1,294 research outputs found

    Instance Segmentation of Buildings using Keypoints

    Get PDF
    Building segmentation is of great importance in the task of remote sensing imagery interpretation. However, the existing semantic segmentation and instance segmentation methods often lead to segmentation masks with blurred boundaries. In this paper, we propose a novel instance segmentation network for building segmentation in high-resolution remote sensing images. More specifically, we consider segmenting an individual building as detecting several keypoints. The detected keypoints are subsequently reformulated as a closed polygon, which is the semantic boundary of the building. By doing so, the sharp boundary of the building could be preserved. Experiments are conducted on selected Aerial Imagery for Roof Segmentation (AIRS) dataset, and our method achieves better performance in both quantitative and qualitative results with comparison to the state-of-the-art methods. Our network is a bottom-up instance segmentation method that could well preserve geometric details

    Matterport3D: Learning from RGB-D Data in Indoor Environments

    Full text link
    Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification

    Using Prior Knowledge for Verification and Elimination of Stationary and Variable Objects in Real-time Images

    Get PDF
    With the evolving technologies in the autonomous vehicle industry, now it has become possible for automobile passengers to sit relaxed instead of driving the car. Technologies like object detection, object identification, and image segmentation have enabled an autonomous car to identify and detect an object on the road in order to drive safely. While an autonomous car drives by itself on the road, the types of objects surrounding the car can be dynamic (e.g., cars and pedestrians), stationary (e.g., buildings and benches), and variable (e.g., trees) depending on if the location or shape of an object changes or not. Different from the existing image-based approaches to detect and recognize objects in the scene, in this research 3D virtual world is employed to verify and eliminate stationary and variable objects to allow the autonomous car to focus on dynamic objects that may cause danger to its driving. This methodology takes advantage of prior knowledge of stationary and variable objects presented in a virtual city and verifies their existence in a real-time scene by matching keypoints between the virtual and real objects. In case of a stationary or variable object that does not exist in the virtual world due to incomplete pre-existing information, this method uses machine learning for object detection. Verified objects are then removed from the real-time image with a combined algorithm using contour detection and class activation map (CAM), which helps to enhance the efficiency and accuracy when recognizing moving objects

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017
    corecore