16,549 research outputs found

    Dynamic routing in circuit-switched non-hierarchical networks

    Get PDF
    This thesis studies dynamic routing in circuit-switched non-hierarchical networks based on learning automata algorithms. The application of a mathematical model for a linear reward penalty algorithm is explained. Theoretical results for this scheme verified by simulations shows the accuracy of the model. Using simulation and analysis, learning automata algorithms are compared to several other strategies on different networks. The implemented test networks may be classified into two groups. The first group are designed for fixed routing and in such networks fixed routing performs better than any dynamic routing scheme. It will be shown that dynamic routing strategies perform as well as fixed routing when trunk reservation is employed. The second group of networks are designed for dynamic routing and trunk reservation deteriorates the performance. Comparison of different routing algorithms on small networks designed to force dynamic routing demonstrates the superiority of automata under both normal and failure conditions. The thesis also considers the instability problem in non-hierarchical circuit-switched networks when dynamic routing is implemented. It is shown that trunk reservation prevents instability and increases the carried load at overloads. Finally a set of experiments are performed on large networks with realistic capacity and traffic matrices. Simulation and analytic results show that dynamic routing outperforms fixed routing and trunk reservation deteriorates the performance at low values of overload. At high overloads, optimization of trunk reservation is necessary for this class of networks. Comparison results show the improved performance with automata schemes under both normal and abnormal traffic conditions. The thesis concludes with a discussion of proposed further work including expected developments in Integrated Service Digital Networks

    Requirements for traffic assignment models for strategic transport planning: A critical assessment

    Get PDF
    Transport planning models are used all over the world to assist in the decision making regarding investments in infrastructure and transport services. Traffic assignment is one of the key components of transport models, which relate travel demand to infrastructure supply, by simulating (future) route choices and network conditions, resulting in traffic flows, congestion, travel times, and emissions. Cost benefit analyses rely on outcomes of such models, and since very large monetary investments are at stake, these outcomes should be as accurate and reliable as possible. However, the vast majority of strategic transport models still use traditional static traffic assignment procedures with travel time functions in which traffic flow can exceed capacity, delays are predicted in the wrong locations, and intersections are not properly handled. On the other hand, microscopic dynamic traffic simulation models can simulate traffic very realistically, but are not able to deal with very large networks and may not have the capability of providing robust results for scenario analysis. In this paper we discuss and identify the important characteristics of traffic assignment models for transport planning. We propose a modelling framework in which the traffic assignment model exhibits a good balance between traffic flow realism, robustness, consistency, accountability, and ease of use. Furthermore, case studies on several large networks of Dutch and Australian cities will be presented

    A systematic approach to cancer: evolution beyond selection.

    Get PDF
    Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages

    Simulation and analysis of adaptive routing and flow control in wide area communication networks

    Get PDF
    This thesis presents the development of new simulation and analytic models for the performance analysis of wide area communication networks. The models are used to analyse adaptive routing and flow control in fully connected circuit switched and sparsely connected packet switched networks. In particular the performance of routing algorithms derived from the L(_R-I) linear learning automata model are assessed for both types of network. A novel architecture using the INMOS Transputer is constructed for simulation of both circuit and packet switched networks in a loosely coupled multi- microprocessor environment. The network topology is mapped onto an identically configured array of processing centres to overcome the processing bottleneck of conventional Von Neumann architecture machines. Previous analytic work in circuit switched work is extended to include both asymmetrical networks and adaptive routing policies. In the analysis of packet switched networks analytic models of adaptive routing and flow control are integrated to produce a powerful, integrated environment for performance analysis The work concludes that routing algorithms based on linear learning automata have significant potential in both fully connected circuit switched networks and sparsely connected packet switched networks

    Competition, Co-operation and Subcontracting - Lessons from the Clothing Industry in Thailand.

    Get PDF
    A close examination of the organisation of the clothing industry in Thailand exhibits a rather paradoxical situation: although the structural features of the sector - the breaking down of the production process, high labour intensity, low asset specificity, low skilled labour - seem to legitimate a market co-ordination mechanism, it is a close, durable and multiform co-operation which cements, in Thailand, the relations between contractors and subcontractors, as well as between subcontractors themselves. We defend the idea that this kind of co-operative organisation of economic activities represents an appropriate answer to the flexibility required by ever changing markets. Co-operation is here understood as a mechanism of temporal co-ordination of economic activities which, far from substituting itself to the market co-ordination mechanism, rather completes it.Thailand, subcontracting, industrial district, competition, co-operation

    Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    Full text link
    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the transportation of large cargos by multiple motors, we concentrate on axonal transport, because of its relevance for neuronal diseases. It is a challenge to understand how this transport is organized, given that it takes place in a confined environment and that several types of motors moving in opposite directions are involved. We review several features that could contribute to the efficiency of this transport, including the role of motor-motor interactions and of the dynamics of the underlying microtubule network. Finally, we discuss some still open questions.Comment: 74 pages, 43 figure
    • …
    corecore