounted for in Zhang's metric).4.2 Class-prediction strengthA second estimate of exceptionality is to measurehow well an instance type predicts the class ofall instance types within the training set (includ-ing itself). Several functions for computing class-prediction strength have been proposed, e.g., as acriterion for removing instances in memory-based(k-nn) learning algorithms, such as ib3 (Aha, Ki-bler, and Albert, 1991) (cf. earlier work on editedk-nn (Wilson, 1972; Voisin and Devijver, 1987));or for weighting instances in the Each algorithm(Salzberg, 1990; Cost and Salzberg, 1993). We choseto implement the straightforward class-predictionstrength function as proposed in (Salzberg, 1990)in two steps. First, we count (a) the number oftimes that the instance type is the nearest neigh-bour of another instance type, and (b) the numberof occurrences that when the instance type is a near-est neighbour of another instance type, the classesof the two instances match. Second, the instance'sclass-prediction strength is computed by taking theratio of (b) over (a). An instance type with class-prediction strength 1.0 is a perfect predictor of itsown class; a class-prediction strength of 0.0 indicatesthat the instance type is a bad predictor of classesof other instances, presumably indicating that theinstance type is exceptional.We computed the class-prediction strength of allinstance types in the training set, ordered the in-stance types according to their strengths, and cre-ated edited training sets with 1%, 2%, 5%, and10% of the instance types with the lowest classprediction strength removed, respectively. In Ta-ble 3, four sample instance types are displayedwhich have class-prediction strength 0.0, i.e., thelowest possible strength. They are never a correctnearest-neighbour match, since they all have higher-frequency counterpart types with the same featurevalues. For example, the letter sequence algo oc-curs in two types, one associated with the pronun-ciation /'�/ (viz., primary-stressed /�/, or 1� inour labelling), as in algorithm and algorithms; theother associated with the pronunciation /"�/ (viz.secondary-stressed /�/ or 2�), as in algorithmic.The latter instance type occurs less frequently thanthe former, which is the reason that the class of theformer is preferred over the latter. Thus, an am-biguous type with a minority class (a minority am-biguity) can never be a correct predictor, not even



instance typesatypical boundary typicalfeature values class typicality feature values class typicality feature values class typicalityureaucr 0�V 0.428 cheques 0ks 1.000 oilf 1=� 7.338freudia 0=� 0.442 elgium 0- 1.000 etectio 0kM 8.452tissue 0M 0.458 laby 0a� 1.000 ow-by-b 0b 9.130czech 0- 0.542 manna 0- 1.000 ng-iron 2a�� 12.882Table 2: Examples of atypical (left), boundary (middle), and typical (left) instance types in the training set.For each instance (seven letters and a class mapping to the middle letter), its typicality value is given.feature values class cpsalgo 2� 0.0ck-benc 1b 0.0erby 0a� 0.0reface 0e� 0.0Table 3: Examples of instance types with the lowestpossible class prediction strength (cps) 0.0.for itself, when using ib1-ig as a classi�er, whichalways prefers high frequency over low frequency incase of ties.4.3 Friendly-neighbourhood sizeA third estimate for the exceptionality of instancetypes is counting by how many nearest neighbours ofthe same class an instance type is surrounded in in-stance space. Given a training set of instance types,for each instance type a ranking can be made of all ofits nearest neighbours, ordered by their distance tothe instance type. The number of nearest-neighbourinstance types in this ranking with the same class,henceforth referred to as the friendly-neighbourhoodsize, may range between 0 and the total number ofinstance types of the same class. When the friendlyneighbourhood is empty, the instance type only hasnearest neighbours of di�erent classes. The argu-mentation to regard a small friendly neighbourhoodas an indication of an instance type's exceptionality,follows from the same argumentation as used withclass-prediction strength: when an instance type hasnearest neighbours of di�erent classes, it is vice versaa bad predictor for those classes. Thus, the smalleran instance type's friendly neighbourhood, the moreit could be regarded exceptional.To illustrate the computation of friendly-neighbourhood size, Table 4 lists four examples ofpossible nearest-neighbour rankings (truncated atten nearest neighbours) with their respective num-ber of friendly neighbours. The Table shows thatthe number of friendly neighbours is the number ofsimilarly-labeled instances counted from left to rightin the ranking, until a dissimilarly-labeled instanceoccurs.

feature values class fnsedib 2� 0edib 1� 0echnocr 1n 0soir�ee 0r 0Table 5: Examples of instance types with the lowestpossible friendly-neighbourhood size (fns) 0, i.e., nofriendly neighbours.Friendly-neighbourhood size and class-predictionstrength are related functions, but di�er in theirtreatment of class ambiguity. As stated above, in-stance types may receive a class-prediction strengthof 0.0 when they are minority ambiguities. Countinga friendly neighbourhood does not take class ambi-guity into account; each of a set of ambiguous typesnecessarily has no friendly neighbours, since they areeachother's nearest neighbours with di�erent classes.Thus, friendly-neighbourhood size does not discrim-inate between minority and majority ambiguities. InTable 5, four sample instance types are listed withfriendly-neighbourhood size 0. While some of theseinstance types without friendly neighbours in thetraining set (perhaps with friendly neighbours in thetest set) are minority ambiguities (e.g., edib 2�),others are majority ambiguities (e.g., edib 1�),while others are not ambiguous at all but simplyhave a nearest neighbour at some distance with adi�erent class (e.g., soir�ee 0r).5 ResultsFigure 1 displays the generalisation accuracies interms of incorrectly classi�ed test instances obtainedwith all performed experiments. The leftmost pointin the Figure, from which all lines originate, indi-cates the performance of ib1-ig when trained onthe full data set of 222,601 types, viz. 6.42% in-correctly classi�ed test instances (when computed interms of incorrectly pronounced test words, ib1-igpronounces 64.61 of all test words awlessly).The line graph representing the four experimentsin which instance types are removed randomly canbe seen as the baseline graph. It can be expected



nearest neighbour rank # #1 2 3 4 5 6 7 8 9 10 fn� 1 � 2 � 3 � 3 � 3 � 4 � 4 � 5 � 5 � 6 1� 1 � 1 � 1 � 1 � 1 � 1 � 2 � 2 � 3 � 4 9� 2 � 2 � 2 � 2 � 2 � 2 � 3 � 3 � 3 � 4 0� 1 � 1 � 1 � 3 � 4 � 4 � 4 � 4 � 5 � 6 3Table 4: Four examples of nearest-neighbour rankings and their respective numbers of friendly neighbours(fn). Each ranked nearest neighbour is identi�ed by its match (�) or mismatch (�) with the target instancethe ranking is computed for, and a number denoting its distance to the target instance.that removing instances randomly leads to a degra-dation of generalisation performance. The upwardcurve of the line graph denoting the experimentswith random selection indeed shows degrading per-formance with increasing numbers of left-out in-stance types. The relative decrease in generalisationaccuracy is 2.0% when 1% of the training material isremoved randomly, 3.8% with 2% random removal,10.7% with 5% random removal, and 20.7% with10% random removal.Surprisingly, the only experiments showing lowerperformance degradation than removal by randomselection are those with class-prediction strength;the other criteria for removing exceptional instanceslead to worse degradations. It does not matterwhether instance types are removed on grounds oftheir typicality: apparently, a markedly low, neutral,or high typicality value indicates that the instancetype is (on average) important, rather than remov-able. The same applies to friendly-neighbourhoodsize: instances with small neighbourhood sizes ap-pear to contribute signi�cantly to performance ontest material. It is remarkable that the largest er-rors with 1% and 2% removal are obtained withthe friendly-neighbourhood size criterion: it appearsthat on average, the instances with few or no nearestneighbours are important in the classi�cation of testmaterial.When using class-prediction strength as removalcriterion, performance does not degrade until about5% of the instance types with the lowest strengthare removed from memory. The reason is that class-prediction strength is the only criterion that detectsminority ambiguities, i.e., instance types with pre-diction strength 0.0, that cannot contribute to classi-�cation since they are always overshadowed by theircounterpart instance types with majority classes,even for their own classi�cation. In the training set,9,443 instance types are minority ambiguities, i.e.,4.2% of the instance types (accounting for 3.8% ofthe instance tokens in the original token set).Thus, among the tested methods for reducingthe memory needed for storing an instance base inmemory-based learning, only two relatively trivialmethods are performance-preserving while account-ing for a substantial reduction in the amount of

memory needed by ib1-ig:1. Replacing instance tokens by instance types ac-counts for a reduction of about 63% of mem-ory needed to store instances, excluding thememory needed to store frequency information.When frequency information is stored in twobytes per instance type, the memory reductionis about 54%.2. Removing instance types that are minority am-biguities on top of the type/token-reduction ac-counts only for an additional memory reduc-tion of 2%, i.e., for a total memory reductionof 65%; 56% with two-byte frequency informa-tion stored per instance.6 Discussion and future researchAs previous research has suggested (Daelemans,1996; Daelemans, Van den Bosch, and Weijters,1997a; Van den Bosch, 1997), keeping full mem-ory in memory-based learning of word pronunciationstrongly appears to yield optimal generalisation ac-curacy. The experiments in this paper show that op-timisation of memory use in memory-based learningwhile preserving generalisation accuracy can only beperformed by (i) replacing instance tokens by in-stance types with frequency information, and (ii)removing minority ambiguities. Both optimisationscan be performed straightforwardly; minority ambi-guities can be traced with less e�ort than by usingclass-prediction strength. Our implementation ofib1-ig described in (Daelemans and Van den Bosch,1992; Daelemans, Van den Bosch, and Weijters,1997b) already makes use of this knowledge, albeitpartially (it stores class distributions with letter-window types).Our results also show that atypicality, non-typic-ality, and typicality (Zhang, 1992), and friendly-neighbourhood size are all estimates of exception-ality that indicate the importance of instance typesfor classi�cation, rather than their removability. Asfar as these estimates of exceptionality are viable,our results suggest that exceptions should be keptin memory and not be thrown away.
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Figure 1: Generalisation errors (percentages of incorrectly classi�ed test instances of tribl-ig, with increasednumbers of edited instances, according to the tested exceptionality criteria atypical, typical, boundary,small neighbourhood, low prediction strength, and random selection. Performances, denoted by points, aremeasured when 1%, 2%, 5%, and 10% of the most exceptional instance types are edited.Lazy vs. eager; not stable vs. unstableFrom the results in this paper and those reportedearlier (Daelemans, Van den Bosch, and Weijters,1997a; Van den Bosch, 1997), it appears that nocompromise can be made on memory-base learningin terms of abstraction by forgetting without los-ing generalisation accuracy. Consistently lower per-formances are obtained with algorithms that forgetby constructing decision trees or connectionist net-works, or by editing instance types. Generalisationaccuracy appears to be related to the dimension lazy-eager learning; for the gs task (and for many otherlanguage tasks, (Daelemans, Van den Bosch, andWeijters, 1997a)), it is demonstrated that memory-based lazy learning leads to the best generalisationaccuracies.Another explanation for the di�erence in per-formance between decision-tree, connectionist, andediting methods versus pure memory-based learn-ing is that the former generally display high vari-ance, which is the portion of the generalisation errorcaused by the unstability of the learning algorithm(Breiman, 1996a). An algorithm is unstable whensmall perturbations in the learning material lead tolarge di�erences in induced models, and stable oth-erwise; pure memory-based learning algorithms aresaid to be very stable, and decision-tree algorithmsand connectionist learning to be unstable (Breiman,1996a). High variance is usually coupled with lowbias, i.e., unstable learning algorithms with high

variance tend to have few limitations in the freedomto approximate the task or function to be learned)(Breiman, 1996b). Breiman points out that oftenthe opposite also holds: a stable classi�er with alow variance can display a high bias when it can-not represent data adequately in its available set ofmodels, but it is not clear whether or how this ap-plies to pure memory-based learning as in ib1-ig;its success in representing the gs data and otherlanguage tasks quite adequately would rather sug-gest that ib1-ig has both low variance and low bias.Apart from the possibility that the lazy and eagerlearning algorithms investigated here and in earlierwork do not have a strongly contrasting bias, we con-jecture that the editing methods discussed here, andsome speci�c decision-tree learning algorithms inves-tigated earlier (i.e., igtree (Daelemans, Van denBosch, and Weijters, 1997b), a decision tree learn-ing algorithm that is an approximate optimisationof ib1-ig) have a similar variance to that of ib1-ig; they are virtually as stable as ib1-ig. We basethis conjecture on the fact that the standard devi-ations of both decision-tree learning and memory-based learning trained and tested on the gs data arenot only very small (in the order of 1=10 percents),but also hardly di�erent (cf. (Van den Bosch, 1997)for details and examples). Only connectionist net-works trained with back-propagation and decision-tree learning with pruning display larger standarddeviations when accuracies are averaged over exper-



iments (Van den Bosch, 1997); the stable-unstabledimension might play a role there, but not in thedi�erence between pure memory-based learning andedited memory-based learning.Future researchThe results of the present study suggest thatthe following questions be investigated in future re-search:� The tested criteria for editing can be employedas instance weights as in Each (Salzberg,1990) and Pebls (Cost and Salzberg, 1993),rather than as criteria for instance removal.Instance weighting, preserving pure memory-based learning, may add relevant informationto similarity matching, and may improve ib1-ig's performance.� Di�erent data sets of di�erent sizes may con-tain di�erent portions of atypical instances orminority ambiguities. Moreover, data sets maycontain pure noise. While atypical or excep-tional instances may (and do) return in testmaterial, the chances of noise to return is rel-atively minute. Our results generalise to datasets with approximately the characteristics ofthe gs dataset. Although there are indica-tions that data sets representing other languagetasks indeed share some essential characteristics(e.g., memory-based learning is consistently thebest-performing algorithm), more investigationis needed to make these characteristics explicit.AcknowledgementsWe thank the members of the ILK group, Ton Weij-ters, and Eric Postma for fruitful discussions, andthe anonymous reviewers for relevant comments andsuggestions.ReferencesAha, D. W., editor. 1997. Lazy learning. Dordrecht:Kluwer Academic Publishers. reprinted from: Ar-ti�cial Intelligence Review, 11:1{5.Aha, D. W., D. Kibler, and M. Albert. 1991.Instance-based learning algorithms. MachineLearning, 7:37{66.Breiman, L. 1996a. Bagging predictors. MachineLearning, 24(2).Breiman, L. 1996b. Bias, variance and arcing clas-si�ers. Technical Report 460, University of Cali-fornia, Statistics Department, Berkeley, CA.Burnage, G., 1990. celex: A guide for users. Cen-tre for Lexical Information, Nijmegen.Cost, S. and S. Salzberg. 1993. A weighted near-est neighbor algorithm for learning with symbolicfeatures. Machine Learning, 10:57{78.
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