
Durham E-Theses

Dynamic routing in circuit-switched non-hierarchical

networks

Eshragh, Nadereh

How to cite:

Eshragh, Nadereh (1989) Dynamic routing in circuit-switched non-hierarchical networks, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6650/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6650/
 http://etheses.dur.ac.uk/6650/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Dynamic Routing in Circuit-Switched Non-hierarchical Networks

N adereh Eshragh

B. Sc., M. Sc.

School of Engineering and Applied Science

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written ronsent and information derived

from it should be acknowledged.

University of Durham

November 1989

A thesis submitted for the degree of

Doctor of Philosophy of the University of Durham

1 j MAR 1991

Abstract

Dynamic Routing in Circuit-Switched Non-hierarchical Networks

N adereh Eshragh

This thesis studies dynamic routing in circuit-switched non-hierarchical networks

based on learning automata algorithms. The application of a mathematical model

for a linear reward penalty algorithm is explained. Theoretical results for this scheme

verified by simulations shows the accuracy of the model.

Using simulation and analysis, learning automata algorithms are compared to

several other strategies on different networks. The implemented test networks may

be classified into two groups. The first group are designed for fixed routing and in such

networks fixed routing performs better than any dynamic routing scheme. It will be

shown that dynamic routing strategies perform as well as fixed routing when trunk

reservation is employed. The second group of networks are designed for dynamic

routing and trunk reservation deteriorates the performance. Comparison of different

routing algorithms on small networks designed to force dynamic routing demonstrates

the superiority of automata under both normal and failure conditions.

The thesis also considers the instability problem in non-hierarchical circuit-switched

networks when dynamic routing is implemented. It is shown that trunk reservation

prevents instability and increases the carried load at overloads. Finally a set of exper

iments are performed on large networks with realistic capacity and traffic matrices.

Simulation and analytic results show that dynamic routing outperforms fixed routing

and trunk reservation deteriorates the performance at low values of overload. At high

overloads, optimization of trunk reservation is necessary for this class of networks.

Comparison results shows the improved performance with automata schemes under

both normal and abnormal traffic conditions. The thesis concludes with a discus

sion of proposed further work including expected developments in Integrated Service

Digital Networks.

11

Acknowledgement

I would like to express my thanks and appreciation to my supervisor Professor

Philip Mars for his expert guidance, encouragement and interest throughout this

project. I would also like to thank the Science and Engineering Research Council

(SERC) for financial support. My thanks to Mr Brian Lander and the staff at Durham

computer centre for their efficient service without which the preparation of this thesis

would have been much harder. Finally I would like to thank my husband Mehdi for

his encouragement and understanding while I was involved vtith this work.

111

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it

has not been the subject of any previous application for a degree, and that all sources

of information have been duly acknowledged.

Nadereh Eshragh, November 1989

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without her written consent and information derived from it should be

acknowledged.

IV

To Sima

v

Contents

1 Introduction . 1

1.1 Circuit-switching

1.1.1 Signaling messages in circuit-switched networks

1.2 Hierarchical routing

1.3 Non-hierarchical routing

1.4 Classification of dynamic routing methods

1.5 Overview

2 Introduction to Learning Automata

2.1 Introduction

2.2 The basic learning model

2.2.1 The Automaton

2.2.2 The Environment ••• 0 0 ••••••••••• 0. 0. 0 ••••••••• 0 •••• 0 0 •• 0 •• • ••

2.3 Variable Structure Stochastic Automata

2.3.1 Linear algorithms

2.4 Performance measures

2.5 Behaviour of learning automata in stationary and non-stationary

environments

Vl

1

3

4

6

9

10

18

18

18

19

20

21

22

23

24

2.5.1 Stationary environments . 24

2.5.2 Non-stationary environments

2.6 Summary

25

28

3 Design of a simulator for circuit-switched telephone networks 32

3.1 Introduction

3.2 Poisson Process

3.3 Random numbers

3.4 Discrete event simulation

3.5 Simulation package I

3.5.1 Call arrivals

3.5.2 Call departures

3.5.3 Routing

3.6 Simulation package II

3.7 Summary

4 Comparison between different routing algorithms

4.1 Introduction

4.2 The network model

4.3 Routing schemes

4.3.1 Fixed Routing (FR)

4.3.2 Random Routing (RR)

4.3.3 Linear Reward Penalty (LR-P)

4.3.4 Dynamic Alternative Routing (DAR)

Vll

32

33

35

36

37

37

39

39

42

44

55

55

56

58

58

59

64

67

4.4 Examples

4.4.1 Experiment 1

4.4.2 Experiment 2

4.4.3 Experiment 3

4.4.4 Experiment 4

4.4.5 Experiment 5

4.5 Summary

5 Learning Automata & Dynamic Alternative Routing

5.1 Introduction

5.2 Tuning dynamic algorithms

67

69

70

73

74

75

78

89

89

90

5.3 Simulation I : Four node network . 92

5.3.1 Experiment 1

5.3.2 Experiment 2

5.3.3 Experiment 3

5.3.4 Experiment 4

5.3.5 Experiment 5

5.3.6 Experiment 6

5.4 Simulation II : Five node network

5.4.1 Experiment 7

5.4.2 Experiment 8

5.5 Summary

6 Instability and larger networks

Vlll

92

93

95

96

98

99

102

102

103

104

115

6.1 Introduction

6.2 Instability

6.2.1 Network model and statistical assumptions

6.2.2 Automatic Alternative Routing (AAR)

6.2.3 A mathematical model for AAR

6.2.4 Experiment 1

6.2.5 Experiment 2

115

116

116

117

118

121

123

6.2.6 A mathematical model for AAR with trunk reservations 124

6.2. 7 Experiment 3

6.2.8 Dynamic routing algorithms

6.2.9 Experiment 4

6.3 Large networks

6.3.1 The BT network

6.3.2 The Bell network

6.4 Summary

7 Conclusions and further work

References

Appendix 1 Simplified equations for B1 and Q2

Appendix 2 The BT network specification

Appendix 3 The Bell network specification

Appendix 4 Simulation package I

Appendix 5 Simulation package II

lX

126

127

128

130

130

132

138

163

170

174

176

178

181

192

List of Figures

1.1 Signaling messages in a circuit-switched network.

1.2 Components of call set-up time for a simple two node example.

1.3 Components of holding time for the two node network in Fig 1.2.

1.4 North American telephone office hierarchy.

1.5 Typical hierarchical routing pattern.

1.6 nonhierarchical routing.

1. 7 Dynamic Nonhierarchical Routing.

1.8 Dynamically Controlled Routing.

2.1 Automaton-environment feedback configuration.

2.2 The automaton .

2.3 The environment.

13

13

14

15

16

16

17

17

30

31

31

3.1 The 10 ranges in the interval (0,1), corresponding to 10 probabilities of call arrivals

in a five node network.

3.2 Flow chart for subroutine ARRNE.

3.3 Flow chart for subroutine DEPART.

3.4 Flow chart for subroutine ROUTE.

X

46

47

48

49

3.5 Flow chart for function LRP. ..

3.6 Flow chart for function LANODE.

3. 7 The graphics front end for the simulation package II, sho'\\ing the first

menu.

3.8 The graphics front end for the simulation package II, sho'\\ing the second

menu.

3.9 An 8 node network drawn on the graphics front end.

4.1 A 5-node fully connected network.

50

51

52

53

54

80

4.2 An example of direct and alternative paths for a 5-node network. 80

4.3 Iterative loop to calculate the theoretical blocking probability for LR-P· 81

4.4 Theoretical and simulation results for the five node test network with RR

scheme. 82

4.5 Theoretical and simulation results for the five node test network with LR-P

scheme. 83

4.6 Theoretical and simulation results for the five node test network with DAR

scheme.

4. 7 Theoretical results for LR-P, DAR and FR.

4.8 Theoretical results for RR and FR.

4.9 Traffic loading distribution, LBA, TRP=O, 20% overload.

4.10 Traffic loading distribution, LBA, TRP=lO, 20% overload.

xi

84

85

86

87

88

5.1 Network 1: four node.

5.2 Network 2: five node.

5.3 Network 3: five node.

106

106

106

5.4 Effect of the learning parameter on the performance of the LR-1 scheme. 107

5.5 Effect of the learning parameter on the performance of the LR-1 scheme. 107

5.6 Effect of the learning parameter on the performance of the LR-1 scheme. 107

5. 7 Comparison between LR-1 and DAR. Network 1, link capacity ratio

50/30.

5.8 Comparison between LR-1 and DAR. Network 1, link capacity ratio

60/20.

5.9 Comparison between LR-1 and DAR. Network 1, link capacity ratio

40/40.

5.10 Calculation of the optimum probabilistic split.

5.11 Comparison of LR-1 and DAR to the optimum and minimum

performance, 50/30 ratio.

5.12 Evolution of P(1,2,3). LR-P with a= b = .1.

5.13 Evolution of P(1,2,3). LR-P with a= b = .01.

5.14 Evolution of P(1,2,3). LR-1 with a= .1.

5.15 Evolution of P(1,2,3). LR-1 with a= .01.

5.16 Comparison between LR-1 and DAR. Network 2, traffic 1.

5.17 Comparison between LR-1 and DAR. Network 2, traffic 2.

5.18 Comparison between LR-1 and DAR under failure conditions.

xu

108

108

108

109

110

111

111

112

112

114

114

114

6.1 A 10 node fully connected network.

6.2 An example of symmetrical routing for a five node network.

6.3 Automatic Alternative Routing in a 10 node network with 8 overflow

paths.

6.4 Carried load, AAR, M=8, TRP=O.

6.5 Carried load, AAR, M=O, M=1, TRP=O.

6.6 Proportion of directly routed calls, AAR, M=8, TRP=O.

6. 7 Proportion of directly routed calls, AAR, M=1, TRP=O.

6.8 Simulation results, 10 node, c=50, A=38, TRP=O, AAR, M=8.

6.9 Simulation results, 10 node, c=50, A=42, TRP=O, AAR, M=8.

6.10 Simulation results, 10 node, c=50, A=38, A increased to 39 Erlangs at

time=80.

6.11 Simulation results, 10 node, c=50, A=42, A dropped to 38 Erlangs at

time= 50.

6.12 Carried load, AAR, M=8, different TRPs.

6.13 Carried load, AAR, M=1, different TRPs.

6.14 Proportion of directly routed calls, AAR, M=8, different TRPs.

6.15 Proportion of directly routed calls, AAR, M=1, different TRPs.

6.16 Simulation results, 10 node, c=50, A=38, TRP=1, AAR, M=8.

6.17 Simulation results, 10 node, c=50, A=42, TRP=1, AAR, M=8.

6.18 Simulation results, 10 node, c=50, A=38, TRP=O, LR-P·

6.19 Simulation results, 10 node, c=50, A=42, TRP=O, LR-P·

xiii

141

142

143

144

144

145

145

146

146

147

147

148

148

149

149

150

150

151

151

6.20 Simulation results, 10 node, c=50, A=38, TRP=O, DAR.

6.21 Simulation· results, 10 node, c=50, A=42, TRP=O, DAR.

6.22 Simulation results, 10 node, c=50, A=38, TRP=O, LR-1·

6.23 Simulation results, 10 node, c=50, A=42, TRP=O, LR-1·

152

152

153

153

6.24 Theoretical and simulation results for the BT network with the morning traffic

matrix, no overload. 156

6.25 Theoretical and simulation results for the BT network with the evening traffic

matrix, no overload. 157

6.26 Theoretical results for LR-P and DAR. BT network with the morning traffic

matrix and different overloads. 158

6.27 Theoretical results for LR-P and DAR. BT network \\ith the evening traffic

matrix and different overloads. 159

6.28 Theoretical and simulation results for the BT network with the morning traffic

matrix, overload=30%.

6.29 BT network with abnormal traffic conditions.

6.30 The 10 node Bell network.

XIV

160

161

162

List of Symbols

A

AAR

AT&T

a

a

B

BT

b

{3

c

c

ccs

DAR

DNHR

DCR

FC

FDM

traffic intensity

Automatic Alternate Routing

American Telephone and Telegraph

automaton's action set

reward parameter

link blocking probability

British Telecom

penalty parameter

automaton's input set

link capacity

carried proportion of the offered traffic per link

Common Channel Signaling

Dynamic Alternative Routing

Dynamic Nonhierarchical Routing

Dynamically Controlled Routing

Free Circuits

Frequency Division Multiplexed

XV

FR Fixed Routing

state set

GOS Grade Of Service

K carried load on a link

L blocking probability of a two link path

LD Load

LA Learning Automata

LBA Least Busy Alternative

Linear Reward Inaction

Linear Reward Penalty

Linear Reward E-Penalty

average arrival rate

M number of two link alternate paths

m number of trunks allowed to be accessed by overflow traffic

N number of nodes

NAC number accepted calls

NL number of lost calls

I

J.L call holding time

1/ total offered load to a link

0-D pair Origin Destination pair

OVL Overload

PDC Proportion of Directly routed Calls

XVl

PRO Proportional Routing

p probability

Q link availability

RR Random Routing

SRI Stochastic Residual Index

TRP Trunk Reservation Parameter

TDM Time Division Multiplexed

TSMR Trunk Status Map Routing

TL total load

u a random number in the range (0,1)

z overal blocking probability

z penalty probability

XVll

Chapter One

Introduction

In this work we study dynamic routing strategies in circuit-switched nonhierar

chical networks using both analytical and simulation models. Recent advances in

telecommunications such as the introduction of stored program control networks con

sisting of electronic switching centers interconnected by common channel signaling

links allows the implementation of dynamic routing strategies. These strategies are

intended to take into account real-time conditions in order to provide better network

performances.

1.1 - Circuit-switching

Circuit-switching is the technology used worldwide over the years for telephony.

This kind of transmission requires an end to end path to be set up from source to

destination before any communication can take place. The end to end physical path

consists of a number of transmission links or circuits connected by intermediate circuit

1

switches. The links could consist of time slots in a time-division multiplexed (TDM)

system or frequency division multiplexed (FDM) system.

While circuit-switching technique is mainly used to transmit voice, packet-switching

is used for data transmission. In this case data messages are blocked into shorter units

called packets, which are then transmitted from source to destination along some

routing path. Two techniques are used for this purpose: virtual circuit or connec

tion oriented transmission and datagram or connectionless transmission. In virtual

circuit transmission a path is first set up end to end through the network. Packets

then traverse the network through the chosen path and arrive at the destination in

the sequence in which they were transmitted. In the datagram method, no initial

connection is set up and packets may follow independent routes between the source

and the destination.

One characteristic of circuit-switched traffic is that no quemng or waiting is

allowed at any intermediate nodes along the circuit. As a result, if an incoming

call cannot find a connection to its destination node, it will be blocked and it has

to re-try again for a connection. Therefore an important performance measure in

circuit-switched networks is to have a low blocking probability which is defined as the

probability that a call attempting to access the network, is turned away. Blocking

probability or Grade Of Service (GOS) depends upon a number of different functions,

specifically the network topology, offered traffic, link capacities and routing policies

implemented. In a packet switching network, packets queue at each node. In the case

of packet switching traffic, the used performance measure is packet-time-delay which

2

is the average time delay that takes for a packet to reach destination.

1.1.1 - Signaling messages in circuit-switched networks

The operation of a circuit switched network can be described as follows. If a

source party or caller at one node wishes to speak with a destination party at another

node, this is signaled to the network control. Prior to any transmission, the control

then attempts to reserve a route of trunks (channels) connecting the caller to the

destination party. If the attempt is successful, the route is handed over to the caller

and the call is established or carried. If the attempt is unsuccessful, the caller is

turned away from the network and the call is termed lost.

Figure 1.1 shows signaling messages in a circuit-switched network. Before the start

of the transmission, the circuit must be set up in a connect phase. After transmission

terminates, a disconnect phase takes place. The source initiates the call-set up phase

by sending a send request signal to the switch to which it is connected. This signal

carries the information needed to set up the connection. In practice, an off- hook

signal plus dial digits carry this information. After processing at the switch a connect

message is sent to the next switch on the path to the destination. When a connect

message reaches the final switch in the network, a ringing signal is delivered to the

destination. If the destination station is ready to accept the call, it replies with an

answer or response message. The answer message travels back to the source indicating

that transmission can begin. The time between the initiation of the send - request

3

message to the receipt of the start to send message is the call set up or connection

time. When the transmission terminates, the source station sends a clear - down

signaling message to the switch to which it is connected. This switch in turn sends

a disconnect message, releasing the trunks along the complete circuit. Figures 1.2

and 1.3 show the components of call set up and call holding times for a simple two

node example. The call holding time begins with the transmission of the first connect

message and terminates once the destination exchange receives the final disconnect

message.

There are two methods of sending the various signaling messages, in band signaling

and common channel signaling (CCS). In inband signaling, signaling messages are sent

over the same trunks as the calls themselves. In CCS, control messages or signals

are carried over separate channels or networks using packet-switching techniques.

Therefore a telephone network that adopts CCS, uses circuit switching for the calls

and packet switching for the control messages.

1.2 - Hierarchical Routing

The traditional method of routing in telephone networks is hierarchical routing.

Typically in networks using hierarchical routing, telephone switching offices or ex

changes are classified into different levels to form a hierarchy. Fig 1.4 shows the

North American hierarchy which consists of five basic classes as shown. Alternate

routing is used in hierarchical networks, (Fig 1.5) as follows. When a call arrives, it

4

first tries the path at the bottom level of the hierarchy, which is called a direct trunk

group. If all paths in the direct trunk group are busy, the call tries the paths on the

next level up in the hierarchy until either it finds a free path or it is blocked after

failing to find a free path in the top level of the hierarchy (the final trunk group).

This type of routing refered to as fixed rule alternate routing has been used in the

Bell telephone network for many years.

The main limitation to hierarchical routing particularly in a relatively large coun

try is that traffic patterns tend to change in different offices and different parts of the

network as a function of time of day or season of the year. Hierarchical routing is fixed

and must be designed for peak traffic in the network. Some network capacity will

therefore remain idle during non-peak intervals. Besides, changes in traffic patterns

or major failure causes major local congestion. To solve these problems a range of

network management controls are provided at the exchanges, for example traffic can

be re-routed within the hierarchy or it can be stopped from entering the network for

a particular destination, also trunk reservation levels can be set in order to reserve a

certain number of trunks for direct traffic only. These are, in general manually acti

vated by telephone company staff once they become aware of an overload situation.

As a result there will be time delays while these are being manually implemented,

causing some loss of traffic. Studies [1] have shown that the rigid hierarchical struc

ture of the network results in higher network cost compared with that to one without

hierarchical structure.

5

1.3- Non-hierarchical Routing

In non-hierarchical networks, offices (nodes) in a network can all be connected to

each other (Fig 1.6). Each node can act as a source or destination for traffic and,

in addition, act as an intermediate (or tandem) node to form alternative routes for

overflow traffic. Dynamic routing is implemented in non-hierarchical networks. In

such routing strategies the first-choice and overflow routes may be varied to adapt

the overall pattern of traffic to changes in offered traffic or link failure.

An example of dynamic routing is Dynamic Nonhierarchical Routing (DNHR)[l]

[2] in use by AT&T for the US inter-city toll network. DNHR is a decentralized

nonhierarchical routing strategy, in which each node in the network has a prescribed

series of alternate paths to be tried. The number and sequence of paths varies-with

the day and time of day. In the US intercity network there are three separate time

zones and the busy hours will occur at different times in different parts of the network.

Thus there is the possibility for a heavily loaded part of the network to use alternative

routes from a more lightly loaded part. In the DNHR strategy a day is divided into

ten periods and a different pattern of alternative routing is used in each time period.

Fig 1. 7 illustrates the DNHR routing strategy. The originating call is seen to have

four possible routes to the DNHR destination exchange. The direct route (B) will

always be tried first. The other three routes (A, C, and D) will be tried in different

orders depending on the time of day. For example during the morning the call may

try the routes in the order of B-C-A-D, while in the afternoon it may use the order

6

of B-A-D-C. In 1984 AT&T introduced DNHR into its toll network providing a 15

percent cost reduction over hierarchical routing [1].

Another example of dynamic routing is Dynamically Controlled Routing (DCR)

used in Bell Canada. In this centralized strategy (Fig 1.8), the routes change adap

tively as traffic conditions change. A central routing processor receives information

periodically from switches [3] and sends a set of tandem recommendations for all call

destinations to the switches every 10 seconds to update their routing tables. The

recommendations are based on the available outgoing links and the load on the call

processing units of exchanges. The first-choice route is fixed with the network design

and would normally be the direct route in a fully connected network. A second choice

determined by the central processor is attempted when the first-choice is blocked.

This second-choice route is updated frequently to reflect short-term changes in the

traffic pattern. Unlike in DNHR where a sequence of overflow routes is attempted,

the Canadian DCR strategy uses just a single overflow route chosen by the central

processor based on the information received over the past 10 seconds. Results from

a routing trial in the Telecom Canada trunk network have been given in [4].

In a further paper by Ash [5] a real-time extension to DNHR is proposed called

Trunk Status Map Routing (TSMR). TSMR uses a central processor which receives

data from the nodes and sends back real-time modifications to the ordering of alter

nate routes used by D NHR and in this way attempts to respond to short term traffic

fluctuations. In both the AT&T and the Bell Canada cases, routes are chosen to be

no more than two links long. Therefore there is only one tandem switch to be chosen

7

for a given alternate path.

Information passing has been presented in [6]. In this decentralized adaptive

routing strategy adjacent exchanges that are connected by trunk groups, commu

nicate congestion information using common channel signalling. This information

propagates from the destination exchange to the originating exchange and allows the

originating and intermediate exchanges to determine the least congested route to

the destination. Routing is based on a congestion measurement called a Stochastic

Residual Index (SRI) where a stochastic version of spare capacity is considered. The

routing priority is to first select direct routes and then tandem routes with minimum

congestion. However exchanges will make the routing choice without knowledge of

the entire network status. To reduce the processing requirements associated with

this approach, the best route would be calculated periodically. Other strategies using

call repacking have been considered in [7]. A survey of dynamic routing strategies is

presented in [8].

One of the main parts to this work is devoted to the Learning Automata (LA)

routing strategies [9][10]. In these decentralized schemes action probabilities (choice

of routes) are updated according to the completion or rejection of calls. In chapters 4

and 5, learning automata strategies are compared to other dynamic routing schemes

such as Dynamic Alternative Routing (DAR), Least busy alternative (LBA), Random

Routing (RR) and Fixed Routing (FR). The DAR, is a decentralized scheme which

has recently been implemented by British Telecom [li].

8

1.4 - Classification of Dynamic Routing Methods

Various dynamic routing schemes may be classified with respect to the following

three parameters.

1 - The basic mechanism used in the scheme - The dynamic routing procedures

are divided into two basic mechanisms:

la) Time dependent schemes, which operate according to non-coincident busy

periods over the network. The routing procedures are fixed for each time period but

have some ability to cope with abnormal traffic fluctuations .
. ,

2b) Network state dependent schemes, which detect the congestion patterns in

the network and route traffic accordingly. These schemes are generally referred to as

adaptive.

2 - The topological scope of the routing calculations - The dynamic routing algo-

rithms are divided into three groups:

2a) Centralized methods make network-wide routing calculations.

2b) Distributed methods perform calculations relating to a limited section of the

network. This could be either the origin neighbourhood, the destination neighbour-

hood or some combination of both.

2c) Isolated methods consider only the information available locally in each node.

3 - The frequency with which routing recommendations are updated.

3a) Hours.

3b) Minutes or less. The exchange receives a set of routing alternatives which are

9

modified on a regular basis.

3c) On a per call basis.

1.5 - Overview

In this chapter we reviewed the principles of circuit-switching in telephone net

works. We then considered routing in circuit-switched networks and described the

classical method of hierarchical routing of calls which is implemented in most tele

phone networks. Next we explained the recent nonhierarchical methods of routing

that are being introduced in telephone networks. Nonhierarchical routing is being in

troduced as a result of studies showing that it will result in significant cost savings as

compared with the more traditional method of hierarchical routing in circuit-switched

networks.

Throughout this thesis, different dynamic routing schemes are studied and com

pared with each other in nonhierarchical circuit-switched networks. Emphasis is

placed on Learning Automata (LA) schemes because of their ability to adapt to

changes to the network conditions. Chapter two provides a review of the basic def

initions and concept of LA. Linear algorithms including LR-P, LR-I and LR-EP

are introduced. This is followed by a discussion of two mathematical models which

predict the behaviour of linear algorithms in a changing environment.

Chapter three is concerned with computer modelling of circuit-switched networks

and describes two simulation packages designed for carrying out experimental studies

10

of different routing algorithms. The first program written in Fortran 77 on an Amdahl

4 70 mainframe, allows the simulation of an N node fully connected circuit-switched

network with arbitrary capacity and traffic matrices. The second package written in

C on a Sun workstation is similar to the first one but with an added front end. The

front end allows the user to draw a network on the screen and to enter the network's

capacity and traffic matrices from the keyboard. Both packages provide simulation of

six different routing strategies and are easily expandable to implement more schemes.

Chapter four performs analytical and simulation studies on the use of several

routing procedures in nonhierarchical circuit-switched networks. The routing algo

rithms considered are: FR, RR, DAR and LR-P· Mathematical models are derived

for analysing these routing strategies. The principles lying behind these models are

Erlang's model for a single link together with an independent link blocking assump

tion. Using the simulation model developed in chapter three, a set of simulations are

performed to verify analytical models and to compare different routing policies to the

LR-P automata schemes under both steady state and failure conditions. The test

network considered in this chapter is a five node fully connected from BT, designed

for Fixed Routing (FR). It will be shown that FR gives the lowest blocking probabil

ities under both steady state and failure conditions and dynamic routing algorithms

are as good as FR when trunk reservation mechanisms are employed.

In chapter five, LA is compared with DAR on small networks with link capacities

and traffic matrices designed to force dynamic routings. It will be shown that in such

networks LA always outperforms DAR.

11

Chapter six consists of two parts. In the first part we study the problem of insta

bility in nonhierarchical networks. We use both analytical and simulation models to

demonstrate the existence of network instabilities when Automatic Alternate Routing

(AAR) is used in a symmetric uniformly loaded network. \Ve then consider LR-P,

LR-1 and DAR strategies and show that no instabilities are found in the network.

It will also be shown that using trunk reservation prevents instability and provides a

high level of network carried load during overloads. In the second part of this chapter

we study the performance of dynamic routing algorithms on two large networks with

realistic capacity and traffic matrices from BT and Bell labs.

Finally conclusions and further work are presented in chapter seven. We now

consider the fundamentals of stochastic learning which form the basic building block

of the dynamic routing scheme which is the major concern of this thesis.

12

Source

Local loop

\
Send request

\ .
Start to send ..

Initiating nodal
Processor or switch

Connect ..
Answer •

Disconnect
~

Connect Ringing Destination
~ ~

Answer
\

Answer • •
Disconnect \ •

Local loop

Fig 1.1 Signaling messages in a circuit-switched network.

Source

Send Processing wailing
request in A time

Call set-up time

Connect
message

Processing
inB

Answer
message

Destination

Processing
inA

Start to
send

Fig 1.2 Components of call set-up time for a simple two node example.

13

......
>!>-

L ...
I

Connect
message

Processing
inB

Answer
message

Processing
inA

Holding time ~

Start-to- I Data I Clear
send message down

Processing
inA

Disconnect
message

Processing
inB

Fig 1.3 Components of holding time for the two node network in Fig 1.2.

Class 1
Regional center

Class 2 Section center

Class 3 Primary center

Class 4 Toll center

Class 4X Toll point

Class 5 End office

Fig 1.4 North American telephone office hierarchy.

15

13

A B

Fig 1.5 Typical hierarchical routing pattern.

Fig 1.6 A nonhierarchical network.

16

6

Fmal
trunk group

High usage
trunk group

0

/
Originating
call

Fig 1.7 Dynamic Nonhierarchical Routing.

T

\
Tenninating
call

Central routing
processor

.------, D/

.....___...._ ... ···· , .. ··./ ---__

Originating
call

... ... ······ ~: --.I I I • -

Fig 1.8 Dynamically Controlled Routing.

17

Terminating
call

Chapter Two

Introduction to Learning Automata

2.1 - Introduction

The study of deterministic automata operating in a random environment was ini

tiated by Tsetlin [12] to model the behaviour of biological systems. This was extended

by Varshavskii and Vorontsova [13] to an investigation of variable structure stochastic

automata. These automata are now called learning automata and their theory have

been extensively developed over the last few years [14] [15] [9]. The automata choose

an action from a finite set and on the basis of the response of the environment, update

their strategies. In deterministic automata the state of the automaton together with

the input (the output of the environment) completely determines the next action cho

sen. In stochastic automata the probability distribution on the action set is updated

and is in turn used to generate the next action.

2.2- The basic learning model

18

A learning automata consists of an automaton and an environment connected to

form a feedback system, Fig 2.1. The input, at each stage n, to the environment is

the action chosen by the automaton at n. The output of the environment in turn

forms the input to the automaton; which influences the state transition.

2.2.1 - The Automaton

The automaton shown in Fig 2.2 is defined by a quintuple {¢,a, (3, F, G} where:

¢ = { ¢1, ¢2, ... , <Ps} is the state set (2 ~ s < oo),

a = { a1, a2, ... , O:r} is a finite action set (r ~ s),

(3 = { 0, 1} is the input set,

F : ¢ x (3 ~ ¢ is the state transition mapping and

G : ¢ ~ a is the output mapping.

The state ¢ represents the memory of the automaton and records the past experience.

F and G can be considered as matrix operators, transforming ¢(n) to ¢(n + 1) and

¢(n) to a:(n). Mathematically this can be expressed by the relations:

¢(n + 1) = F[f3(n), ¢(n)]

a(n) = G[¢(n)]

If the elements of both matrices are 0 or 1, the automaton is a fixed structure deter

ministic automaton. If the elements ofF and G lie in the interval [0,1], the automaton

is a fixed structure stochastic automaton. In variable structure stochastic automata,

the transition matrices corresponding to various inputs are themselves updated as

19

the automaton operates in the environment. In this case, the updating rule has to be

specified. This type of automata will be discussed in more datail in a later section.

2.2.2 - The Environment

The random environment shown in Fig 2.3 is defined by a triple {a, /3, z }, where:

a= { a1, a2, ... , ar} is the input set,

{3 = { 0, 1} is the output or response set and

z = { ZI, z2, ... , Zr} is the penalty set.

The output {3(n) = 0 at stage n is called a favourable response (success) and {3(n) = 1

an unfavourable response (failure). Zi is the probability of failure when the input is

Pr[f3(n) = 1ja(n) = ai] = Zi (2.1)

In the basic model the environment is assumed to be stationary with Zi unknown

but constant. In more complex models the environments are nonstationary and these

probabilities vary with time.

The environment can further be classified into three models based on the nature

of the response to automata: 1) P-model, 2) S-model, 3) Q-model. In the P-model the

response to an action is of a binary nature, i.e, 1 or 0, penalty or reward. If however

the response is continuous in the region (0,1), then the model is called an S-model.

Similarly, the Q model is the intermediate case where the response can be one of

finite set of discrete values ~n the range (0,1). Both P and S models are implemented

20

in communication network traffic routing. The P-model is used in circuit-switched

networks as calls are either rejected (/3 = 1, penalty) or accepted (/3 = 0, reward) and

the S-model in packet switched networks because of the continuous nature of packet

delays. Actual delay values can be normalized to lie in the interval (0,1).

2.3 - Variable structure stochastic automata

Stochastic automata with variable structure (SAVS), are best described in terms

of their state probability vector p(n) which can also be the action probability vee-

tor. This vector relates to the probability that at instant n a certain action will be

performed.

P(n) = {P1(n), P2(n), ... , Pr(n)}

where

Pi(n) = prob[a(n) = ai] (2.2)

and

r

L Pi(n) = 1 Vr (2.3)
i=l

If an automaton chooses an action ai which results in a success, the probability

Pi(n) is increased and all other components of P(n) are decreased. Similarly, Pi(n)

is decreased if ai results in a failure. The precise manner in which Pi(n) is updated

determines the learning algorithm and the asymptotic behaviour of the process. In

general:

P(n + 1) = T[P(n), a(n), ,B(n)] (2.4)

21

For SAVS the definition of the automata can therefore be simplified as a quadru-

ple: {a, ,8, P(n), T} where a is the action set, ,8 is the response set, P(n) is the

probability distribution over the action set at stage n, and T is the probability up-

dating algorithm which is also referred to as reinforcement algorithm.

If P(n+ 1) is a linear function of P(n), then the scheme is termed linear, otherwise

it is non-linear. In some cases, P(n) is updated according to different schemes de-

pending on the intervals in which the value of P(n) lies. In such a case the combined

scheme is known as hybrid.

2.3.1 - Linear algorithms

The general linear algorithm is defined as follows. If a(n) = ai then:

for ,B(n) = 0:

for ,B(n) = 1:

Pi(n + 1) = (1- b)Pi(n)

P(1) P() bPi(n) ;·..t,;
in+= in+() -;• r-1

(2.5)

Where 0 < a < 1 and 0 ::; b < 1 are constants called the reward and penalty

parameters respectively. If b = a, the scheme is called a Linear Reward-Penalty

(L R-P) scheme; if b ~ a it is a Linear Reward-EPenalty (L R-€P) scheme; and if

b = 0, it is a Linear Reward-Inaction (LR-I) scheme.

22

2.4- Performance measures

A useful quantity in judging the behaviour of a learning automaton is the average

penalty received by the automaton. At a certain stage n, if the action O:i is selected

with probability Pi, the expected penalty is:

M(n) = E{,B(n)IP(n)}

r

= L Pi(n)zi (2.6)
i=l

If no initial knowledge is assumed and the actions are chosen with equal proba-

bilities, the value of the average penalty probability Mo is given by:

~ ,r Zl + Z2 + · · · + Zr
1V1Q =

r
(2.7)

A learning automata is called expedient if

lim E[M(n)] < Mo
n--+oo

(2.8)

When a learning automata is expedient it does better than a scheme which chooses

actions in a purely random manner.

A learning automata is called optimal if:

lim E[M(n)] = ~n Zi = zz
n--+oo 1

(2.9)

The above equation implies that asymptotically the action corresponding to the

minimum blocking probability is chosen with a probability of one.

23

A learning automata is called € - optimal if

lim E[M(n)] < zz + E
n-+oo

(2.10)

can be obtained for any arbitrary € > 0 by a suitable choice of the parameters of the

reinforcement scheme. €-optimality implies that the performance of the automaton

can be made as close as possible to the optimal as desired.

2.5- Behaviour of Learning Automata in stationary and non-stationary

environments

2.5.1 - Stationary environments

Norman [16] has shown that the Markov process associated with an LR-P scheme

operating in a stationary environment is ergodic. The sequence of random vectors

P(n) converges to a random vector P whose distribution is independent of P(O). The

LR-I scheme on the other hand, have been shown to be absorbing barrier algorithms.

This implies that the scheme chooses one of the actions almost exclusively in the

limit. However by choosing the reward parameter a sufficiently small, the probability

of converging to the optimum action can be made arbitrarily close to one. This

probability also depends on the initial distribution P(O). The LR-eP automaton

combines the desirable features of the LR-P and LR-1 schemes. It is ergodic like the

former but can be made almost optimal by the proper choice of the parameters of the

learning algorithms.

24

2.5.2 - Non-stationary environments

A study of the behaviour of learning schemes in telephone networks shows that

since the action of automata affect the distribution of calls the network cannot be

modelled as stationary environment. In a telephone network, an automaton is located

at each node and the outgoing links are regarded as the automaton's actions. The

automata update their action probabilities (choice of routes) according to the com

pletion or rejection of calls. When many calls are routed through a trunk group, it

becomes less attractive for subsequent calls from the point of view of call completion;

on the other hand a trunk group which is not used for an interval of time, tends to

get better as calls already in progress in it are released.

Methods for modelling the network as a non-stationary environment were first

suggested by Narendra and Thathachar [10]. In their model when an action ai is

performed at any stage n the corresponding penalty probability Zi of the environment

increases while z; (i =J j) decreases. A mathematically more manageable model

suggested by Srikantakumar and N arendra [17] assumes that the penalty probabilities

Zi are functions of the action probabilities Pi. This implies that actions that are chosen

more often have higher penalty probabilities. A brief discussion of the two models is

presented in the next two sub-sections. For the sake of convenience the former model

is called model A and the later model B.

Model A

25

In model A introduced by Narendra and Thathachar [10] when an action ai is

performed at any stage n the corresponding penalty probability Zi of the environment

increases while Zj (j =/= i) decreases. In a telephone network, this would correspond

to an increase in the average penalty probability of a trunk group that is chosen to

route a call and the decrease in the average penalty probability of all other trunk

groups. For a two action case the environment can be described as follows:

if a(n) = 0:1

if a(n) = 0:2

z1(n + 1) = z1(n) + B1(n)

z2(n + 1) = z2(n)- <h(n)

z1(n + 1) = z1(n)- l/>1{n)

z2(n + 1) = z2(n) + B2(n) {2.11)

In general Bt, ¢1, 82 and 1/>2 can be functions of P1 (n) ,z1 (n) and z2 { n) but for

simplicity they are assumed to be constants.

Bi(n) = Bi a positive constant if Zi(n) + Bi ~ 1 and

Bi(n) = 1- Zi(n) otherwise.

Similarly

tPi(n) = tPi a positive constant if Zi(n)- tPi ~ 0 and

tPi(n) = Zi(n) otherwise.

By the above definition the increase in the penalty probabilities Bi(n) or the

decrease in penalty probabilities tPi(n) are constants except when the new penalty

26

probabilities lie outside the unit interval.

Some qualitative analysis of this model and simulation results are available in

[10]. However as indicated in [10], the equations describing even a single automaton-

environment combination are such that the mathematical tools normally used in the

study of learning automata are not adequate to analyze their asymptotic behaviour.

This in turn implies that the model cannot be directly extended to the case of a

network with many automata operating in it. The importance of this model lies in

the fact that it eventually led to model B for which such mathematical tools are

applicable.

Model B

In this model the penalty probabilities are assumed to be functions of the corre-

sponding action probabilities. In other words, each Zi is a function of Pi. It is shown

that for an LR-P scheme the average penalty rates for various actions are equalized in

the equilibrium state [17]. The penalty rate, fi(P(n)) = Pi(n)zi(n) is the probability

that the automata receives a penalty at stage n from action O:i.

The following assumptions are made about Zi(P):

a) Zi(P) are continuously differentiable functions of P,

b) 8YJf) > 0 Vi,

Assumption (b) implies that the penalty probability using a specific action in-

27

creases monotonically with the probability Pi with which that action is chosen. As

sumption (c) implies that Zi is much less influenced by the probabilities with which

the other actions ai (j =J i) are chosen.

It is shown [17] that for an LR-P scheme there exists an equilibrium point

P* = [Pi, P2, .. . , P:J such that

h(P*) = h(P*) = ... = fr(P*) (2.21)

and P* is unique. Further the Markov process { P(n) }n>O is ergodic and con

verges as n --+ oo to a stationary probability distribution P independent of the initial

distribution P(O). By adjusting the learning parameter a to be small the variance of

P can be made arbitrarily small and mean value close to P*. Similar analysis for the

LR-€P scheme[10][17], shows there exists a vector P* such that

Zl(P*) = z2(P*) = ... = Zr(P*) (2.22)

Therefore an LR-P scheme attempts to equalize the penalty rates while an LR-€P au

tomaton tends to equalize penalty probabilities at various nodes. Simulation studies

have confirmed the theoretical results[9]. Furthermore it is also found that in simple

networks both LR-P and LR-€P schemes result in performance close to the optimum.

2.6 - Summary

Following the introduction a review of the basic concepts and definitions of learn

ing automata and random environments were given. Variable structure stochastic

28

automata were discussed together with different linear algorithms including LR-P,

LR-I and LR-eP schemes. The possible ways in which the behaviour of learning

automata can be judged were defined. Section 2.5.2 considered two mathematical

models to predict the behaviour of different linear algorithms in a changing environ

ment. It was shown that an L R-eP scheme attempts to equalize penalty probabilities

while an LR-P scheme tends to equalize penalty rates. In the context of a telephone

network this implies that an LR-eP automaton equalizes the average blocking proba

bilities and an LR-P automaton equalizes the average blocking rates at each node. It

will be shown in a later chapter, how we can implement the load equalization property

of an LR-P scheme to predict the theoretical overall blocking probability of a fully

connected circuit-switched network.

In the next chapter we will design simulation packages to enable us to perform

experimental studies on the use of the LA and several other dynamic routing strategies

in circuit-switched networks.

29

a

/ '

Action

E {al, ,ar}

Penalty Probability Set
{zl,z2, ,zr}

Environment

Automaton
Input

Pc:{O,l}

Fig 2.1 Automaton-environment feedback configuration.

30

' /

Input set ~

~ £ { 0,1}

Actions

a£ {al, ,ar}

State set

<j>={ <j> 1 ,<j>2, ••• ,<j> r}

Automaton

Fig 2.2 The automaton.

Penalty probability set

{ zl ,z2, ,zr}

Environment

Fig 2.3 The environment.

31

Output set a

a E {al, ,ar}

Output

~E{O,l}

Chapter Three

Design of a simulator for circuit-switched

telephone networks

3.1 - Introduction

A simulation is the imitation of the operation of a real-world process or system

over time. The behaviour of a system is studied by developing a simulation model.

This model usually takes the form of a set of mathematical assumptions concerning the

operation of the system. After the model is developed, it can be used to investigate

many questions about the real-world system. Changes to the system can first be

simulated in order to predict their impact on system performance. Simulation can

also be used to study systems in the design stage, before such systems are built. Thus,

simulation modelling can be used both as an analysis tool for predicting the effect of

changes to existing systems, and as a design tool to predict the performance of new

systems under varying sets of circumstances.

This chapter is concerned with computer modelling of circuit-switched networks

32

and describes two simulation packages designed for carrying out experimental studies

of different routing algorithms. The first program written in Fortran 77 on an Amdahl

470 mainframe, allows the simulation of an N node fully connected circuit-switched

network with arbitrary capacity and traffic matrices. The second package written in

C on a Sun workstation is similar to the first one but with an added front end. The

front end allows the user to draw a network on the screen and to enter the network's

capacity and traffic matrices from the keyboard. Both packages provide simulation of

six different routing strategies which are explained in detail in subsequent chapters.

A circuit-switched telephone network can be modelled as a set of terminals which

both generate and receive calls, a connecting network which provides the physical

paths or trunks over which communication takes place, and a control system that

provides supervisory signals. The arriving calls generated at the terminals are mod

elled by a Poisson process with point-to-point traffic loads (i.e calls per unit of time

originating at node i destined to node j). The number of trunks, Cij in trunk group

Tii, as well as the calling rates)..ij from node i to node j, can be represented in the

form of matrices.

3.2 - Poisson process

The Poisson process is the arrival process used most frequently to model the

behaviour of telephone traffic. Three basic statements are used to define the Poisson

arrival process:

33

1 - The probability of an arrival in the interval tl.t is defined to be >.tl.t, with >. a

specified proportionality constant.

2 - The probability of zero arrivals in tl.t is 1 - >.tl.t.

3 - An arrival (event) in one time interval of length tl.t is independent of events

in previous or future intervals.

The probability P(n) of n arrivals in t is given as:

n = 0, 1, 2, ...

This is called the Poisson distribution with parameter >.t. The parameter >. is the

average rate of Poisson arrivals.

For this study, the behaviour of calls arriving at a source node is assumed to be

Poisson process with an average point to point arrival rate given by >.ij calls/unit

time.

The usual way of describing an arrival pattern is in terms of the inter-arrival time,

defined as the interval between successive calls. For an arrival pattern that has no

variability, the inter-arrival time is a constant. When the arrivals vary stochastically,

it is necessary to define the probability density function of the inter-arrival times.

For Poisson arrival process, the inter-arrival times are exponentially distributed ran

dom variables [18). Let r represent the time between successive arrivals, then the

probability density function f(r) is given by:

with mean=1/ >..

34

The most commonly used distribution for call duration is the exponential distri-

bution where the probability of a call lasting t seconds is given by:

Where ~ is the mean call holding time.

It is shown in [19] that since holding time is exponential, the call departures

represent a Poisson process.

3.3 - Random numbers

Generating random numbers uniformly distributed in a specified interval is funda-

mental to simulation. Random numbers from almost any distribution can be obtained

by transforming, (0,1) uniform random numbers. The linear congruential method is

the most commonly used technique to generate random numbers [20]. A linear con-

gruential generator, produces a sequence of integers X 1, X 2, ... between zero and m- 1

according to the following recursive relationship:

Xi+l = (aXi +c) mod m i=0,1,2, ...

The initial value Xo is called the seed, a is called the constant multiplier, c is

the increment and m is the modulus. The selection of the values for a, c, m and Xo

affects the statistical properties and the cycle length [20]. Random numbers between

zero and 1 can be generated using the relationship:

X·
U·--' t-

m
i = 1,2, ...

35

3.4 - Discrete event simulation

A discrete event simulation is the modelling of a system whose state variable(s)

changes only at discrete points in time. A circuit-switched telephone network is an

example of a discrete system since the state variable, the number of calls in progress

changes only when a call arrives or a call is completed. A continuous simulation is

the modeling of a system whose state variable(s) changes continuously over time. An

example is the level of water behind a dam.

The simulation of a discrete system may be regarded as the sequencing and han

dling a series of events in time. To do this, two approaches may be considered:

1 - Asynchronous

2 - Synchronous

In asynchronous simulation, events such as arrivals can occur at any time. The

events are simulated whenever they occur and the system clock is moved to the point

of the nearest event. A synchronous simulator steps through time in constant intervals

0, 8t, 28t, ... , checking if any event has occurred. However this approach has a number

of drawbacks. First such models are hard to program because nonsimultaneous events

may be treated as simultaneous if they fall in the same interval. This usually leads to

complicated problems of priority and sequencing. The second drawback is to obtain

a sufficiently accurate estimate, it may be necessary to take 8t very small leading to

larger simulation time. An asynchronous simulator does not have this failing. For

the circuit-switched network model in this study the asynchronous simulation was

36

selected because it is simpler to implement.

3.5 - Simulation package I

The first simulation package written in Fortran 77 on an Amdahl 4 70 mainframe

simulates a network of up to 10 nodes. The software can easily be extended to

any number of nodes by increasing the dimension of arrays at the beginning of the

program, with the rest of the program remaining unchanged. The package consists

of three parts:

1 - An input file containing the initial data for simulation, for example number

of nodes, capacity matrix etc.

2 - An actual simulation program for carrying out experimental runs, reading

data from the input file and writing simulation results into an output file.

3 - An output file containing the data produced during the simulation run.

The simulation program consists of a number of steps which are executed cycli

cally. First the inter-arrival time and the origin and the destination of the next call

arrival are generated. Then the calls that have been completed during the inter-arrival

time are cleared down. Next a free path is searched to route the call and finally the

acceptance or rejection of the call together with its origin-destination information are

recorded into appropriate arrays. The simulator is run for a number of time units,

the results are written into the output file every one unit of time.

3.5.1 - Call arrivals

37

Subroutine ARRIVE simulates the Poisson arrival process by generating expo-

nential inter-arrival times. In an N node fully connected network there are w =

N(N- 1)/2 numbers of 0-D pairs. If Aij is Poisson then u = I:i Aij is also Pois-

son. Let r represent the inter-arrival time. r is an exponentially distributed random

number [20] with mean ~ and is given by:

-1
r=-lnU

u

Where U is a uniformly distributed random number in (0,1).

The above equation calculates the time between successive calls irrespective of

identity. The identity of a call is obtained by a look-up table method. For example

consider a five node network. Let IO(L) be an array representing origin nodes and

ID(L) representing destination nodes. Then:

L 1 2 3 4 5 6 7 8 9 10

IO 1 1 1 1 2 2 2 3 3 4

ID 2 3 4 5 3 4 5 4 5 5

Let P(L) be the probability that the call be for 0-D pair (ij)(where i=IO(L) and

j=ID(L)).

P(L) = Aij
u

The interval (0,1) is divided into ten ranges which correspond to the ten probabilities,

P(L)(L=1,2, ... 10) as shown in Fig 3.1 for arbitrary values of traffic arrivals. A random

number U is generated and compared to P(L). When U is in range P(L), the call is

38

identified for 0-D pair (IO(L),ID(L)). The flow chart for subroutine ARRIVE is given

in Fig 3.2.

3.5.2 - Call departures

As described previously, the call departure process is assumed to be Poisson. In

what follows we explain how to use this assumption to generate a random number

representing the number of calls completed during the inter-arrival time, 7. Consider

a link (i,j) with capacity Cij and nij lines in use. The departure rate for nij lines is

J-Ln = nij J-L. Assuming the call holding time J-L = 1 call/unit time, then J-Ln = nij. In

the simulation program the number of calls cleared down is calculated for every inter

arrival time, 7. The number of departures X, occurring in the interval 7 is Poisson

with a parameter ni;7. To generate this random number, we use the generation

procedure given in [20] :

Set X= 0 P = 1

Generate a random number U x + 1

P=PxUx+l

if P ~ e-nii7 then X=X+1

Repeat until P < e-nii7

In the simulation program, subroutine DEPART, simulates the call departure

process. The flow chart for subroutine DEPART is given in Fig 3.3.

3.5.3 - Routing

39

Subroutine ROUTE performs the routing of a call. A call arriving at the network

for the source destination pair (ij) is offered to the direct path first. Let FC(ij) be

the number of free circuits on link (ij):

FC(i,j) = c(ij) - TL(i,j)

Where TL(i,j) is the total number of calls carried on link (ij).

If FC(i,j) > 0, the direct path is available and the call is routed via that path by

modifying the loading array:

LD(ij) = LD(ij) + 1

and accepting the call:

NAC(ij) = NAC(i,j) + 1

If the direct path is busy (FC(i,j) :::; 0), a tandem node k is selected using a

routing algorithm and the call is offered to the two link path (i,kj). The call is

routed via (i,kj), if at least one free circuit exists on both links (FC(i, k) > 0 and

FC(k, j) > 0). The loading array is modified and the call is accepted.

LD(i,kj) = LD(i,k,j) + 1

NAC(i,kj) = NAC(i,kj) + 1

If (i,k,j) is busy, the call is lost. The number of blocked calls is saved into the

array NL:

NL(ij) = NL(ij) + 1

The flow chart for subroutine ROUTE is given in Fig 3.4. This subroutine is

programed to implement six different routing algorithms. A detailed description of

the routing algorithms together with mathematical models is given in later chapters.

40

As an example consider the LR-P scheme. Let P(i,kj) be the probability of selecting

path (i,k,j). If a call is successfully routed via (i,kj), P(i,kj) is rewarded or increased

while P(i,lj) (l;ik) is decreased. On the other hand if (i,k,j) is selected and the call

is rejected, P(i,kj) is penalized or decreased while P(i,l,j) (l;ik) is increased.

Function LRP performs alternate routing based on the LR-P scheme. The flow

chart is given in Fig 3.5. This function selects a tandem node k by calling another

function named LANODE. Then it calculates the number of free circuits on path

(i,kj) which is the minimum of free circuits on paths (i,k) and (kj). A call can be

routed via an alternate path if the number of free circuits on that path is more than a

threshold value TRP. TRP, a trunk reservation parameter will be explained in detail

in a later chapter. If the number of free circuits on path (i,kj) is more than TRP,

the probabilities are adjusted by rewarding the path (i,k,j), the function terminates

and returns the value of k. If on the other hand this number is less than TRP, the

probabilities are adjusted by punishing the path (i,k,j), the function terminates and

returns the value of -1 indicating that the call is blocked.

Fig 3.6 shows the flow chart for function LAN ODE. This function selects a tandem

node k using a look-up table method similar to the one explained in section 3.5.1. For

example assume that the 0-D pair (ij) has three possible tandem nodes k1, k2 and

k3. The interval (0,1) is divided into three ranges corresponding to P(i,k1,j), P(i,k2,j)

and P(i,k3,j). A random number U in the range (0,1) is generated and compared to

the probabilities. When U is in range P(i,kj), the tandem node is identified as k.

41

3.6 - Simulation package II

The second simulation package was written in the industrial standard language

C to run on a Sun workstation. This package includes a simulation program similar

to the first package and a graphics front end written to use the interesting graph

ics facilities provided with the Sun workstation. The front end allows the user to

graphically specify a network and to enter the necessary parameters for simulation.

Facilities also exist to edit the network, i.e. reposition, delete and add components.

Fig 3. 7 shows two windows on the Sun workstation display. The window on the left is

a text window and the one on the right is the graphics front end. The menu shown on

the graphics front end window is selected using the left mouse button. Fig 3.8 shows

another menu selected using the middle mouse button. The right mouse button is

reserved for drawing purposes.

The menu shown in Fig 3. 7 provides the following options: node, link, number

node, delete node, move node, delete link, capacity , traffic, simulate. A node can be

created by selecting option node first and then pressing the right mouse button at the

desired location. Nodes can be given numbers using option number node (Fig 3.9).

The program saves node information into a structure array:

struct {

int num;

int x;

int y;

42

int con [cma.x:]

} node[nma.x:]

Where num is the node number given by the user, x and y are node coordinates on

the graphics window, con[cma.x:] is an array which saves the sequence number of other

nodes connected to node[i] where i (i=1,2, ... ,nma.x:) is the node sequence number.

Nodes can be connected together using link option. The information about each

link is saved into another structure array shown below. Structure arrays are useful

features of the C language because all the information associated to a node or a link

can be collected in one unit, while in Fortran separate arrays must be considered.

struct {

int origin;

int destination;

int tandem[tma.x:]

int capacity;

int traffic;

double probability;

int scheme;

} link[lma.x:]

A node can be deleted by selecting option delete node first and then pressing the

node using the right mouse button. When a node is deleted, all the links connected to

that node are removed by the software. Option delete link deletes a link and requires

pressing two nodes at the two ends of the link. For option move node, the node

43

to be moved must be selected first and then the new position of that node pressed

using the mouse. Options capacity and traf fie display a text menu allowing the link

capacities and traffic arrival rates to be entered from the keyboard. simulate initiates

the simulation program and displays simulation results on the screen.

The menu shown in Fig 3.8 is selected using the middle mouse button and includes

the following options:

print node connections, prints number of all nodes created and the nodes that

they are connected to ..

print link data, prints a list of all links and their informations eg. origin, destina-

tion etc.

simulation info, displays a menu on the text window allov.ri.ng the user to alter

simulation parameters.

Options LRP, LRI, DAR, RR, AAR and F R allow the user to choose a routing

algorithm.

Fig 3.9 shows a network with its capacity and traffic information entered. This

network can be simulated by selecting the option simulate.

3.7- Summary

Two simulation packages were described. The first package written in Fortran 77,

simulates a fully connected network of up to 10 nodes. The software can easily be

extended to any number of nodes. The simulation program includes three subroutines

44

for 1) generating calls, 2) clearing down calls and 3) routing. The second simulation

package written in C, includes a simulation program and a graphics front end. The

front end permits the user to draw and edit a network using a menu system. After

entering capacity and traffic matrices, the network can be simulated by selecting

option simulate. The program listings for simulation packages are given in appendices

4 and 5.

The simulation packages are used in the next chapter where a series of experiments

are performed to study and compare different dynamic routing algorithms in circuit

switched networks.

45

~
0>

P(L) 1 P(1) I P(2) 1 P(3) I P(4) I P(5) I P(6) I P(7) 1 P(8) I P(9) 1 P(IO) I

0.0 1.0
IO(L) 1 1 1 1 2 2 2 3 3 4

ID(L) 2 3 4 5 3 4 5 4 5 5

Fig 3.1 The 10 ranges in the interval (0,1), corresponding to 10 probabilities of call

arrivals in a five node network.

Generate a random

number U, in (0,1)

I
Simulate interarrival time TINT:

ln U TINT=-....;.;.;;.....;;;;...._
STR

I
Generate another

random number, U

I
S=O

L=l

L...

S=S+P(L)

U<S?

Yes

Call Identified:

Origin=IO(L)

Destination=ID(L)

I
Return

No

TD\'T=inter-arrival time

STR=Total traffic

L=L+l

Fig 3.2 Flow chart for subroutine ARRIVE.

47

r---1~ Consider an 0-T-D pair, (I,K,J)

N

P=l

NCL=O

Genarate U in (0,1)

P=P*U

Clear NCL calls from (I,K,J)

LD(I,K,J)=LD(I,K,J) - NCL

Return

NCL=NCL+l

Clear all calls from (I,K,J) :

LD(I,K,J)=O

NCL=nurnber of cleared calls
TINT=inter-arrival time

Fig 3.3 Flow chart for subroutine DEPART.

48

N

Obtain a tandem node K

using a routing rule

y

Accept the call,

increment both

LD(I,O,J) and

NAC(I,O,J) by 1

Accept call via tandem K
N

y

Call is lost

increment NL(I,J) by 1

Return

increment both LD(I,K,J)

and NAC(I,K,J) by 1

Fig 3.4 Flow chart for subroutine ROUTE.

49

Penalty

y

Get K using LRP probabilities by calling
function LANODE:

Initialize
L=l, S=O

K=LANODE(IJ)

Calculate nwnber of free channels on
{I,KJ):

MM=MIN(FC(I,K),FC(KJ))

N y

y

Initialize
L=l, S=O

Reward

Increase probability of selecting tandem
nodes other than K :

Decrease probability of selecting
tandem nodes other than K :

P(I,L))=P{I,L))+PN*P{I,K,J)/(N-3)

Add probabilities together
S=S+P(I,L,J)

Calculate probability of selecting
tandem node K :

P(I,K))=l-S

Set K=-1 to indicate penalty

P(I,LJ)=(l-RW)*P(I,LJ)

Add probabilities together
S=S+P(I,LJ)

Calculate probability of selecting
tandem node K :

P(I,K,J)=l-S

RW=reward parameter
PN=penalty parameter

Fig 3.5 Flow chart for function LRP.

50

K=K+l

Yes

Initialize:

K=l S=O

Generate a random

number U, in (0,1)

S=S+P(I,K,J)

No

Return K

Fig 3.6 Flow chart for function LANODE.

51

>:.
...

.. ··
:-:::

<Graphics-front-end>>

link
n .. ber node
delete node
•ove node
delete link
capacity
traffic
s1aulate

Fig 3.7 The graphics front end for the simulation pakage

II, showing the first menu.

52

.. ··.

I I <Graphics-front-end» .

print node connect1ons
pr1nt 11nk data
s1mulat1on 1nfo

LRI
DAR
RR
MR
FR

Fig 3.8 The graphics front end for the simulation pakage

II, showing the second menu.

53

I
§

I

I
node
link
number node
delete node
IIIOYe node
delete link
capacity
traffic

Mji .. pifjJ~MM

Fig 3.9 An 8 node network drawn on the graphics front end.

54

Chapter Four

Comparison between different routing algorithms

4.1 - Introduction

In this chapter we perform analytical and simulation studies on the use of dif

ferent routing procedures in nonhierarchical circuit-switched networks. The routing

policies include Fixed Routing (FR), Random Routing (RR), Linear Reward Penalty

(LR-P) and Dynamic Alternative Routing (DAR) [11] [21]. A series of simulations

are performed to compare different routing policies to LR-P automata schemes under

both steady state and failure conditions.

The use of learning schemes for routing traffic in telephone networks was first

suggested in [22] as a means of utilizing facilities efficiently in the face of nonstation

ary loads. Simulation studies in [22] revealed that the most effective use of learning

automata routing occurs when overload conditions exists but additional capacity is

available elsewhere in the network. In such cases the use of learning automata routing

results in a lower blocking probability as compared to fixed rule alternate routing.

55

Other works [23][24) compared LR-1 and LR-P schemes to fixed rule alternate rout

ing in simple networks. It was shown that both schemes always performed as well as

the optimum fixed rule. In addition a mathematical model of a simple four node tele

phone network was formulated. This model permitted the theoretical predictions of

optimum network blocking probability. A later work [25) considered telephone traffic

routing in more complex hierarchical and generalised networks using both fixed rule

and LR-1 automata routing. The work continued with a series of experiments on a 10

node network from Bell Labs [25). The network used has been derived using computer

design techniques to obtain optimal link capacities and routing tables given the con

straints of the network topology and traffic statistics. It therefore offered an optimal

behaviour for fixed rule with which the Learning automata could be compared. It was

shown that the LR-1 scheme was suboptimal under normal conditions but performed

better than fixed rule under abnormal traffic conditions. Since as stated the network

was deliberately designed for fixed routing, the inferior results of automata routing

under normal conditions are hardly surprising. As will be shown subsequently, work

by the present author has significantly improved the performance of the LA for the

network.

4.2- The network model

The network model is fully connected with N nodes labled i = 1, 2, ... , N. Fig

4.1 shows such a network with five nodes. The lines represent the transmission links

56

a.nd the nodes represent the switching stations. A direct link from node i to node j

is represented by the ordered pair (i,j). Each direct link in the network is composed

of a number of trunks (circuits). Each trunk is a voice channel capable of supporting

one voice conversation between the nodes at the two ends of the link. The number

of trunks per link represents link capacity and is shown by Cij. Trunks are capable

of transmission in both directions. If all Cij channels of a link are carrying calls, the

link is said to be busy. If a path consists of more than one link and at least one of

them is busy, then the path is busy.

A call is considered as a basic unit of circuit-switched traffic. The arriving calls

generated at the nodes are modelled by a Poisson process as calls per time unit

originating at node i destined for node j. The average arrival rate is represented as

Aij. The call holding time is exponentially distributed with mean } . , for an Erlang ,...,,

rate of Aij = ~. The call connection and disconnection times are assumed to be
r>J

very short compared with the call holding time and hence they are considered to be

zero.

A call between nodes i and j is offered to the direct path first. If the path is busy,

then the call attempts a two link alternate path, (i, k, j). For every origin destination

pair there are N - 2 such paths available. If the alternate path, (i, k, j) is busy then

the call is blocked. Fig 4.2 gives an example of direct and alternate paths for a five

node network. A call arrives at node 1 destined to node 2, the shortest path is the

direct link (1,2) and alternate paths are (1,3,2), (1,4,2) and (1,5,2).

57

4.3 - Routing Schemes

4.3.1 - Fixed Routing (FR)

This is one of the simplest forms of routing. Each call is only allowed to attempt

one path, the direct path. If the path is busy the call is blocked and is considered

lost.

The main characteristic of this scheme is that its blocking performance is very

stable in the sense that the blocking rate increases smoothly with the traffic rate.

Such a stable blocking performance is especially essential to networks whose traffic

rate fluctuates significantly. There are other advantages to using fixed routing. First

since each call is only allowed to attempt one path, the total processing time needed

for a call is shorter than that for dynamic routing schemes. Second due to the

absence of alternately routed traffic, the blocking performance becomes relatively

easy to calculate.

However the drawback to fixed routing is that it ignores the possibility of making

use of free alternate paths when the direct path is busy and therefore results in a

higher blocking probability. The improvement in blocking performance by making

use of free alternate paths is only guaranteed for low traffic load in nonhierarchical

networks as shown in [26] and [27]. For high traffic load, the blocking performance

is much more stable without the use of alternate paths. Therefore fixed routing is

preferable to use when the traffic load is high.

Let Aij be the offered traffic to link (i, j) with capacity Cij. Based on the as-

58

sumption of the Poisson call arrival process, the link blocking probability is given by

the Erlang B formula as

A~j /Cij A~-
B·· = E(A·· c··) =!L "'_.!:1.. '1 '1, '1 .. I ~ ll

c,J · l=O ·
(4.1)

The overall network blocking probability, Z can then be calculated:

(4.2)

4.3.2 - Random Routing (RR)

The random routing scheme operates as follows: a call arriving at the network

for the source-destination pair (i, j) is routed along the direct route (i, j) if there is

at least one free circuit on the link; otherwise a tandem node k (k =I i, j) is chosen

at random with each of the possible N- 2 tandem nodes having equal probabilities.

The call is routed along the two-link path (i, k,j) if at least one free circuit exists on

both links. If the call fails to be routed along the two-link path, it is lost.

The reason for trying alternate paths is to reduce the blocking rate. The mecha-

nism is similar to the idea of resource sharing. For example, if a direct path is busy,

the call may be connected via any of the alternate paths and hence the blocking rate

can be reduced. On the other hand, the direct path can also be an alternate path or

part of an alternate path for other calls to help reducing their blocking. Therefore,

calls with different source destination pairs share a larger bandwidth of channel ca-

59

pacity for connection. In the fully connected and nonhierarchical network model, this

is only the case for low traffic load. For overload, the blocking rate increases rapidly

with the traffic rate. This is in fact, the result of network instabilities which will be

discussed in detail in a later chapter.

In what follows we explain mathematical models to calculate the overall blocking

probabilities for random routing both without and with trunk reservation. First

consider the case when no trunk reservation is employed. For the fully connected

network model described in section 4.2, let:

Aij be the external offered load to link (i, j)

Vij be the total offered load to link (i, j)

Cij be the link capacity

B(i, j) be the blocking probability on link (i, j)

Q(i,j) = 1- B(i,j) be the probability that link (i,j) is available

Pk(i, j) be the proportion of overflow calls between nodes i and j attempting

tandem node k.

The total load Vij offered to a link consists of the external offered load plus

alternately routed calls overflowing from other direct paths.

N N
Vij = Aij + I: AikB(i, k)Pj(i, k)Q(j, k) + L AjkB(j, k)Pi(j, k)Q(i, k) (4.3)

k=l k=l
k#i k#i
k#j k#j

For random routing Pk(i, j) = N:_Z.

We assume that the external offered and overflow traffics are independent Poisson

60

streams. Therefore given offered load v to a link and the number of channels c of the

link, the blocking probability of the link is given by Erlang B formula:

11c I c 11l
B = E(v,c) =I L -11 c. l=O .

The carried load per link Cij is given as:

N

(4.4)

Cij = Aij(1- B(i,j)) + L AijB(i,j)(1- Lk(i,j))Pk(i,j) (4.5)
k=l
k::f:i
k::f:j

Where Lk(i,j) (k =I i,j) is the blocking on the two-link alternative route via k

and is given, using the independent blocking assumption, by:

Lk(i,j) = 1- (1- B(i, k))(1- B(k,j))

and the overall network blocking probability:

or

total offered load - total carried load
Z=-------------

total offered load

z = Ei Ei Aii ~ Ei Ei Cii
Ei Ei Aii

(4.6)

(4.7)

Given Aij, Cij and N we can implement the repeated substitution method to solve

the above fixed-point equations. Assume initial values for Bij, find llij. Given llij and

Cij implement the Erlang B formula to find new value for Bij· Repeat the process

until convergence.

61

Trunk reservations

When trunk reservation [26] is employed, then first-routed traffic is allowed to

access all c trunks of a link trunk group. Overflow traffic is not allowed to access

more than m < c trunks of the trunk group. If all m channels are busy, alternately

routed calls are blocked from this link. Therefore r = c- m channels are reserved for

first-routed traffic only. r is called Trunk Reservation Parameter (TRP).

Let B1(i,j) be the blocking probability to fresh calls and B2(i,j) be the blocking

probability to overflow calls using link (i, j). The functions B1 and B2 differ because

trunk reservation is applied to overflow calls. Let Q2(i,j) = 1- B2(i,j) be the link

availability for alternately routed calls. When trunk reservation is used then the link

blocking probability is no longer given by Erlang B formula [19]. Consider link (i,j),

let l be the number of lines in use on the link. For l ::; m the total traffic v offered to

the link consists of both fresh and overflow traffic. The probability of the link being

in state l can then be written as:

o::;z::;m (4.8)

-

For l > m calls, the trunk reservation mechanism stops alternate routing. There-
r

I

fore only first routed traffic is present. The offered load of this traffic is A and the

probability of a link being in state l is:

(4- 9)

62

The link blocking probability is given by

(4.10)

The link availability for the alternately routed traffic Q2 is the probability that the

system is in any of the states 0 to m - 1. This is the probability that no more than

m - 1 trunks are busy.

The zero state probability is found by summing pz over all possible states:

The equations for B1 and Q2 are simplified in Appendix 1 as:

Where:

IIe-m A
B _ k=1 ~

1 - 1 "e-m IIi A
E(v,m) + L...i=1 k=1 (m+k)

Q
_ 1- E(v,m)

2 - 1 E() "e-m IIi A + v, m X L...i=l k=l (m+k)

vm

E(v, m) = mr 1 "m v
L...l=O 1f

(4.11)

(4.12)

(4.13)

(4.14)

For the N-node fully connected network model, the offered load v to a link (i,j)

lS:

N N
1/ij = Aij + L AikB1(i, k)Pj(i, k)Q2(j, k) + L AjkBl(j, k)Pi(j, k)Q2(i, k) (4.15)

k=l k=l
k::f:.i k::f:.i
kh kh

63

And for random routing Pk(i,j) = N~z·

The total carried load per link, Cij can be calculated :

N

Cij = Ai;(l- Bl(i,j)) + L Ai;Bl(i,j)(l- Lk(i,j))Pk(i,j)

Where .

k=l kcf:i
k#j

Lk(i,j) = 1- Qz(i,k)Qz(k,j)

The overall network blocking probability can be calculated using Eq(4. 7).

z = Ei E; Ai; - Ei E; Ci;
Ei E; Ai;

(4.16)

(4.17)

(4.7)

The iterative loop is similar to the case without trunk reservation. Assume initial

values for B1(i, j) and Qz(i, j), find llij· Given llij and Ai;, implement equations (4.13)

and (4.14) to find new values for B1 (i, j) and Qz(i, j), repeat until convergence.

4.3.3- Linear Reward Penalty (LR-P)

The LR-P scheme operates as follows: consider a node pair (i, j), fresh offered

traffic between nodes i and j is first offered to the direct link and is always routed

along that link if there is a free circuit. Otherwise the call attempts a two-link

alternative route via tandem node kij with trunk reservation applied to both links

(i, k) and (k, j). H the call fails to be routed via k, it is considered lost.

In this scheme every alternative route is considered as an action a:. At every

stage the probability of choosing the kth action a:k is Pk(n) and E Pk(n) = 1. When
k

64

a particular action ak is chosen and results in call completion the probabilities are

updated as follows:

0.0 <a< 1.0

Pt(n+ 1) = (1- a)Pt(n)

When ak is selected and the call is blocked:

0.0 < b < 1.0

Pt(n + 1) = Pt(n) + _bP_k-'-(n-'-)
r-1

Where r=number of actions

a = Learning parameter

b = Penalty parameter

t = actions other than k ·

(4.18)

The next action is chosen using the modified probability distribution at stage

(n+1).

In an N node fully connected network there are N - 2 alternatives or actions for

each node pair (i, j). Pk(i, j) is the probability of selecting the kth action for the node

pair (i, j). LR-P starts with assigning equal probabilities to each action. Therefore

65

initially:

Pk(i,j)=
1

N-2

The theoretical overall blocking probability in this case is calculated using similar

technique described in sec 4.3.2 for the random routing scheme except that the pro-

portion of overflow calls Pk(i, j) has to be calculated separately for the L R-P scheme.

These proportions are found using similar technique to the one stated in [28]. For the

mathematical model B considered in section 2.5.2 it was shown that LR-P equalizes

blocking rates. Therefore for every node pair (i, j):

P1(i,j)L1(i,j) = P2(i,j)L2(i,j) = ... = Pr(i,j)Lr(i,j) (4.19)

Where

(4.17)

Equation (4.19) shows that LR-P equalizes the number of blocked calls on each

alternative. For example from equation (4.19) we see that if L2(i,j) decreases, the

two-link route via 2 is offered a greater proportion of the alternately routed traffic.

Given Q2(i, j) the proportions Pk(i, j) can be calculated using Eq (4.17), (4.19)

and the relation:

N

L Pk(i,j) = 1
k=l
k;f:.i
k;f:.j

The repeated substitution method can be implemented to calculate the overall block-

ing probability. Assume initial values for B1 (i, j) and Q2(i, j). The proportions

Pk(i, j) are derived from the link availabilities Q2(i, j), they may then be used to

66

calculate new estimates for the offered traffic llij using Eq (4.15). Given llij and Aij

equations (4.13) and (4.14) can be implemented to find new values for B1 and Q2.

The iterative procedure is given in Fig. 4.3.

4.3.4 - Dynamic Alternative Routing (DAR)

DAR operates as follows: a call arriving at the network for the source destination

pair (i, j) attempts the direct path (i, j) first, if the path does not have any free

circuit then a random tandem node k (k =f:. i, j) is selected and the call is offered

to the two-link path (i, k,j) with trunk reservation applied to both links (i, k) and

(k,j). If the call fails to be routed along the two link path, next time when a call

arrives for the node pair (i,j) and the direct path is busy, a random tandem node

is selected. If the call is successfully routed along the path (i, k,j), next time that a

call arrives for the node pair (i, j) and the direct path is busy the same tandem node

k is selected deterministically. This scheme was developed by Cambridge University

in association with British Telecom [11] [21]. It is shown in [11] that DAR equalizes

blocking rates. Therefore for every node pair (i, j):

(4.19)

The theoretical blocking probability for DAR strategy is calculated using the

same method explained for LR-P in section 4.3.3.

4.4 - Examples

67

Examples of the application of the routing strategies in this chapter are given

in the following experiments where analytical results are verified using simulations.

Also, some experiments are performed to study the behaviour of the different routing

algorithms under failure conditions. First we explain the test network. Consider

the five node fully connected network of Fig 4.1 with traffics ~ = (>.ij, i < j) and

capacities f = (Cij, i < j) given by:

~=

£=

1 2 3 4 5

1 1734 1314 600 984

2 536 309 4011

3 6279 278

4 195

5

1 2 3 4 5

1 1710 1410 630 1050

2 5 70 300 4260

3

4

5

6360 270

180

The call holding time is one time unit. One time unit is the time that the network

receives an average of~ calls. The traffics ~ were chosen to represent large routes

in the planned British Telecom digital network. The link capacities were derived by

68

including:

• fixed route dimensioning using Erlang's formula

• the effect of modularity to groups of 30 circuits

• random effects due to forcasting and the upgrading of circuits.

Thus, an attempt was made to model the sort of mis-match between traffics and

capacities likely to be present in real communication networks.

4.4.1 - Experiment 1

In this experiment we use our simulation model to verify the load equalization

property of DAR and LR-P for the test network. Consider link (1, 2) in Fig 4.1

\Vith c12 = 1710 and .X12 = 1734. The following table for TRP=O shows the average

blocking rates for three possible alternatives (1, 3, 2), (1, 4, 2) and (1, 5, 2).

1-3-2 1-4-2 1-5-2

LR-P .0666 .0646 .0772

DAR .0643 .0686 .0689

As can be seen as predicted by the theory the two algorithms allowing for the

simulation variance, equalize blocking rates with DAR giving a better equalization

of blocking rates in this case. Similar results have been obtained for both LR-P and

DAR with varying TRP with as expected an increase in the blocking rates as TRP

is increased.

In this and the following experiments, the simulator was run for a very long time

69

{200 time units for 0% and 100 time units for 10% and 20% overloads) and blocking

probabilities were recorded every one unit of time during the run. The network

reached the steady-state in a few time units. This was confirmed by calculating

blocking probabilities over equal intervals of the simulation results and observing that

the time fluctuations of the blocking probabilities were small. Moreover, calculations

showed that the effect of initial bias on the results was negligible.

4.4.2- Experiment 2

The second experiment was performed to calculate the theoretical blocking prob-

abilities for F R, RR, LR-P and DAR and compare them with simulation results.

The blocking probabilities were calculated for offered traffics (1 +OVL).A for values of

an overload factor OVL using equations 4.2 and 4.7. The table below shows blocking

probabilities for FR at 0%, 10% and 20% overload values.

OVL 0% 10% 20%

theory .868 6.95 14.73

simulation .85 7.02 14.43

As can be seen there is a good agreement between theoretical and simulation results.

Figs 4.4, 4.5 and 4.6 show theoretical and simulation results for RR, LR-P and

DAR respectively. The curves show the variation of blocking probability versus TRP

for 0%, 10% and 20% overload values. The bars show 90% confidence intervals. For

example consider Fig 4.5 for LR-P· It is shown that as the trunk reservation param-

eter drops below 5 and especially when it drops from 1 to 0 the blockings increase

70

dramatically since the additional alternative routing only damages the performance

under these circumstances. The results for 0% overload show that blocking proba-

bilities are minimum arou'nd TRP=7, while 10% and 20% overload results show a

continuous drop in blackings as TRP increases and above TRP=10 the results seem

insensitive to the changes in TRP.

The results in Figures 4.4, 4.5 and 4.6 show an excellent agreement between

theoretical and simulation results above TRP=5. It can be seen that simulation and

analytical models do not have a good agreement for small TRP's. Therefore the

accuracy of the model degrades for small TRP's and this is particularly noticable for

the case where TRP=O and there is a general overload of 0%. With higher overloads

of 10% and 20% this effect is also present but to a much lesser degree. The table

below compares numerical values of simulation and analysis for LR-P with TRP=O

and three overload factors. Ll represents the difference between simulation and model

results.

TRP=O
OVL Simulation model Ll

0% 1.22 3.43 2.21

10% 12.96 14.06 1.10

20% 20.97 21.60 .63

It can be seen that the relative error is smaller as the overload factor is increased.

Simulation variance is proportional to the stochastic behaviour of the network and

this in turn depends on the degree of flexibility for routing. As OVL increases (i.e. less

fluctuating) then simulation variance decreases and hence simulation results approach

71

theory.

Figure 4.7 compares theoretical blocking probabilities between LR-P and FR for

different overload values. It is shown that when no TRP is used, FR outperforms

LR-P· When TRP=7, LR-P is slightly better than FR for overload values less than

3% and poorer for overloads greater than 3%. Similar results are given in Fig 4.8 for

RR.

Simulation results given in the following tables for TRP=O and TRP=10 compare

the average blocking probabilities for different routing algorithms. Also included

in comparison tables are results for the Least Busy Alternative (LBA) [29] routing

strategy where for each call between nodes i and j that fails to be routed on the

direct link the tandem node kij is selected by computing the two-link alternative

route which currently has the most free circuits to carry calls between nodes i and j.

This tandem node is then used subject to trunk reservation.

TRP=O

OVL FR RR LR-P DAR LBA

O% .85 1.23 1.22 1.44 3.92

10% 7.02 12.31 12.96 12.90 16.90

20% 14.43 20.34 20.97 20.75 24.61

TRP=10

OVL FR RR LR-P DAR LBA

0% .85 .57 .52 .52 .48

10% 7.02 7.12 7.25 7.31 7.28

20% 14.43 14.32 14.59 14.51 14.23

72

The above results indicate that for TRP=O all routing techniques are inferior to F R

and for TRP=10 they all perform as well as FR. From the above tables it can be seen

that RR, LR-P and DAR perform very close to each other. In the next experiment

these three algorithms and FR are compared under failure conditions.

4.4.3 - Experiment 3

The test network was simulated for the case of 10% overload and the routing

policies: F R, RR, DAR and LR-P (with three sets of reward-punish parameters

(a = b = 0.1), (a = 0.1, b = 0.01), (a = 0.1, b = 0.001). 'While the network was

operating in the steady state, one link (e.g. 1-2) was disconnected to study the effect

on overall blocking probabilities. The tables below contain numerical results for the

above mentioned routing policies and TRP=O and 10.

TRP=O

FR RR DAR L (.1,.1)
R-P

L(.L01)
R-P

£(.1,.001)
R-P

Z% 16.57 22.84 23.27 23.54 24.44 24.55

NAC 0 640 653 660 660 630

TRP=10

FR RR DAR 1 {.1,.1)
R-P

L (.1,.01)
R-P

£(.1,.001)
R-P

Z% 16.57 16.92 16.80 16.97 16.81 16.84

NAC 0 74.80 78.07 75.80 80.57 78.01

Where Z is the average network blocking probability

NAC is the average number of calls accepted per link (1,2)

73

The tables indicate that (except for the case of FR), a) blocking probabilities

are similar for different routing schemes, and b) blocking probabilities are higher for

TRP=O than for TRP=10. The network's internal operation in terms of accepted

calls for the failed link is shown in the same tables.

In the previous experiment FR was superior to dynamic routing schemes under

steady state conditions. This experiment shows that under failure conditions FR

still results in a lower network blocking probability than dynamic routing schemes.

The disadvantage of FR is that under link failure there will be no communications

between origin and destination of the failed link. With dynamic routing schemes

and TRP=O when link (1,2) fails a considerable amount of calls are routed using

alternatives (1,3,2), (1,4,2) and (1,5,2). This is shown in terms of the number of

accepted calls, NAC per link (1,2) in the above tables. For TRP=10 less dynamic

routing is allowed in the network and the number of accepted calls per link (1,2) is

significantly decreased. Also it can be seen from the tables that in this particular

example the change in learning parameters does not have any significant influence on

the network blocking probability.

4.4.4- Experiment 4

Consider the origin destination pair (1,3), when a call arrives, if no direct link is

available one of the three alternatives (1,2,3), (1,4,3) or (1,5,3) is examined. When

link (1,2) fails the arc (1,2,3) is a failed alternative. With the RR and DAR schemes

74

the probability of selecting (1,2,3) is always high because the two algorithms cannot

detect any failure in the network. In the case of the LR-P scheme the probability

of selecting the failed arc is expected to converge to zero because the algorithm can

detect the failure by adjusting the probabilities. The table below shows the numerical

values of selecting probabilities, P2(1, 3) for failed arc (1,2,3). These values are given

for three sets of LR-P parameters and two TRP's, 0 and 10.

TRP=O

£(.1,.1)
R-P

£(.1,.01)
R-P

£(.1,.001)
R-P DAR

P2(1, 3) .21 .060 .0077 .26

TRP=10

£(.1,.1)
R-P

£(.1,.01)
R-P

£(.1,.001)
R-P DAR

P2(1, 3) .30 .20 .045 .31

The table for TRP=10 does not show steady state results because the total number of

times that alternatives are tried is small and consequently much more runs are needed

to observe steady state probabilities. The TRP=O results show that when a= b = 0.1

is tried the probabilities are high but if b is decreased (i.e.reduced penalty probability)

the probabilities converge to smaller numbers which means that there is a very low

probability of selecting the failed arc.

4.4.5 - Experiment 5

There are two questions which need to be discussed as a consequence of the

previous experiments.

75

(a) - Why is the network so sensitive to small TRP's (e.g. TRP=5) compared

to large link capacities (e.g. Cis=1050)? (b) - How does TRP affect the spread of

traffic over the entire network. To answer the first question, in a typical simulation

program [LR-P, 10% overload and TRP=O] the number of free circuits per links were

recorded. A small sample of the results is shown below. The results show the number

of free circuits, FC at an instant of time as a call arrives.

call arrives at node 3 with destination node 5

FC(1,2)=0

FC(1,3)=3

FC(1,4)=1

FC(1,5)=1

FC(2,3)=1

FC(2,4)=1

FC(2,5)=7

FC(3,4)=7

FC(3,5)=0

FC(4,5)=0

call routed via node 1

call arrives at node 3 with destination node 4

FC(1,2)=1

FC(1,3)=2

FC(1,4)=1

76

FC(1,5)=0

FC(2,3)=1

FC(2,4)=1

FC(2,5)=7

FC(3,4)=6

FC(3,5)=0

FC(4,5)=0

call routed directly

In the first set of results for a call arriving at node 3 with destination 5 there are

no free circuits on the direct link and the call is routed via node 1 along the routes

(1,3) and (1,5). In the second case the call is routed directly. The above results show

that the number of free links are very small and comparable to small TRP's. This is

why the network is sensitive to small TRP's in spite of large link capacities.

To answer the second question, the network's traffic loading distribution with

LBA and 20% overload are drawn for two cases of TRP=O and 10, Figs 4.9 and 4.10.

Consider Fig 4.9, the horizontal axis represents 40 paths including 10 direct and 30

two-link alternatives. Direct paths are indicated by upward arrows. The vertical axis

shows the number of calls in progress on each path. For example path 1 is the direct

link between nodes 1 and 2; the vertical axis shows the number of calls in progress on

that path. Path 2 is the alternative (1,3,2) with the vertical axis showing the number

of calls in progress on the path. Comparison of Figs 4.9 and 4.10 shows that there is a

better spread of traffic for TRP=O than for TRP=10. The TRP=lO figure indicates

77

that traffic load is mainly on direct routes and is very small or zero on alternatives.

In fact the network's behaviour is very much the same as FR when TRP=10 or more

is selected.

4.5 - Summary

Simulation studies in experiment one verified theoretical results explained in the

previous chapter in terms of the convergence characteristics of the LR-P scheme.

In the second experiment the theoretical blocking probabiliiies for FR, RR, LR-P

and DAR were compared to simulation results for different values of overload and

TRP. An excellent agreement between analytical and simulation results was found

for T RP > 5. For all routing strategies the results illustrate the sensitivity of the

performance to the parameter TRP. In each case provided TRP is greater than 10

the results are invariant for further increase in TRP. Comparison tables given in

experiment two indicate that with TRP=O, all dynamic routing schemes (RR, LBA,

LR-P and DAR) are inferior to FR. The test network is designed for fixed routing

and as a result any attempt to introduce alternate routing only deteriorates the

performance in these circumstances. Comparison tables with TRP=10 indicate that

all routing policies perform as well as FR. This is hardly surprising since as shown

in experiment five under these conditions a small amount of alternative routing of

traffic takes place.

Experiment three shows results for link failure at 10% overload conditions. It

78

may be seen that with TRP=O all routing strategies are inferior to FR but with

TRP=lO the results for the various strategies are very similar. However in terms

of the number of accepted calls for the failed link (1,2), TRP=lO results show a

significant deterioration compared to TRP=O. · For dynamic routing to be effective

for a traffic source directly affected by the failed link, a zero TRP is needed. Clearly a

compromise is involved between the effective capacity on alternative links for a traffic

source A12 and the overall blocking probability for the network. Effectively priority

can be given to A12 by reducing the TRP values for the alternative links while the

rest of the links in the network retain TRP=lO.

The test network considered in this chapter is designed for FR and as was demon

strated in different experiments, FR resulted in a lower network blocking probability

under both steady state and failure conditions. In the next chapter we study the

behaviour of different routing algorithms on networks which are designed for dy

namic routing strategies. Specifically we will compare learning automata to the DAR

scheme.

79

Fig 4.1 A 5-node fully connected network.

Destination node ~1---

Direct path ... ~..----

Source node ~...__-

second alternative (1,4,2)

First alternative (1,3,2)

Fig 4.2 An example of direct and alternative

paths for a 5-node network.

80

1
(4.17)

l
(4.19)

l
(4.15)

'
(4.13,4.14)

1
z (4.7)

Fig 4.3 Iterative loop to calculate the theoretical

blocking probability for LR-P·

81

>.. 4
.... --' - 3 -Model .D
(1)

.D e Simulation 0
L 2 a.
m c -
~

(.)
0
-'
ID
~ (a)

0 10 20 30 40 so
TRP

>.. 1S
....

.D
(1) 10 .D
0
L

a.
m
c s -
~

u
0

ID
~ (b)

0 10 20 30 40 so
TRP

>.. 20
-' -.D

1S (1)

.D
0
L

a. 10
01
c -
~ s (.)
0
-'
ID
~ (c)

0 10 20 30 40 so
TRP

F1g 4.4 Theoretical and simulation results for the five node

test network with RR scheme, a>O%, b) 10%, cl20% over Load.

82

>-.. 4 ... --' - 3 -Model .D
(1)

.D G> Simulation
0
c.. 2 a.
en
c -..ll;

0
0
-'
CD
~ (a)

0 10 20 30 40 so
TRP

>-.. 15 ... --' -.D
(1) 10 .D
0
c..

a.
en
c 5 -

..ll;

0
0
-'
CD
~ (b)

0 10 20 30 40 50
TRP

>-.. ... 20
-' -
.D

15 (1)

.D
0
c..

a. 10
en
c -
~ 5
0
-'
CD
~· (c)

0 10 20 30 40 50
TRP

Fig 4.5 Theoretical and simulation results for the five node

test network with LRP scheme, a> D.%, b) 1 0.%, c) 20.% over Load.

83

>.. 4 ... -...J - 3 -Model ..0
(I)

..0 c;> Simulation
0
L 2 c..
Cl c -

...:>l
u
0

...J

m
!l-It (a)

0 10 20 30 40 50
TRP

>.. 15 ... -...J -
..0

(I) 10 ..0
0
L c..
Cl
c 5

...:>l
CJ
0

m
!l-It (b)

0 10 20 30 40 50
TRP

>.. ... 20
...J -..0

15 (I)
..0
0
L

Cl... 10
Cl c -

...:>l 5 CJ
0

m
!l-It (c)

0 10 20 30 40 50
TRP

F1g 4.6 Theoretical and simulation results for the five node

test network with DAR scheme, alD.%, b) 1 0.%, c) 20.% over Load.

84

------ TRP=O CLRP or DAR>

------ TRP=7 CLRP or DAR>

FR

22

/
20 /

18
/

/

16 /
>... / 4-> / - 14 -J

...0
(1)

...0 12 0
L

0...

m 10 c -
~
()

8 0
-J

til
lt-li!.

6

4 I

2

0

0 5 10 15 20
Percentage Overload

F1g 4. 7 Theoretical Results for LRP, DAR and FR.

85

------ TRP=O (RR>

------ TRP=7 (RR>

FR

22
,

20 /

/
18

/

16 /
>.. /
~ / - 14 ..J -

..1J
(t)

..1J 12 0
L

a..
m 10 c -

...:.1.
0

8 0
..J

CD
~

6 I

4 I

2

0

0 5 10 15 20
Percentage Overload

Fig 4.8 Theoretical Results for RR and FR.

86

X AXIS REPRESENTS ARC NUHBER1

1.1-0-2 DIRECT BETWEEN 1 AND 2

2·1-3-2 BETWEEN 1 AND 2 VIA 3

6000 3=1-4-2 BETWEEN 1 AND 2 VIA 4

..........
0 5-1-0-3

5500
.jJ

c 9.1-0-4

:J 5000
4-

0
29·3-0-4

4500 ""0
c AND SO~
())

()) 4000!:.
~

~

ro 3500

c
0

3000
~

:J
_()

L 2500
~

(f)

""0 2000
m
c

""0 1500
ro
0

.....J

0 1000
4-
4-

co 500
L

1- ARC
I I I I I I I I I I I 0 I I • I I

0 5 10 15 20 25 30 35 40
1' 1' 1' 1' 1' 1' 1' 1' 1' 1'

"' 0 I RECT ROUTE

Frg 4.9 Traffic Loading distribution,

LBA, TRP=O, 20% overload.

87

6000

0

5500
~

c
:J 5000

'-1-

0

""0 4500 c
CD

CD 4000 ..1:
~

~

co 3500

c
0

3000
~

:J
_o

L 2500
~
(I)

""0 2000
m
c

""0 1500
co
0

.....J

() 1000
'-1-
'-1-

co 500
L
I-

0 I
0 5 10 15 20 25

"' 0 I RECT ROUTE

FIg 4. 1 0 TraffIc LoadIng d I st r I but I on,

LBA, TRP=10, 20% overload.

88

I
30

X AXIS REPRESENTS ARC NUMBER,

1R1-0-2 DIRECT BETWEE~ 1 AND 2

2·1-3-2 BETWEEN 1

3=1-4-2 BETVEE~ 1

..........
5R1-0-3

....
9:1-0-4

......

......
29-3-0-4

AND SO ON

I
ARC

35 40

AND 2 VIA 3

AND 2 VIA 4

Chapter Five

Learning Automata & Dynamic Alternative Routing

5.1 - Introduction

In chapter four the performance of different routing algorithms were compared for

a network which was designed for FR and as a result FR gave the best performance.

In this chapter the performance of Learning Automata (LA) is compared with DAR

on small networks with link capacities and traffic patterns chosen to force dynamic

routing. From the routing strategies studied we have selected DAR for further com

parison with LA because DAR has recently been implemented by BT and therefore

provides a good reference for comparison with LA.

The test networks used in this chapter are shown in figures 5.1, 5.2 and 5.3.

Network 1 is a four node network, network 2 is a five node fully connected one used

elsewhere [7) and network 3 is a five node with links (1,3) and (3,5) assumed to have

failed.

89

5.2- Tuni;ng dynamic algorithms

Some dynamic algorithms h(!.ve parameters that can influence their performance

significantly. For example the time between updates for delta routing [7]. The perfor

mance of the LR-1 scheme can be improved by properly tuning the learning parameter.

Consider the network of Fig 5.1 where calls arrive from node 1 to be routed to node

3. The automaton at node 1 selects action 1 (path (1,2,3)) with a probability P1 and

action 2 (path (1,4,3)) with a probability P2. Let B1 and B2 be the blocking prob

abilities of the two alternate paths, (1,2,3) and (1,4,3) and Z be the overall blocking

probability.

Fig 5.4 shows the influence of the learning parameter on the performance of the

algorithm. The test network and its traffic input are shown in the same figure. From

Fig 5.4 it can be seen that the blocking probability is very high for a > .01 and

drops significantly as a decreases with the minimum Z at a= .001. For a< .001 the

blocking probability increases until a = 0.0 which is actually random routing. The

reason for the poor performance with a > .01 is that the algorithm converges to the

selection of the path with a higher link capacity, path (1-2-3), (Fig 5.4) and as a

result the available capacity of the other path, (1-4-3) will not be utilized. In other

words when blocking probabilities are coarsely adjusted the algorithm locks on one

path. Simulation results with .01 < a < .02 showed the sensitivity of the network to

initial seed values for the simulator. For example for a = .015, we obtained Z = 4.65%

with one seed and Z = 20.97% with another seed value. This indicates that for this

90

range of the learning parameter, there is always a high probability that the algorithm

converges to the selection of one path.

The convergence properties of the LR-1 scheme is discussed in [10]. For a two

action LR-1 automaton it has been shown that limn--+oo ~P1(n) = 0 and this can

happen in three ways:

a) P1 (n) --+ 0

b) P1 (n) --+ 1

c) E[B2(n)- B1(n)IPI(n)]--+ o

The first two conditions correspond to the absorbing states of the LR-I scheme.

The third case represents the equality of the expected values of blocking probabilities

B1 and B2 of the two alternate paths. (1,2,3) and (1,4,3). For the curve in Fig 5.4,

when a > .01 then P1 = 1 and when a= .001, the average blocking probabilities for

the two alternate paths (1-2-3) and (1-4-3) are 1.57% and 1.21% which are very close

to each other.

This experiment has been repeated for another two sets of link capacities shown

in Figs 5.5 and 5.6. In Fig 5.5 where the capacities of the two alternate paths are

equal, the minimum blocking probability is at a=O.O (random routing) as expected.

Fig 5.6 shows that the minimum Z is at a=.001, therefore changing the capacities of

alternate paths does not have a significant effect on the optimum value of the learning

parameter.

The simulation results presented in this chapter were obtained for the optimized

algorithm, i.e. where the value of the learning parameter was selected to give the best

91

performance for the problem studied.

5.3 - Simulation I : Four node network

5.3.1- EXP 1:

For network 1:

Cl2 =50 Cl4 = 30

C23 =50 C34 = 30

The traffic from node 1 to 3, A13 changes over the range from 30 to 110 Erlangs.

The network was simulated for LR-J, DAR and LR-P· The steady state blocking

probabilities are tabulated below:

Z%
A13 LR-I DAR LR-P DAR- LR-I

30 .0 .014 .0 .014

40 .03 .90 .045 .87

50 .28 2.36 .173 2.12

60 1.54 4.26 1.21 2.8

70 4.91 6.86 4.79 2.0

80 11.04 11.58 11.21 .6

90 18.27 18.49 18.00 .2

100 24.80 25.06 24.96 .3

110 30.58 30.70 30.31 .1

The parameters used are a= .001, b = .001 for LR-P and a= .001 for LR-I· The

values for reward and penalty parameters for LR-P have been chosen experimentally

to give the best performance in this example. Fig 5. 7 shows plots of network blocking

92

probability against traffic arrivals for LR-1 and DAR. The above table shows that

LR-1 and LR-P perform very close to each other and they both are superior to DAR.

The last column shows the difference in blocking probabilities for LR-1 and DAR,

which is most significant over a traffic range between about 40 to 80 Erlangs. When

A13 is smaller than 40 Erlangs, the blocking probability is small for both schemes

because there is sufficient capacity available. When A13 is higher than 80 Erlang a

large proportion of calls will be lost and the two schemes utilize the available capacity.

For A13 between 40 and 80 Erlangs, the routing schemes play a more important

role because the traffic should correctly be divided between the two paths. The

superiority of LR-1 to DAR suggests that LR-1 should have a better spread of traffic

as will be shown later. For the rest of this chapter, LR-1 will be compared to DAR.

However in practice, LR-£P is preferable to LR-1 as a small amount of penalty

prevents the algorithms convergence to the selection of one action.

5.3.2 - EXP 2:

For network 1:

Cl2 = 60

C23 = 60

Cl4 = 20

C34 = 20

A13 changes over a range from 30 to 100 Erlangs.

This experiment investigates the difference in performance of LR-1 and DAR

for a four node network similar to the previous experiment but with different link

93

capacities. We are interested to see how the algorithms perform when the ratio of

the effective link capacities are higher. In the previous example the ratio was 5/3 but

here it is 6/2 with the total useful capacity constant.

First, two sets of simulations have been performed for LR-1 (a=.01) and LR-1

(a=.001) with A13 = 60 Erlangs. The steady state results are:

L(.OOl)
R-1

L{.Ol)
R-1

Z% 1.43 8.08

The reason for the high blocking probability with L kG_!) is that it locks on the upper

path (more capacity) as was explained before in section 5.2.

To compare LR-1 with DAR, simulations have been performed for each algorithm

and for the above specified traffic range.The learning parameter is a = .001. The

steady state results are listed below:

Z%
A13 LR-I DAR DAR- LR-I

30 .57 .0 -.57

40 .06 .02 -.04

50 .1 1.07 .97

60 1.43 2.62 1.19

70 5.02 6.24 1.22

80 10.93 11.41 .48

90 18.59 18.87 .28

100 25.61 25.09 -.52

Fig 5.8 shows plots of network blocking probability against traffic arrivals for the two

algorithms. From figures 5. 7 and 5.8 it can be seen that the two algorithms perform

94

closer when the link capacity ratio is higher. This reflects the fact that DAR performs

better the higher the ratio of the link capacities of the two alternate paths. Under

these conditions DAR requires less switching between alternate paths. Each time the

DAR algorithm switches, a call is lost. When less switching is required then DAR

loses less calls.

5.3.3 - EXP 3:

For network 1:

Cl2 = 40 C!4 = 40

C23 = 40 C34 = 40

>.13 changes from 30 to 110.

This experiment is similar to the two previous ones but with a 1/1 link capac

ity ratio. The steady state blocking probabilities are tabulated below. The reward

parameter is a= .001.

95

Z%
Aij LR-I DAR DAR- LR-I

30 .0 .26 .26

40 .02 1.51 1.49

50 .1 2.78 2.68

60 1.42 4.55 3.13

70 5.55 7.52 1.97

80 11.17 12.78 1.61

90 16.74 18.19 1.45

100 23.77 24.01 .24

110 30.59 30.77 .18

Fig 5.9 shows plots of the above results. The results indicate that the difference

between the two algorithms is higher than the two previous experiments. Comparison

between this experiment with the two previous ones shows that as the ratio of the

effective capacity of the upper to lower path is increased, the two algorithms perform

closer to each other. As was stated previously, each time the DAR switches, a call is

lost. As the ratio of the capacity of the two alternative paths approaches unity, more

switching ·will be required and as a result DAR loses more calls.

5.3.4 - EXP 4:

For network 1:

C!2 =50 C!4 = 30

C23 =50 C34 = 30

A13 = (30,120) Erlangs

96

In this experiment we calculate the optimum probabilistic split for traffic A13.

We then compare the optimum network performance to DAR and LR-1 schemes.

The routing strategy considered is Proportional Routing (PRO) with A13 offered

independently to each of the paths (1,2,3) and (1,4,3) with probabilities P1 and P2.

The aim is to find the optimum probabilistic split of the traffic .413· Assume Z to be

the overall blocking probability and B1 and B2 be the blocking probabilities along

paths (1,2,3) and (1,4,3). Then:

The blackings B1 and B2 of the two alternate paths are calculated using Erlang's

formula:

Where CI23 and c143 are effective capacities along paths (1,2,3) and (1,4,3).

Fig 5.10 shows a plot of B1, B2 and Z versus P1 for network 1 with c12 = c23 =50,

CI4 = C43 = 30 and A13 = 60. As can be seen the overall blocking probability Z

is minimum at the intercept of the B1 and B2 curves corresponding to P1 = .65

which is the optimum value for P1. Fig 5.11 shows a plot of Z calculated for the

optimum probabilistic split for a·range of traffic A13· Simulation results for both LR-1

and DAR schemes are given in the same figure. Also shown in Fig 5.11 is another

curve corresponding to the minimum blocking probability for the same network. To

calculate this curve consider a strategy that first offered the call to path 1-2-3 and

97

then if no circuit is available chose path 1-4-3. Therefore a call is lost only if there

are no free circuits on either paths. The probability that a call is lost is calculated

using Erlang's formula:

Zmin is also a lower bound on the performance of the network.

The results in Fig 5.11 indicate that for A13 < 80, LR-I gives virtually optimum

performance. For higher values of traffic, both LR-I and DAR perform very close to

the optimum. Similar results were obtained for 60/20 and 40/40 ratio of the effective

link capacities of the two alternate paths.

5.3.5 - EXP 5:

For network 1:

Cl2 =50

C23 =50

A13 = 60 Erlangs

Cl4 = 30

C34 = 30

In this experiment we consider LR-P and LR-I and study their convergence

behavior. Simulation results in Fig 5.12 for LR-P with (a = b = .1) illustrate the

variation of P(1,2,3) versus call arrivals. Also shown is a straight line corresponding

to the theoretical prediction for P(1,2,3). As can be seen, P(1,2,3) shows a significant

variance associated with the large stepsizes chosen to update the probabilities. In

another set of simulations, we reduced the values of stepsizes by reducing the reward

98

and penalty parameters to (a = b = .01). The results given in Fig 5.13, show

that after about 400 calls, P(1,2,3) converges to the theoretical level and fluctuates

around that point with considerably less variance compared to the curve in Fig 5.12

for (a = b = .1).

Similar simulations were performed for L R-1. Fig 5.14 for (a = .1) illustrates

that after 320 calls, P(1,2,3) converges to 1. As was discussed in section 5.2, for

(a = .1), L R-1 converges to the selection of the path with a higher link capacity,

path (1,2,3). Fig 5.15 shows results for LR-1 with (a= .01). It can be seen that after

about 560 calls, P(1,2,3) converges to the theoretical value and exhibits a relatively

small variance around that point.

5.3.6 - EXP 6:

For network 1:

C14 = 4

C23 = 4 C34 = 4

This experiment compares the performance of LR-1 and DAR on a call by call

basis. The network has been simulated with the above specified data and the steady

state blocking probabilities were recorded as 17.1% and 22.5% for LR-1 and DAR

respectively. In the simulation program, number of free circuits on paths 1-2-3 and

1-4-3 were recorded during an interval of time. Two data samples were recorded for

99

the two algorithms. First we consider the DAR sample:

DAR

no FC(1,2,3) FC(1,4,3) Routed

1 1 4 V2

2 0 4 R

3 0 4 R

4 2 4 V4

5 4 3 V4

6 4 2 V4

7 4 1 V4

8 4 0 R

9 4 1 V4

10 4 0 R

11 4 0 R

12 4 1 V4

13 4 1 V4

14 4 0 R

15 4 0 V2

Where:

FC = free circuit

V2 = call routed via node 2

V 4 = call routed via node 4

R = call rejected

In the above table for DAR, line one shows one free circuit on path 1-2-3 and

four on path 1-4-3; a call arrives and is routed via node 2. At line two when a call

arrives, DAR attempts path 1-2-3 (because last time this path was successful); there

is no free circuit and the call is rejected. At this point DAR selects a random path

100

for the routing of the next call. Line three shows that DAR selects 1-2-3 randomly

and the call is rejected again. Line four shows that two circuits have been released

on 1-2-3 and four free circuits exists on 1-4-3. This time DAR selects 1-4-3 randomly

and the call is successful. Lines 5 to 7 show that DAR keeps selecting 1-4-3 until line

8 when the call is rejected. Line 9 shows that DAR selects 1-4-3 randomly; a circuit

has already been freed on this path and the call is successful. Lines 10 to 14 show

that DAR loses three more calls on 1-4-3 while free circuits exists on 1-2-3. Finally

at line 15 DAR switches to 1-2-3. The second table shows results for LR-1·

LR1

no FC(1,2,3) FC(1,4,3) Routed

1 1 4 V4

2 2 3 V4

3 2 2 V2

4 1 2 V2

5 1 2 V2

6 0 3 R

7 1 3 V4

8 1 2 V2

9 0 2 R

10 1 2 V2

11 4 4 V2

12 3 4 V4

13 4 3 V2

14 3 3 V4

15 3 4 V2

From the LR-1 sample it can be seen that there is a better distribution of traffic

at each instant compared to DAR. LR-1 makes less mistakes and therefore gives a

101

better result due to this smoother spread of traffic.

5.4 - Simulation II : Five node network

5.4.1 - Exp 7:

Simulations were carried out for network 2, shown with its link capacities in Fig

5.2. The values of the base traffic matrices are given in tables 5.1 and 5.2. For each

routing scheme the blocking probabilities were plotted against the scale factor OVL.

The graphs are shown in figures 5.16-17 and the numerical results are listed below.

The learning parameter is a= .01 for LR-1·

Traffic matrix 1

OVL LRI DAR

10% 0.80 1.09

20% 2.29 2.62

30% 4.70 5.29

Traffic matrix 2

OVL LRI DAR

10% 1.97 2.98

20% 4.04 4.75

30% 6.50 7.35

The results indicate the superiority of LR-1 over DAR for the two traffic matrices

and different overload factors. Further simulations have been performed to compare

fixed routing with dynamic routing and also to study the effect of trunk reservation

on the performance of the network. The table below shows the steady state blocking

102

probabilities for FR and dynamic routing for 10% overload and traffic matrices 1-2.

Traffic matrix 1
LR-I DAR FR

.80 1.09 6.49

Traffic matrix 2
LR-I DAR FR

1.97 2.98 26.62

Clearly different traffic patterns can amplify the differential between FR and dynamic

routing. The effect of TRP on blocking probabilities can be seen in table below for

both DAR and LR-I for 10% overload and traffic matrix 1.

TRP 0 1 5 7 10 00

DAR 1.09 1.23 2.96 4.45 5.83 6.49

LR-I .80 1.36 3.23 4.23 5.71 6.49

For the particular network considered any attempt to introduce TRP adversely

affects the network performance. Clearly by increasing TRP more traffic will be

routed directly and the differential between FR and dynamic routing will be reduced.

However any attempt to introduce TRP for this class of networks increases blocking

probability.

5.4.2 - EXP 8:

This experiment compares LR-I and DAR under failure conditions. Consider the

network of Fig 5.3 where links 1-3 and 3-5 have been failed. A simple traffic pattern

103

was considered:

A13=10 Erlangs , A35=10 Erlangs

The network has been simulated for the two routing schemes and different overload

values. The steady state blocking probabilities are listed below and the curves are

.shown in Fig 5.18.

OVL %0 %10 %20 %30

Lm 1.9 3.0 4.1 5.5

DAR 9.3 11.0 12.6 14.0

The above results show a significant superiority of LR-1 over DAR. LR-1 performs

better for two reasons, first it reduces the probability of selecting the failed links to

zero i.e it learns not to attempt them. DAR does not detect the failure and at the

time of switching from one path to another it attempts the failed link and loses some

calls. Second the traffic must be split equally between two possible paths which exists

for each traffic source, e.g paths 1-2-3 and 1-4-3 for the node pair 1-3. Under these

conditions LR-1 loses less calls than DAR when switching from one path to another,

as was explained in simulation I.

5.5 - Summary

The effect of the learning parameter on the performance of a simple four node

network has been investigated. As the curves in Figs 5.4-5.6 indicate the algorithm

can be tuned for an optimal performance. Simulation results for network 1 show

104

that as the ratio of the effective capacity of the upper to lower path increases, the

advantages of the LR-1 scheme are reduced. In the case of DAR a high ratio of

link capacities on the two alternative paths is a favorable condition. Under these

circumstances less switching will be required between the alternative paths for the

DAR algorithm. It should be recalled that each time the DAR algorithm switches, a

call is lost. Clearly as the ratio of the capacity of the two alternative paths approaches

unity, then increasing switching will be required and therefore more calls will be lost.

Results on five node networks deliberately designed to force dynamic routing

illustrated an improved performance with LR-I· The failure condition experiment

showed a significant superiority of LR-I over DAR for the case studied. Finally it was

shown that for a traffic matrix not designed for FR, FR resulted in higher blocking

probabilities than dynamic routing and any attempt to introduce TRP adversely

affected the network performance.

In the next chapter we study the behaviour of different dynamic routing algo

rithms on more realistic larger networks. First the important problem of instability is

considered. Then dynamic routing strategies are compared on two ten node networks

from BT and Bell Labs.

105

2

c
12

c
23

c
14

3

c
~

4

Ftg 5.1 Network 1. Four node

3

2

12

Ftg 5.2 Network 2. Ftve node

3

2

10

Ftg 5.3 Network 3. Ftve node

106

36)1.
22

:o·~
,

.:o:.
, ,

32 ,
20 ,

- -· rf ,--- I

18 I

1
30

4
28 1 40 4 I

I

>- 16 7
I >- 7 I

I ~ 24 I
1- I I _, = 14

I I
CD I CD <

< ~ 20 I

~ 12 I
I 0:

0: a.
a. I

c..:J 10 I ~ 16
:z I - :..l I

~8 I u
~ 12

I
0 I I _, CD
CD ~ I
~6

' I

' I 8
' I

4 ' I I

' ..
' "' "'

I

' 4 I
2 ·- "' --- .. ~ -111

LEARNING PARAMETER -- LEAR~JI«l - - - -. - - - - .. - PAIUI£TER
0 0

0.0 • 0001 • 001 • 01 • 02 • 1 0.0 • 0001 • 001 • 01 • 04 .1

Fig 5. 4 Effect of the Learning parameter F1g 5.5 Effect of the Learning parameter

on the performance of the LRI scheme. on the performance of the LRI scheme.

20

18
I
I

16 I
I

~ 14
I
I

_,
iD 12
< I
CD
0 I

g: 10
c..:J
:z
¥8
u
0 _,
~6

4

2

0

0. 0

I
I

I
I
I

I

•

. 0001

..............

. 001

I

.,.Ill

I
I

I
I

I.----.

LEAR~I~G PARAMETER

• 006 • 007 • 1

Fig 5.6 Effect of the Learning parameter

on the performance of the LRI scheme.

107

28 28

26 26

24 24

22 22

>- 20 >- 20
1- 1-

..J 18 ..J 18
aJ aJ
-< 16 aJ
0
0:: 14 c.

-< 16 aJ
0
0:: 14 c.

t:l :z 12
t:l :z: 12

~ ~
u 10 0

u 10 0
..J ..J

~8 aJ
ltll8

6 6

4 4

2

0
A CALLS/HIN

2
>tALLSIHIN

0

30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120

FIG 5. 7 Comparison between LRI and DAR. FIG 5.8 Comparison between LRI and DAR.

Networl:: 1, Llnl:: capacity ratio 50/30. Networl:: 1, Llnl:: capacity ratio 60/20.

28

26

24

22

>- 20
1-

..J 18
aJ
-< 16 aJ
0
0:: 14 c.
t:l :z: 12
~
u 10 0
...J
aJ
~t~~.8

6

4

2
A CALLS/MIN

0

30 40 50 60 70 80 90 100 110 120

FIG 5.9 Comparison between LRI and DAR.

Networl:: 1, Llnl:: capacity ratlo:40/40.

108

>-
I- 0.4
__J -(D

<
(D
D
0:::

0.3 0...

c....:J
:z -~
u
D
__J 0.2 (D

~

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

P1

Fig 5.10 Calculation of the optimum probabiList lc split.

109

40

36

32

>- 28
1-

_J

en 24
<
CD
D

8: 20
CJ :z
~ 16
u
D
_J

~ 12

8

4

!II LR I (s I mu Lat I on)

OAR (simulation)

OPT (theory)

MIN (theory)

40 50 60 70 80 90
TRAFFIC

100 110 120

FIG 5. 11 Com par 1 son of LR I and DAR to the

optimum and minimum performance,
50/30 rat i o.

110

1. 0

0.9

0.8
~ (ld I

M
I I I ~ ~

0. 7
.I

0.6
N") ..
N 0.5 .. -~ ~
a. 0. 4

0. 3

0.2

0. 1

0.0

0 1 00 200 300 400 500 600 700 800 900 1 000 11 00 1200
CaLL

F I 9 5. 12 E vo Lut I on of P (1 1 21 3) • LRP wl t h a=b=. 1.

1.0

0.9

0.8

0. 7

0.6
N") ..
N .. 0.5 -
a.. 0.4

0.3

0.2

0. 1

0.0

0 1 00 200 300 400 500 600 700 800 900 1 000 11 00 1200
CaLL

F I 9 5. 1 3 E vo Lut I on of P (1 1 21 3l . LRP wIth a=b=. 01.

111

N1 ..
N ..
a.

N1 ..
N ..
~

a.

1.0

0.9

0.8

o. 7

0.6

0.5

0.4

0.3

0.2

0. 1

0.0 +-----~------~--------------------------~
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Call

Fig 5.14 Evolution of P(1,2,3). LRI with a=.l.

1.0

0.9

0.8

0. 7

0.6

0.5

0.4

0. 3

0.2

0. 1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Call

FIg 5. 15 E vo lut I on of P (1, 2, 3) . LR I wIth a=. 01.

112

1 2 3 4 5

1 0.0 15.0 15.0 15.0 30.0

2 0.0 0.0 0.0 0.0 15.0

Aii = 3 0.0 0.0 0.0 0.0 15.0

4 0.0 0.0 0.0 0.0 15.0

5 0.0 0.0 0.0 0.0 0.0

Table 5.1. Traffic matrix 1.

1 2 3 4 5

1 0.0 15.7 7.7 12.5 2.5

2 0.0 0.0 18.0 7.3 1.9

Aii =
3 0.0 0.0 0.0 10.7 .9

4 0.0 0.0 0.0 0.0 '1.2

5 0.0 0.0 0.0 0.0 0.0

Table 5.2. Traffic matrix 2.

113

6

5

>-
~4
..J -ID
<
~
ff 3
<..::1
:z
~
u
:32
~

.J OVERLOAD
0 ~--------~--------~--------~

10 20 30 40

8

7

>-
~ 6
..J

ID
<
ID
0

ff 5
<..::1
:z
~
u
:34
ID
~

3

.J OVERLOAD
2

10 20 30 40

Frg 5. 16 Comparison between LRI and DAR. Frg 5. 17 Comparison between LRI and DAR.

Network2, traffic 1.

15

14

13

12

11
>-
I- 10
..J

ID
<

9
ID
0 8 c::
c.
t::l 7
:z
~ 6
u
0 5 ..J
ID
~4

3

2

0

0

Network 2, traffic 2

.J OVERLOAD

10 20 30 40

Frg 5. 18 Comparison of LRI and DAR under

far Lure conditions.

114

Chapter Six

Instability and larger networks

6.1 - Introduction

This chapter consists of two parts. In the first part we study the problem of in

stability when Automatic Alternative Routing (AAR) is used in a symmetric network

using both analytical and simulation models. We then use our models to consider

whether LR-P, LR-I and DAR routing strategies exhibit such unstable behaviour.

No instabilities are found when these routing schemes are used. However the network

shows a consistent drop in carried load at overloads. It will also be shown that using

trunk reservation for first-routed traffic prevents instability and provides a high level

of network carried load during overloads.

In the second part of this chapter we perform a series of experiments on two 10

node networks with general topologies and traffics from BT and Bell labs. The aim

is to study the performance of the LA and compare it to different routing algorithms

on more realistic larger networks.

115

6.2 - Instability

The problem of instability in non-hierarchical networks v.a.s first pointed out by

Naka.gome and Mori [30]. They considered small symmetrical network models and

found hysteresis behaviour of networks through quantitative analysis. That is, once

congestion occurs, it does not disappear immediately even if the load is decreased

subsequently. Later Krupp carried out work on small symmetrical networks using

both analytical and simulation methods. His work demonstrated the multiple equi

librium states and nonoptimal traffic handling under overload conditions [26]. Krupp

introduced a simple control mechanism to prevent instability in nonhierarchical net

works. This control strategy uses trunk reservation for direct or first-routed calls. In

1984, Akinpulu extended the mathematical model developed by Krupp to networks of

more general type and has found both through analysis and through simulation mod

els that the instabilities due to alternate routing do persist [27]. Studies of network

models representing subsets of a fully engineered network do not show the instabili

ties. They do indicate a drop in carried load under overload conditions. In a recent

paper Ackerley reports on hysteresis-type behaviour where the system spontaneously

flips between high and low congestion levels even though the mean offered traffic is

constant [31].

6.2.1 - Network model and statistical assumptions

The network model is assumed to be fully connected, symmetric and of nonhier-

116

archical type. All the links have the same number of channels and are capable of

transmission in both directions. Assume that there are N nodes in the network. The

direct path from source to destination is just one link long. Alternative paths are

two links long and there are always M = N - 2 such alternate paths available. The

test network shown in Fig 6.1, is a 10 node fully interconnected network with 45

full-duplex links each having a capacity of 50 circuits. Each of the 45 external traffic

streams has a direct route plus eight two link overflow paths (the maximum possible).

This network has been considered in [31).

Call arrival process entering the network is assumed to be Poisson with rate .X

and the call holding time is exponentially distributed with mean 1/ J.L, for an Erlang

rate A = .X/ J.L. The call connection and disconnection times are assumed to be very

short compared to the call holding time and hence are assumed to be negligible. Each

link consists of c channels. If all c channels are carrying calls, the link is said to be

busy. If a path consists of two links and at least one of them is busy, then the path

is busy.

6.2.2 - Automatic Alternative Routing (AAR)

Each call is allowed to attempt the direct path first. If the path is busy, the call

will attempt up to M more alternate paths in a prescribed order. If all M alternate

paths are busy then the call is blocked and is considered as lost. Automatic re

routing, which is often refered to as 'crankback', is employed. This means that if the

117

second link of a two link overflow path is blocked, a call may crankback to the origin

node and try the next overflow path. For symmetrical routing [32] the tandem nodes

must be selected in a specific order to give a uniform pattern of overflow traffic. An

example of symmetrical routing in a five node network is shown in Fig 6.2. From this

figure it can be seen that each link appears:

• Once as a link in a direct route

• Once as each link in a first, second and third choice overflow path.

Such routing tables are not always possible to construct. It depends on the number

of nodes in the network [32]. For example symmetrical routing is not possible for a

10 node network, so for the test network overflow paths are chosen cyclically and the

routing from node ito node j is the same as from node j to node i (Fig 6.3).

6.2.3- A mathematical model for AAR

For the network model explained in section· 6.2.1 let:

A be the external offered load to a link

v be the total offered load to a link

c be the link capacity

When dynamic routing is used the total load offered to a link consists of the

external offered load plus alternate-routed calls overflowing from other direct paths.

We assume that the external offered and overflow traffics are independent Poisson

streams. Therefore given offered load v to a link and the number of channels c of the

118

link, the blocking probability of the link is given by the Erlang B formula:

lie I c vi
B = E(v,c) =I L-:;-

c. i=O z.
(6- 1)

We assume that link blocking probabilities are independent and each equal to B. The

blocking probability of a two link path is given by:

L = 1 - (1 - B)(1 - B) (6- 2)

The call blocking probability Z is the probability that a call entering the network

finds the first choice direct path and all allowed alternate paths busy. For our fully

connected symmetric network with N nodes, there are M=N - 2 two link alternate

paths available. Therefore:

(6- 3)

Given Z the carried portion of the externally offered load can be calculated:

C = A(l- Z) (6- 4)

The total load K carried on a link is the nonblocked portion of the total load v offered

to a link:

K = v(l- B) (6- 5)

We will now show that K can also be written as:

K = A(l- B)+ 2AB(1 - LM) (6- 6)

The first term of the above equation is the nonblocked portion of the external offered

load A and the second term is the overflow traffic carried on each link. Consider a

119

link (a,b), the external offered load A to this link, overflows with a probability of B.

The probability that this traffic will be blocked on a two link alternative path is L

and on M two link paths is LM. The probability that it will not be blocked and will

be accepted as a call is 1 - L M. Therefore A B (1 - L M) / M is carried per each of

theM alternate paths (a,k,b), due to overflow calls from link (a,b). Consider a link

(i, j), the carried load Kij on the link can be written as:

The above equation can be simplified for our symmetric network model:

K = A(1- B)+ 2AB(1- LM) (6- 6)

Equating the two expressions for K we find a relationship between the total

offered load v and the external offered load A:

A(1 + B- 2Z)
v=

(1- B)
(6- 7)

Given A, c and N we can implement the repeated substitution method to solve the

above equations. Assume an initial value BO for B, find Z and v. Given v and c

implement the Erlang B formula to find the new value for B. Repeat the process

until B converges. The carried proportion of the externally offered load can then be

calculated. The iterative loop is given below:

B= BO

120

Iterative loop:

A(l + B- 2Z)
1/ = ----'---:-----:---"-

(1- B)

. 11c I c 11i
B=- "'' ~., c. i=O ~.

repeat until convergei).ce.

The carried load C, per each link can then be calculated:

C = A(1- Z)

6.2.4 - Experiment 1

(6- 3)

(6- 7)

(6- 1)

(6- 4)

This experiment discusses the theoretical and simulation results obtained for

AAR. A set of analytic curves were calculated for the test network. Figures 6.4

and 6.5 show plots of carried load for various numbers of alternate routes M. The

instability is evident in the multiple values of carried load for M = 8 alternate routes.

(Solutions corresponding to low network carried load were obtained by starting with

high trunk-group blocking estimates, while solutions corresponding to high network

carried load were obtained by starting with low trunk-group blocking estimates.) The

case of one alternate route in Fig 6.5 shows a drop in carried load as the offered load

is increased beyond 42 Erlangsftrunk. TheM= 0 curve, that for direct routing only,

does not exhibit instability and provides a constant increase in carried load when

offered load is increased. It does provide poorer performance at lower loads (Fig 6.5).

121

Fig 6.6 plots the proportion of directly routed calls, P DC per point to point

offered load for the case of M = 8. This is calculated as:

p DC = A(1 - B) = (1 - B)
A(1- Z) (1- Z)

(6- 8)

The multiple values of the proportion of directly routed calls for the range 35 < A <

40 demonstrate instability in the network. Fig 6. 7 shows the same plot but for M = 1

alternate path allowed.

Simulation results given in Fig 6.8 for A = 38 show the proportion of directly

routed calls in progress at intervals of one holding time throughout an interval of a

simulation. The network appears to flip between two quasi-stable states, one a low

congestion state in which almost all calls use their shorter first choice path and the

blocking probability is low and the other a high congestion state in which a large

proportion of calls use longer alternate paths and the blocking probability is high.

When the network is in either of these states it tends to stay there and when it is

between these states it rapidly moves to one or other of the states. The existence of

two recognizable states in the simulation results for A = 38 in Fig 6.8 is analogous to

the double-valued results found using the analytic curve in Fig 6.6.

The mechanisms that cause the system to flip between low and high congestion

states can be explained as follows: Assume that the system is in the low conges-

tion state. The number of call arrivals and departures during a time interval varies

stochastically even though the call arrival rate is constant. A large number of call

arrivals and small number of call departures during the response time of the network

122

will cause the link congestion to increase. This in turn will cause more calls to use

overflow paths which consist of two links, and thus link congestion increases further.

In this way the network flips to to the high congestion state. On the other hand

assume that the network is in the high congestion state. A large number of call

departures (especially two link calls) and a small number of call arrivals will cause

the link congestion to decrease. This in turn causes fewer calls to use overflow paths

and so the link congestion decreases further. In this way the network flips to a low

congestion state.

Simulation results in Fig 6.9 provide the proportion of directly routed calls for

A = 42. It can be seen that after a few holding times the network goes into the

high congestion state and remains there throughout the rest of the simulation. For

this value of A, a large proportion of calls use alternate paths and carried load drops

dramatically as was predicted by analytical results given in Fig 6.4.

6.2.5 - Experiment 2

Two examples are given in this experiment. Fig 6.10 shows the result of a sim

ulation of the network with an initial load of 38 Erlangs. The load was increased

to 39 Erlangs after 80 holding times. As Fig 6.10 illustrates a dramatic change in

proportion of directly routed calls occurs after the offered load is increased. With the

initial load the blocking probability is low, and few calls are alternately-routed. After

the load changes, the blocking probability goes up and number of alternately-routed

123

calls increases.

Another example is given in Fig 6.11, which shows simulation results for the same

network with an initial point to point load of 42 Erlangs. For this load the network is

highly congested. After 50 holding times, the load is dropped to 38 erlangs. It can be

seen that when the load is dropped congestion persists for another 10 holding times.

6.2.6- A mathematical model for AAR with trunk reservations

Let B1 and B2 be the blocking probabilities to fresh and overflow traffic on a link

respectively. Let Q2 = 1 - B2 be the link availability on a link. B1 and Q2 were

calculated in chapter 4:

(4.10)

(4.11)

Where c- m is the trunk reservation parameter.

The end to end blocking probability can then be calculated as:

(6- 9)

To find the offered load v to a link we first calculate the carried load K on a link.

As was done in Eq.(6-6), K can be written as the sum of first-routed carried load and

alternately routed carried load.

124

(6- 10)

The carried load on a link is the nonblocked portion of the total load offered to a

link.

K = A(1- B1) + (v- A)Q2 (6- 11)

Equating 6-10 and 6-11:

K = A(l- B1) + 2A(BI - Z) = A(1- B1) + (v- A)Q2

The offered load can be found from the above equation.

2A
v =A+ Q/B1 - Z) (6- 12)

The carried load per link is calculated as before:

C = A(1- Z) (6- 4)

Given m, A, c and N we can implement the repeated substitution method to solve

the above equations for B1 and Q2. The expressions for B1 and Q2 are simplified in

Appendix 1. The iterative loop is given below:

Assume initial values for B1 and Q2:

The iterative loop:

(6- 9)

125

6.2.7- Experiment 3

2A
v = A + Q

2
(B1 - Z)

m-1 vi
Q2 = L ~PO

j=O J.

repeat until convergence

C = A(1- Z)

(6 - 12)

(4- 10)

(4- 11)

(6- 4)

This experiment discusses theoretical and simulation results for AAR with trunk

reservation. Analytic curves in figures 6.12 and 6.13 forM= 8 and M = 1 alternate

paths, compare carried load for various values ofT RP. It is evident that reserving a

small number of trunks produces a significant improvement in carried load. Figures

6.14 and 6.15 show the effect of trunk reservation on the proportion of directly routed

calls for the cases of M = 8 and M = 1 alternate paths.

Simulation results in Fig 6.16 show the proportion of directly routed calls for

M = 8 alternate paths and A = 38 Erlangs, similar to Fig 6.8 but with T RP = 1.

As can be seen the quasi-stable behaviour disappears. Simulation results for A = 42

126

given in Fig 6.17, show a significant improvement in proportion of directly routed

calls with TRP=1, compared to the case with no trunk reservation (Fig 6.9).

6.2.8 - Dynamic routing algorithms

In this subsection we show that for our symmetric network model, the mathe-

matical model for different dynamic routing algorithms, LR-P, LR-I, DAR and RR

is the same as the one calculated for AAR with M = 1. A discussion of theoretical

and simulation results obtained for those algorithms will be given next.

When no trunk reservation is employed, for LR-P, LR-J, DAR and RR, the

offered load to a link (i, j) is:

N N
l/ij = Aij + L AikBikPj(i, k)Qjk + L AjkBjkPi(j, k)Qik (4- 3)

k=l k=l
k#i k#i
k#j k#j

For our network model: Vij = v, Aij =A, Bij = B, Qij = Q, Pk(i,j) = N:_ 2 .

Therefore:

1 1
lJ = A + (N - 2) X AB X N - 2 X Q + (N - 2) X AB X N - 2 X Q

v =A+ 2ABQ (6- 13)

The call blocking probability Z is the probability that a call entering the network

finds the first choice direct path and a two link alternate path busy.

(6- 14)

The two above equations for v and Z are the same as equations (6-7) and (6-3)

obtained for AAR with M replaced by 1.

127

When trunk reservation is employed the offered load to a link can be obtained by

simplifying equation (4.15) for the symmetric network model:

(6- 15)

The call blocking probability Z, is the probability that a call is blocked on the first

choice direct path and on a two link alternate path:

(6- 16)

If we replace M = 1 in equations (6-9) and (6-12) for AAR then equations (6-16) and

(6-15) follow. Therefore the theoretical calculations given in figures 6.5, 6. 7, 6.13 and

6.15 for AAR with M = 1, apply to different dynamic routing schemes, LR-P, LR-I,

DAR and RR.

6.2.9 - Experiment 4

As was explained in the previous subsection, the curve given in Fig 6.5 for AAR

with M=1, applies to LR-P, LR-I and DAR. From this curve, it can be seen that

these routing algorithms do not exhibit instability. Fig 6.5 compares dynamic routing

schemes with fixed routing (M = 0). It can be seen that fixed routing provides poorer

performance at lower loads and better performance at higher loads. Fig 6.5 also shows

a drop in carried load as the offered load increases beyond a certain point. The reason

that the carried load decreases at higher offered loads is that an alternately routed

call uses two trunks (one on each link in the alternate path), rather than one trunk

128

required in the direct path. For small carried load this improves the performance

compared to the case with no alternate routing (Fig 6.5). For higher loads alternately

routed calls use double the resources, blocking directly routed calls in both links used

and causing them to overflow more often, which in turn blocks direct calls even more

and results in a drop in carried load. Fig 6.13 shows the theoretical results for carried

load when trunk reservation is employed. It can be seen that as T RP increases, the

carried load at higher offered loads is increased.

A series of simulations have been performed for LR_p, DAR and LR-1 for two

values of offered load A= 38 and A= 42 and T RP = 0. The plots are given in Figs

6.18-6.23. They show no instability as was predicted from the theoretical results.

Tables 6.1 ,6.2 and 6.3 list simulation and theoretical results for different routing

schemes and various values of A and T RP. Table 6.1 lists results for A = 38 and

T RP = 0. As can be seen the blocking probabilities are lower for LR-P, LR-1

and DAR. The theoretical results for AAR are double valued as was explained in

section 6.2.4. The theoretical and simulation results do not agree for AAR, because

simulation results are averaged over high and low congestion states. The analytic

and simulation results show a close agreement for LR-P, LR-1 and DAR. Table 6.2

for A= 42 and T RP = 0 shows a significant superiority for LR-P, LR-1, DAR over

AAR. Table 6.3 illustrates the effect ofT RP on the network. It can be seen that by

reserving one trunk for first-routed traffic, the blocking probability for AAR drops

from 21.43 to 4.14 percent. In all the three tables the theoretical results for AAR are

slightly different from the simulation results because in theory we assumed symmetric

129

routing while in simulations symmetric routing is not possible for a 10 node network

as was explained in section 6.2.2.

6.3 - Large networks

In chapter four we compared different dynamic routing strategies on a five node

network which was designed for FR. It was shown that FR was superior to other

routing schemes and different dynamic routing methods were as good as FR when

a TRP=10 was employed. In chapter five the performance of Learning Automata

was compared to DAR on four and five node networks which were designed to force

dynamic routing. It was shown that Automata always outperformed DAR. In this

section we perform a series of experiments on two ten node networks from BT and

Bell Labs. The aim is to compare different routing schemes on more realistic larger

networks.

6.3.1 - The BT network

The network is a 10 node fully inter-connected subset of the main BT network (Fig

6.1). Two traffic matrices are considered, one for the morning and one for the evening.

The capacity and traffic matrices are given in appendix 2. Figs 6.24 and 6.25 for the

morning and the evening traffic matrices show blocking probabilities versus TRP for

different routing schemes. The reward and penalty parameters are (a=.01, b=.01) for

LR-P and (a=.Ol) for LR-I· As can be seen LR-P, LR-I and DAR perform very

130

close to each other and result in significantly lower blocking probabilities than FR and

RR. As TRP is increased the blocking probabilities for LR-P 1 LR-1 1 DAR and RR

increase and approach the one for FR. Unlike the five node network studied in chapter

four, the performance of this network deteriorates once TRP is introduced. As was

mentioned in chapter four, when TRP is employed alternate routing is reduced and

the dynamic routing algorithm's behaviour approaches FR. For the five node network

studied in chapter four, FR performed better than dynamic routing algorithms so by

introducing TRP, the algorithms approached FR and their performance improved.

For the 10 node network considered in this section, FR results in significantly higher

blocking probabilities than dynamic routing algorithms and therefore by introducing

TRP, the algorithms approach FR and their performance deteriorates.

The results given in Figs 6.24 and 6.25 are for no overflow of traffic. The same

experiment was repeated for different values of overload. Fig 6.26 for LR-P and

DAR with the morning traffic matrix shows the theoretical blocking probabilities

versus TRP for a range of overload values. As can be seen for 0% and 5% overload

curves the minimum blocking probabilities are at TRP=O. The minimum blocking

probability for 10% overload case is at TRP=l and at overload values higher than

10%, the best TRP is equal to 5. Therefore the optimum TRP for the network varies

with overload. For small values of overload, the use of two-link paths improves the

performance of the network and no trunks are needed to be reserved. At high overload

values more calls attempt two-link alternate paths, each blocking two calls which could

otherwise be routed along two one-link direct paths. Under these conditions trunk

131

reservation is needed to protect direct paths from being used as part of alternative

paths. As overload goes up, the network needs more protection and a higher TRP is

needed. Similar results were obtained for the evening traffic matrix, Fig 6.27.

Fig 6.28 for the morning traffic matrix with 30% overload, shows theoretical and

simulation results for different dynamic routing algorithms. From this figure it can be

seen that all dynamic routing algorithms outperform FR and the minimum blocking

probability is obtained for TRP=5 with both analytic and simulation models. Note

that the minimum blocking probability for LR-I is at TRP=l.

In another experiment the network was simulated under abnormal traffic condi

tions. For this purpose the morning traffic matrix was varied in two stages. First, all

streams were overloaded by 10%. Then half the links, selected at random, had their

traffic levels increased by X% and the rest reduced by X%. This gives a simplified

model of forcasting error, unforseen demand, etc which is useful to test a routing

scheme's ability to cope with traffic and capacity mismatch. The average blocking

probabilities for X=(0,25) are shown in Fig 6.29. As can be seen LR-I and LR-P

are superior to DAR with the best performance for the LR-I scheme. Under normal

traffic conditions LR-P, LR-1 and DAR schemes perform close to each other (Figs

6.24 and 6.25), but under abnormal traffic conditions LR-P and LR-1 outperform

DAR. This shows that LR-P and LR-1 have better adaptation to changes in traffic

conditions than DAR.

6.3.2 - The Bell network

132

In previous work [25] a series of simulations have been performed on a 10 node

network obtained from Bell laboratories. The network is shown in Fig 6.30, the ca-

pacity and three traffic matrices are given in appendix 3. The three traffic matrices

are implemented as follows: after 4000 calls arriving to the network the simulator

switches from traffic matrix 1 to traffic matrix 2 , after another 3000 calls it switches

to traffic matrix 3 and after another 3000 calls the simulator stops. The routing al-

gorithms considered in [25] are: Fixed Rule Alternate Path, conventional LR-I and

three modifications to the conventional LR-I scheme (short rule learning automata,

limited path feedback, initial bias scheme). A brief description of these routing algo-

rithms is given below:

In Fixed Rule Alternate Path, a set of routing matrices are given. Each

matrix provides the routing information for a particular node v.ri.th each row dictating

the sequence of order for attempting to route a call for a certain destination. For

example consider the routing table at node 5:

1 2 3 4 5 6 7 8 9 10

1 1 3 6 7 2 9 8 10
2 1 6 3 2 7 9 8 10
3 3 1 6 7 2 9 8 10
4 1 3 6 7 2 9 8 10
5
6 6 9 8 9 10 3 1 2
7 7 6 8 9 10 3 1 2
8 8 9 10 6 7 3 1 2
9 9 8 10 6 7 1 3 2
10 10 9 8 6 7 3 1 2

The network has been designed to obtain optimal link capacities and routing tables

for the given topology and traffic patterns. Therefore this scheme offers an optimal

133

behaviour with which the Learning Automata schemes can be compared with.

Conventional LR-1 scheme, this uses the same routing matrices as the fixed

rule alternate routing. The difference is that LR-1 assigns probabilities to each node

in the routing table. For example consider calls at node 5 whose destination is node

8. In this case 8 is picked with probability P1, 9 with probability P2 and so on. If

there is no free circuits between node 5 and the first node chosen, then the node is

dropped from the list of possible next nodes, the action probabilities are renormalized

and a further selection is made. This continues until a line is found or the call is lost.

In the Short Rule Learning Automata scheme, the choice of next node has

been reduced. In the reported experimental work, the choice was restricted to the

top three nodes of the original optimized fixed rule. For example consider node 5:

pl p2 p3
1 1 3 6
2 1 6 3
3 3 1 6
4 1 3 6
5
6 6 9 8
7 7 6 8
8 8 9 10
9 9 8 10
10 10 9 8

This scheme performed better than the conventional LA.

The Limited path feedback scheme, rewards calls which are completed using

two or less links, punishes calls which are lost or completed using more than two links.

Finally the Initial Bias Scheme has been implemented to improve the perfor-

mance of the routing scheme during the early phases of the simulation. The initial

134

probabilities of the limited path feedback scheme are set as follows:

P1 = .S,P2 = .25,P3 = .175, ...

where 'Ei Pi = 1.

The average blocking probabilities obtained in [25) are listed below:

scheme traffic 1 traffic 2 traffic 3

Fixed Rule 5.3 2.1 2.7

Conventional L R-1 12.1 8.9 10.1

Short Rule LR-1 16.1 8.2 4.7

Limited Path LR-1 10.7 7.4 5.8

Initial Bias LR-1 13.0 11.0 5.4

As can be seen the Fixed Rule performs significantly better than the other rout-

ing schemes and the limited path feedback LR-1 where two link alternatives are

encouraged, is the best of the automata schemes.

In the learning automata schemes implemented in this thesis, the direct link path

is always attempted first and alternatives are only two links long. The same network

was simulated for LR-P and LR-1 and the blocking probabilities show a significant

improvement over the above results. The table below shows blocking probabilities for

LR-P, LR-1, DAR, RR and FR. The limited path feedback LR-1 is also included for

companson.

135

table 6.4

scheme traffic 1 traffic 2 traffic 3

FR 12.55 14.20 20.49

RR 9.33 10.04 15.03

DAR 8.1 5.0 8.8

L(.l)
R-I 5.8 5.2 7.8

L(.l,.l)
R-P 6.2 4.0 6.2

L(.Ol)
R-I 9.4 7.3 9.4

L(.Ol,.Ol)
R-P 8.9 7.2 8.4

Limited Path 10.7 7.4 5.8

As can be seen, Lk!_:_JJ and Lk~I are superior to other schemes and the highest

blocking probabilities are obtained for FR.

In another set of experiments the simulator was run for a long time vtith the

traffic matrices 1, 2 and 3 switched after 51000, 45000 and 38000 calls respectively.

The blocking probabilities are shown in the below table:

table 6.5

scheme traffic 1 traffic 2 traffic 3

DAR 6.54 4.72 7.56

L(.l)
R-I 5.88 6.05 8.04

L(.l,.l)
R-P 5.52 3.70 5.69

L(.Ol)
R-I 5.62 3.52 4.92

L(.Ol,.Ol)
R-P 5.78 3.70 5.71

Comparing tables 6.4 and 6.5 for short and long simulation times, a number of

conclusions may be made:

1 - L k!_:_J) and DAR give lower blocking probabilities when averages are taken

136

over a longer simulation time. This suggests that the previous simulation time was

not sufficient for the two algorithms to converge to steady state results. For example

in table 6.4, For the traffic matrix 2, the averages are taken over 3000 calls arriving

to the network. There are 45 0-D pairs in the 10 node test network and on average

each 0-D pair receives 3000/45=67 calls. This must be compared to 45000/45=1000

calls per 0-D pair for traffic matrix 2 in table 6.5.

2 - For L ~~]l the blocking probabilities are higher over a longer simulation time.

As was explained in chapter five, when LR-1 with a= .1 is implemented the algorithm

converges to selecting one action for each 0-D pair and as a result loses its flexibility

and can not fully utilize the spare capacity in the network. This happens after running

the simulator for a long time to allow the algorithm to converge to its steady state

probabilities. The action probabilities for the 45 0-D pairs were recorded at the end

of the simulations. At the end of the short simulation time none of the probabilities

were equal to 1 (LR-1 did not select any particular action with a probability of one)

while at the end of the long simulation time almost all 0-D pairs converged to the

selection of one out of 8 possible alternate paths.

3 - L ~D_!POl) and L ~D_!J perform significantly better over a longer time. The reason

is that when a is small, more time is needed for the algorithms to converge to steady

state results. In table 6.4 the algorithms have not converged to steady state action

probabilities and as a result the blocking probabilities are higher than the ones in

table 6.5 where the simulation was run for a long time.

4- Comparing tables 6.4 and 6.5, it can be seen that L~:_~) has a faster conver-

137

gence than L kD_!POl) and L kD_!J as the L k:}) results are not significantly different in

the two tables. L k:J) is the best routing algorithm in this case· because it converges

fast and also results in a low blocking probability compared to other routing schemes.

L kD_!J performs slightly better than L k:}) in table 6.5 for long simulations but over

the short simulation time it is significantly worse than L k:J).

6.4- Summary

In the first part of this chapter, a mathematical model and its application was

explained for AAR in symmetric, uniformly loaded nonhierarchical networks. Exper

iments using the mathematical model, showed the existence of network instabilities

for a range of overload. Simulation results showed that the n~twork can experience

quasi-stable behaviour, flipping between low and high congestion states which may

each last for considerable periods of time. This behaviour is analogous to the double

valued results found using the mathematical model. It was shown through analysis

that carried load drops dramatically at overload.

Trunk reservation for first-routed traffic was applied to the test network. This

control strategy improves the performance of the network at overloads. By reducing

the amount of alternate routing in the network under overloads, trunk reservation

permits 1-link calls to use the trunks more efficiently. This reduces the quasi-stable

behaviour and results in a continuous increase in carried load with increasing offered

load over the entire range of overloads considered. However at light overloads, carried

138

load may drop slightly when trunk reservation is implemented.

Using a mathematical model together with a simulation model, the performance

of different dynamic routing schemes, (LR-P, LR-1, DAR) was studied. It was

shown that for the symmetric uniformly loaded network considered, the mathematical

models for the routing algorithms are identical. This was verified by comparing

simulation results for the above three routing algorithms. The mathematical model

is the same as the one for AAR with only one alternate path allowed. Analytic and

simulation results do not exhibit instability for LR-P, LR-I and DAR. They do

show a drop in carried load as the offered load is increased beyond a certain point.

Using the mathematical model it was demonstrated that trunk reservation increased

the carried load at overload.

In the second part of this chapter, the performance of different dynamic routing

algorithms was studied on two large networks with realistic capacity and traffic matri

ces. The first network was a 10 node network subset of the main BT network with two

traffic matrices for the morning and the evening. The results for the case of no traffic

overloads illustrate that LR-P, LR-I and DAR performed close to each other and

they all significantly outperformed RR and FR. Also the performance of the network

deteriorates when TRP is implemented under no overload of traffic. However theoret

ical results for LR-P and DAR under different values of traffic overloads showed that

the optimum TRP varies with overload. For example for the morning traffic matrix

the minimum blocking probabilities are at TRP=O for overload values less than 10%

, at TRP=1 for overload=lO% and at TRP=5 for overload values greater than 10%.

139

The simulation results for abnormal traffic conditions showed that LR-1 and LR-P

outperform DAR with the best performance for the LR-1 scheme.

The second network considered is a 10 node network from Bell labs used elsewhere

[25]. Simulation results in [25] are obtained for three LR-1 schemes with routing

tables. The LA schemes in this thesis are easier to implement because they need no

routing tables. Comparison of the results in [25] with our results for FR, RR, DAR

LR-P and LR-1 showed that Lk~J) is the best routing algorithm for this network.

140

F 1 g 6. 1 A 1 0 node fuLLy connected network.

141

Origin

Node

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

Destination Direct

Node

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

5

1

2

3

4

Route

1-2

1-3

1-4

1-5

2-1

2-3

2-4

2-5

3-1

3-2

3-4

3-5

4-1

4-2

4-3

4-5

5-1

5-2

5-3

5-4

Overflow paths

1st

1-5-2

1-4-3

1-3-4

1-2-5

2-3-1

2-1-3

2-5-4

2-4-5

3-5-1

3-4-2

3-2-4

3-1-5

4-2-1

4-1-2

4-5-3

4-3-5

5-4-1

5-3-2

5-2-3

5-1-4

2nd

1-4-2

1-2-3

1-5-4

1-3-5

2-4-1

2-5-3

2-3-4

2-1-5

3-2-1

3-5-2

3-1-4

3-4-5

4-5-1

4-3-2

4-1-3

4-2-5

5-3-1

5-1-2

5-4-3

5-2-4

3rd

1-3-2

1-5-3

1-2-4

1-4-5

2-5-1

2-4-3

2-1-4

2-3-5

3-4-1

3-1-2

3-5-4

3-2-5

4-3-1

4-5-2

4-2-3

4-1-5

5-2-1

5-4-2

5-1-3

5-3-4

Fig 6.2. An example of symmetrical routing for a five node network.

142

routing from node to node 5 (and from node 5 to node 1)

,(f),
, , ' , ,

~ , '
,-:> - ',

, ' , , ' , ., ' ® --,-,(- ----:,-,~~~------ ----- __ ~:::~
I

1
1 ,' .,.."

1
1 11\

I I ,"' ,' I I I \
I I " " I I \

I 12) ' , ' , ' ' I

,' ,' 13) "' , ' ,' I

11) I ' ' ' '' ' I I
1 I "' " I I

I ,' "' I I I \ 1 1,' ;-' I I I \

-- --- ---- -1~)----- -- ,,_::--- - - 7 ,~-- - -1~- - ~-- 0
................ ," I ,' I D

\ ' , I
I ' ' ' 15) , ' '
\ \. ' "' I
I ' ' ~~<. '
\ \ (7) '' ~6) , , , ~ ,'

\ ' ,""", ~'·
\ ' ,, ,
I (8) ', ' ' ' ' '

,(', ,

®, ', ',, ,'
' ' , ' ' ,

' "' ' , ' ' , ' , ',
' , '

I
I

® ',®

In)

I
I

~,... ~

I
I

I

I

I
I

I

direct path

nth overflow path

Fig 6.3 Automatic Alternative Routing in a

10 node network with 8 overflow paths.

143

::¥
c
:J
t. ..
' 01
en c
~
t.

!:!
u
-o
Ill _g

-o
Ill

(.

~
u

::¥
c
:J
(. ...
' (I) en c
~
t.
~

u
"0
Ill _g

"0
Q)

t.
t.
CD

u

50

48

46

44

42

40

38

36

34
H:8

32

30 ~--~~--~---+---r--~--~--+---r-~

50

48

46

44

42

40

38

36

34

32

30

30 32 34 36 . 38 40 42 44 46 48 50
Point to point offered load A

Fig 6.4 Carried load, AAR, M=8, TRP:O

M=O

M=1

30 32 34 36 38 40 42 44 46 48 50
Point to point offered load A

Ftg 6.5 Carrted load, AAR, M:O, H:1, TRP:O

144

1.0~------

~
CD
u

"'0
Cll

0.9

5 0. 8
0
1..

>-.
~ 0. 7
1..

"'0 -0

c
0 ..
L
0
a.

0.6

~ 0. 5
a.

0.4 ~--~--~~---+---+--~--~--~--+-~

~ 0.9
CD
u

"'0
Cll ..

0.8 :J
0
L

>..
u 0. 7 Ill
L

"'0 -0

c 0.6
0 ..
L
0
a.
0 0. 5 1.. a.

30 32 34 36 38 40 42 44 46 48 so
Point to point offered load A

Fig 6.6 Proportion of directly routed calls, AAR,

M=8, TRP=O

30 32 34 36 38 40 42 44 46 48 so
Point to point offered Load A

Fig 6. 7 Proportion of directLy routed calls, AAR,

H=l, TRP=O

145

(I) 1. 0
-'
-'

co
0

-o 0. 9
Q)
+"
:J
0
L 0. 8
>-.

+"
u
Q) o. 7
L --o

~ 0.6
c
0

r o. s
0
a.
0
L

a. 0. 4

Lov

congestion

H1gn
congestion

0 50 100 150 200 250 300 350 400 450 500

(I) 1. 0

co
u

""0 0. 9
Q)
+"
:J
0
L 0. 8
>-.
-'
+"

~ 0. 7
L --o

~ 0. 6
c
0

r o. s
0
a...
0
L

a. 0. 4

0

TIME/mean holding time

F 19 6. 8 5 I mu lat I on results, 10 node, c:50, A:3B, TRP=O,

AAR, M=B.

50 100 150 200 250 300 350 400 450 500
TIME/mean holding time

Frg 6.9 Simulation results, 10 node, c=50, A:42, TRP=O,

AAR, M=B.

146

(/) 1. 0

(1)
()

"U 0. 9
(])
~

:J
0
L 0. 8

~

~ 0. 7
L

~ 0. 6
c
0

r o. s
0
a..
0
L

a.. 0. 4

0 10 20 30 40 50 60 70 80 90
TIME/mean holding time

100 110

(/) 1. 0
-'

(1)
()

"U 0. 9
(])
~

:J
0
L 0. 8
>-..
-'
~

~ 0. 7
L

"U

~ 0. 6
c
0

r o. s
0
a..
0
L

a.. 0. 4

Fig 6.10 Simulation results, 10 node, c:50, A:38,

A Increased to 39 Erlangs at tlme=80.

0 10 20 30 40 50 60 70 80
TIME/mean holding time

F1g 6.11 Simulation results, 10 node, c=50, A=42,

A dropped to 38 Erlangs at tlme=50.

147

90

so

48

::¥ 46
c TRP:4 ::J
(..

44
01 en
c 42 ~
(..

!:!:! 40
u
"'0

38 Ill

.3
"'0 36 Ill -(..
(..
Ill 34 u

32

30

30 32 34 36 38 40 . 42 44 46 48 50
Point to point offered load A

Fig 6. ~2 Carried Load, AAR, M=8,

d I f ferent TRPs.

so

48

::¥ 46
c TRP:4 ::J
(..

44 TRP=2 TRP=I en en c 42 Ill
-'
(..

!:!:! 40
u
"'0

38 Ill
_g
"'0 36 CD -(..
(..

CD 34 u

32

30

30 32 34 36 38 40 42 44 46 48 50
Point to point offered load A

Fig 6. 13 Carried load, AAR, H::1,

d I f ferent TRPs.

148

1. 0
TRP:4

~ 0. 9 TRP=2
Cll
u

"tl
CD ... 0. 8 TRPal :I
0
c..
>..
u 0. 7 CD
c..

"tl -0

c 0. 6
0 -...
c..
0
Q.
0 0. 5 c..

Q. TRP=O

0.4

30 32 34 36 38 40 42 44 46 48 50
Point to point offered load A

Fig 6.14 Proportion of directly routed calls,

AAR, M=8, d 1 f ferent TRPs.

1.0 TRP:4

TRP:2

Cll TRP:I 0.9
Cll
u

"tl
CD ...

0.8 :I
0
c..
>..
u 0. 7 CD
c.. -"tl -0

c 0.6
0

...
L
0
Q.
0 0.5 L

Q.

0. 4

30 32 34 36 38 40 42 44 46 48 50

Point to polnt offered load A

Fig 6.15 Proportion of directly routed calls,

AAR, H:1, different TRPs.

149

(J) 1. 0

(0
u

"'0 0. 9
Q)
+.>
:J
0
L 0. 8

+.>

~ 0. 7
L

~ 0. 6
c
0

r o. 5
0
a...
0
L

a... 0. 4

0 50 100 150 200 250 300 350 400 450 500

(J) 1. 0

(0
u

"'0 0. 9
Q)
+.>
:J
0
L 0. 8
>-.
-'

+.>

~ 0. 7
L -

"'0

"a 0. 6
c
0 -r o. 5
0
a..
0
L

a... 0. 4

0

TIME/mean holding time

F rg 6. 16 S I mu Lat I on results, 10 node, c=50, A:38, TRP= 1,

AAR, M=8.

50 100 150 200 250 300 350 400 450 500
TIME/mean holding time

Frg 6.17 Srmulat Ton results, 10 node, c=50, A=42, TRP=1,

AAR, M:B.

150

(I) 1. 0

10
0

"'0 0. 9
Q)

"" :J
0
L 0, 8
>..

"" 0
Q) 0. 7
L

~ 0. 6
c
0

r o. 5
0
c...
0
L

c... 0. 4

0 50 100 150 200 250 300 350 400 450 500

(I) 1. 0

10
0

"'0 0. 9
Q)

"" :J
0
L 0. 8
>..

""
~ 0. 7
L

~ 0. 6
c
0

r o. 5
0
c...
0
L

TIME/mean holding time

Fig 6.18 Slmulat Ton results, 10 node, c:50, A:38,

TRP=O, LRP.

c... 0.4 +---~----~--~~--~----~--~----~--~----~---
0 50 100 150 200 250 300 350 400 450 500

TIME/mean holding time

Fig 6. 19 Slmulat Ton results, 10 node, c=50, A:42,

TRP=O, LRP.

151

(I) 1. 0
...J

(IJ
(.)

"'0 0. 9
m
:J
0
c.. 0. 8
>..

....
~ 0. 7
c..

~ 0. 6
c
0

r o. s
0
a..
0
c..

a.. 0.4 +----+----+----+----~--~--~~--~--~----+---~

(I) 1. 0

(IJ
(.)

"'0 0. 9
m
:J
0
c.. 0. 8
>..

...J

....
~ 0. 7
L

~ 0. 6
c·
0

r o. s
0
a..
0
c..

a.. 0. 4

0 50 100 150 200 250 300 350 400 450 500
TIME/mean holding time

Ftg 6.20 Simulation results, 10 node, c=50, A:38,

TRP=O, DAR.

0 50 100 150 200 250 300 350 400 450 500
TIME/mean holdtng time

Ftg 6. 21 Stmulat ton results, 10 node, c=50, A=42,

TRP=O, DAR.

152

en 1. 0
_J

aJ
(J

""0 0. 9
Q)
::J
0
L 0. 8
>..

....
(J
Q) 0. 7
L

~ 0. 6
c
0

r o. 5
0
a_
0
L

a..o.4 +---~----~--~----~--~~--~----~--~----~---

en 1. 0
-'
aJ
(J

""0 o. 9
Q)
::J
0
L 0. 8
>..

....
~ 0. 7
L -

""0

~ o. 6
c
0 -r o. 5
0
0....
0
L

0.. o. 4

0 50 I 00 150 200 250 300 350 400 450 500
TIME/mean holding time

Fig 6. 22 Slmulat Jon results, 10 node, c=50, A:38,

TRP=O, LR I.

0 50 100 150 200 250 300 350 400 450 500
TIME/mean holding time

Fig 6. 23 Slmulat Ton results, 10 node, c=50, A=42,

TRP=O, LRI.

153

c=50 A=38 TRP=O

Scheme c PDC z

AAR (simulation) 36.77 0.8378 3.086

LRP (simulation) 37.93 0.9867 0.057

LRI (simulation) 37.93 0.9867 0.052

DAR (simulation) 37.92 0.9864 0.087

AAR (theory)
38.00 0.9858 0.0
32.24 0.4690 15.17

*(theory) 37.97 0.9871 0.087

Table 6.1 :Simulation (averages over 500 time units)
and analytic results.

C Carried load per link

PDC Proportion of Directly ·Routed Calls

z Percentage blocking probability

* LRP, LRI and DAR

154

c=50 A=42 TRP=O

Scheme c PDC z

AAR (simulation) 32.95 0.5029 21.43

LRP (simulation) 41.12 0.9283 2.00

LRI (simulation) 41.12 0.9300 1.99

DAR (simulation) 41.08 0.9294 2.083

AAR (theory) 31.98 0.4524 23.87

*(theory) 41.20 0.9471 1.90

Table 6.2: Simulation (averages over 500 time units)
and analytic results.

c=50 A=42 TRP=l

Scheme c PDC z

AAR (simulation) 40.21 0.8215 4.14

LRP (simulation) 41.29 0.9569 1.60

LRI (simulation) 41.27 0.9570 1.65

DAR (simulation) 41.28 0.9533 1.63

AAR (theory) 39.59 0.7788 5.73

*(theory) 41.34 0.9530 1.57

Table 6.3 : Simulation (averages over 500 time units)
and analytic results.

155

<> FR (s I mu Lat I on) o OAR(slmulatlon)

e RR (s I mu Lat I on) /i LRI(slmulatlon)

o LRP (s I mu Lat I on) Theory

6
FR

<> <> <> <>

5

>...
RR

~

--' 4
...0

co
...0
0
L

3 0...

m
c
~

(.)

2 0
--'
co
~

0 5 10 15 20 25 30

TRP

Fig 6.24 Theoretical and simulation results for the

BT network with the morning traffic matrix 0 no over Load.

156

6

5

>..
+.>

_J 4
..0

co
..0
0
L 3 0..

m
c
~

u
2 0

_J

II)
Et-1(.

<> FR (s I mu Lat I on)

e RR (s I mu Lat I on)

o LRP (stmulat ton)

0 5 10 15

TRP

c OAR!stmulattonl

A LR I (s I mu Lat I on)

Theory

FR

RR

LRP & OAR

20 25 30

Fig 6.25 Theoretical and simulation results for the

BT network with the evening traffic matrix 0 no overload.

157

30
OVL:SO.l

28

26
OVL=40.%

24

22
>-.

20
OVL=30.%

.j..)

--' - 180
co

....0
16 0 OVL=20.%

L
a...
m 14
c -

..:lL 12
(.)

0 OVL= 10% __,
10 en

~

8

6 OVL=O%

4

2

0

0 5 10 15 20 25 30 35 00

TRP

Fig 6.26 Theoretical results for LRP & OAR. BT network

with the morning traffic matrix and different overlaods.

158

24

22

20

18
>-.

.j.>

- 16J

_o
co 14 _o
0
L

0... 12
m
c -
~ 10 u
0

....J

aJ 8 ~

6

4

2

0

0 5 10 15 20

TRP

25 30

OVL=50l

OVL=40l

OVL=30%

OVL=20l

OVL=10%

35 00

Fig 6.27 Theoretical results for LRP & OAR. BT network

with the evening traffic matrix and different overlaods.

159

• FR (s I mu Lat I on) c OAR (s I mu Lat I on)

e RR (s I mu Lat I on) 6 LR I (s I mu Lat I on)

o LRP (s I mu Lat I on) Theory

21

FR
• • • • •

20

>...
+.> RR
--' 19
...0

co
...0
0
L 18 a..
m
c

_)/.

(J

17 0
--'

CD
~

1 6
/),.

/),. 8

0 5 10 15 20 25 30

TRP

Fig 6.28 Theoretical and simulation results for the

BT network with the morning traffic matrix, overload=30%.

160

o LRP (s I mu Lat I on) a DAR (s I mu Lat I on)

A LR I (s I mu Lat I on)

12

1 1

10

>.. 9
~

-J

J:J
co 8 J:J
0
L

a.
m

7 c
~

(.)
0

-J

CD 6 b-lit

5

4

0 5 1 0 15 20 25
X

Fig 6. 29 BT network with abnormal traffic conditions.

161

Frg 6. 30 The 10 node Bell network.

162

Chapter Seven

Conclusions and further work

In this thesis we considered dynamic routing strategies in non-hierarchical circuit

switched networks. Following an introductory survey chapter two presented the fun

damentals of stochastic learning automata. Two mathematical models were consid

ered to predict the behaviour of different linear algorithms in a changing environment.

It was shown that an LR-f.P scheme attempts to equalize penalty probabilities while

an LR-P scheme tends to equalize penalty rates. The load equalization property of

the LR-P scheme was later used in chapter four to predict the theoretical overall

blocking probability of a fully connected circuit-switched network.

In chapter three two simulation packages were developed. The first package can

simulate a fully connected circuit-switched network of any size and the second package

is similar to the first one but with a graphics front end. These packages were used

in the subsequent chapters to perform experimental studies on the use of various

dynamic routing strategies in circuit-switched networks.

Chapter four presented a theory for the blocking probabilities of FR, RR, LR-P

163

and DAR and compared the theoretical predictions to simulation results for a five

node fully connected network for different values of overload and TRP. An excellent

agreement between analytical and simulation results was found for T RP > 5. For

all routing strategies the results illustrate the sensitivity of the performance to the

parameter TRP. In each case provided TRP is greater than 10 the results are invariant

for further increase in TRP. Comparison of routing policies indicate that with TRP=O,

all dynamic routing schemes (RR, LBA, LR-P and DAR) are inferior to FR while

with TRP=lO they all performed as well as FR. The test network was designed for

FR and as a result any attempt to introduce alternate routing, only deteriorates

the performance in these circumstances. TRP improves the network performance by

reducing the amount of alternate routing. For TRP> 10 a small amount of alternative

routing takes place and dynamic routing schemes behave close to FR. Therefore under

normal conditions for the network considered, FR is the best routing policy as it is

less complicated than a dynamic routing plus trunk reservations. Next in this chapter

the routing algorithms were compared under failure conditions and general overload.

Once more with TRP=O all dynamic routing schemes are inferior to FR but with

TRP=10 the results for the various strategies are very similar. However in terms of

the number of accepted calls for the failed link, TRP=10 results showed a significant

deterioration compared to TRP=O.

In chapter five we compared LA with DAR on networks which were designed to

force dynamic routing. First the influence of the learning parameter on the perfor

mance of the LR-I scheme was investigated. It was shown that the algorithm can be

164

tuned for an optimal performance. Next the LR_1 and the DAR schemes were com

pared on a four node network with a single traffic source. The traffic source has two

possible alternatives. The network was simulated for different ratios of the effective

link capacities of the two alternate paths. It was shown that when the ratio is one,

LR-1 outperforms DAR and when the ratio increases, the advantages of the LR-I

scheme are reduced. In the case of DAR a high ratio of link capacities on the two

alternative paths is a favorable condition. Under these circumstances less switching

will be required between the alternative paths for the DAR algorithm. It should be re

called that each time the DAR algorithm switches, a call is lost. Clearly as the ratio of

the capacity of the two alternative paths approaches unity, then increasing switching

will be required and therefore more calls will be lost. Results on five node networks

deliberately designed to force dynamic routing illustrated an improved performance

with LR-I· The failure condition experiment showed a significant superiority of LR-I

over DAR for the case studied. Finally it was shown that for a traffic matrix not

designed for FR, FR resulted in higher blocking probabilities than dynamic routing

and any attempt to introduce TRP adversely affected the network performance.

In chapter six we studied the behaviour of different dynamic routing algorithms

on more realistic larger networks. In the first part of this chapter, we considered the

problem of instability when dynamic routing is used in symmetric uniformly loaded

nonhierarchical networks. Experiments using a mathematical model for the AAR

showed the existence of network instabilities for a range of overload. Simulation re

sults showed that the network can experience quasi-stable behaviour, flipping between

165

low and high congestion states which may each last for considerable periods of time.

It was shown through analysis that carried load drops dramatically at overload. The

instability effect was controlled by applying trunk reservation to first-routed traffic.

Such a control strategy reduces the amount of alternate routing in the network under

overloads, and permits 1-link calls to use the trunks more efficiently. This reduces

the quasi-stable behaviour and results in a continuous increase in carried load with

increasing offered load over the entire range of overloads considered. Next we ex

tended our studies to LR'-p, LR-I and DAR and showed both through analysis and

simulations that these algorithms do not exhibit instability. However they do show a

drop in carried load as the offered load is increased beyond a certain point. Using the

mathematical model it was demonstrated that trunk reservation increased the car-

ried load at overload. However at very light overloads, carried load may drop when

trunk reservation is implemented. This suggests the use of a triggering mechanism to

activate trunk reservation only at larger overloads.

In the second part of chapter six, the performance of different dynamic routing

algorithms was studied on two large networks with realistic capacity and traffic matri

ces. The first network is a 10 node network subset of the main BT network with two

traffic matrices for the morning and the evening. The results for the case of no traffic

overloads illustrated that LR-P, LR-I and DAR performed close to each other and

they all significantly outperformed RR and FR. Also the performance of the network

deteriorates when TRP is implemented under no overload of traffic. However theoret

ical results for LR-P and DAR under different values of traffic overloads showed that

166

the optimum TRP varies with overload. The simulation results for abnormal traffic

conditions showed that LR-I and LR-P outperform DAR with the best performance

provided by the LR-I scheme. The second network considered was a 10 node network

from Bell labs used elsewhere [25]. Comparison of the results in [25] with our results

for FR, RR, DAR, LR-P and LR-I showed that Lk~~) is the best routing algorithm

for this network.

Further work is proposed as follows. In section 6.2 we studied instability in a

symmetric uniformly loaded network for several dynamic routing algorithms. There

is a need to study instability when LR-P, LR-I and DAR are implemented in net

works of more general types. Two such networks are given in section 6.3 where we

considered larger networks and compared different dynamic routing algorithms. The

same sequence of experiments as in section 6.2 may be repeated to study whether

these networks flip between low and high congestion states and whether the carried

load drops at overload. Repeat attempts by customers may also intensify the unsta

ble behavior. It is expected that at high congestion state, repeat attempts increase

congestion and consequently increase the time that the network remains at that state.

In chapter three the simulation of a fully connected network with identical routing

schemes operating at each node was considered. The simulator can be extended

to hybrid routing by employing different routing schemes at different nodes of a

network. More work is needed to investigate the practicality of hybrid routing and

the selection of a proper routing algorithm at each node. Another possible extension

to the simulator is the implementation of different TRPs for different links. The work

167

on the BT network in chapter six showed that there exists an optimum TRP at each

overload value. Optimum TRP may be different for different links depending on the

link capacity and arrival rate. Improved performance at overloads may be achieved

by selecting an optimum TRP for each link of the network.

Conventionally a single automaton with a fixed set of actions is placed at each

node of a network. Other forms of automata may be implemented in circuit-switched

networks. For example in [33] a new LA algorithm with changing number of actions

is suggested. In such automata, the set of available actions at every stage need only

be a subset of the complete set of actions and could change from stage to stage. For

the implementation to circuit-switched networks consider two levels of control at each

node. At the bottom level, a number of automata are situated, each having a desired

set of actions. At the top level, a mechanism is connected to all automata at the lower

level and selects an automaton on the basis of a fixed probability distribution. This

probability distribution can be changed with time. This form of control is particularly

useful in large countries with different time zones where a different set of routes is

considered according to the time of day or season of the year.

The convergence speed of the LA schemes is related to the size of the reward and

penalty parameters. A fast convergence can be achieved by choosing large reward and

penalty parameters but the results are expected to show large variances in steady state

action probabilities. A possible solution may be the use of adaptive stepsize techniques

where large reward and penalty parameters are selected initially and as the algorithm

converges, the learning parameters are adjusted to smaller values to decrease the

168

steady state variances. In general the steady state probabilities will not be known

and the choice of an adaptive strategy is non-trivial. In large networks the number of

actions for a learning automaton becomes large and the convergence becomes slow. In

addition, when all initial probabilities are chosen to be equal, each probability starts

from a low value and therefore it takes a long time for the probabilities to converge

to optimal values. Under such circumstances, a hierarchical structure of automata

[34] may be placed at each node of the network to improve speed. This structure

consists of several levels, each comprising of automata. Each action of an automaton

at a certain level triggers an automaton directly below it. Research is needed to

implement such systems of automata in communication networks and compare the

speed of convergence to the case where a single automaton is placed at each node.

There is now an international trend towards Integrated Senice Digital Networks

(ISDNs). Research is urgently needed to study the interaction between circuit and

packet switched traffic in such networks. Specifically, questions to be asked are how

to route the types of traffic in a network. Should they follow the same paths or should

each have its own set of paths for every source destination node pair? Moreover there

is a need to study and compare the performance of different dynamic routing schemes

in these classes of networks and to consider priority schemes for different classes of

information.

169

References

[1] G. R. Ash, R. H. Cardwell, R. P. Murray, 'Design and Optimization of Networks

with Dynamic Routing', The Bell System Technical Journal, Vol. 60, No. 8,

October 1981, pp. 1787-1820.

[2] G. R. Ash, A. H. Kafker, and K. R. Krishnan, 'Servicing and real time control

of networks with dynamic routing', The Bell System Technical Journal, Vol. 60,

No. 8, October 1981, pp. 1821-1845.

[3] W. H. Cameron et al., 'Dynamic Routing for Intercity Telephone Networks', Tenth

International Teletraffi.c Congress, Montreal, June 1983, Session 3.2, paper 3.

[4] F. Caron, 'Results of the Telecom Canada High Performance Routing Trial', 12th

International Teletraffi.c Congress, Turino, June, 1988, pp. 2.2A.2.1-2.2A.2.10.

[5] R. G. Ash, 'Use of a trunk status map for real-time DNHR', 11th International

Teletraffi.c Congress, 1985, paper 4.4 A-4.

[6] J. Lottin and J.P. Forestier, 'A Decentralized Control Scheme for Large Telephone

Networks', Proceedings of the IFAC symposium, Toulouse, France, June, 1980,

pp. 497-502.

[7] A. Girard and S. Hurtubise, 'Dynamic Routing and Call Repacking in Circuit

Switched Networks', IEEE Transactions on Communications, Vol. 31, No. 12,

December 1983, pp. 1290-1294.

[8] B. R. Hurley, C. J. R. Seidl, W. F. Sewell, 'A Survey of Dynamic Routing Methods

170

for Circuit-Switched Traffic', IEEE Communication Magazine, Vol. 25, No. 9,

September 1987, pp. 13-21.

[9] K. S. N arendra and P. Mars, 'The use of learning algorithms in Telephone Traffic

Routing-A methodology', Automatica, Vol. 19, No. 5, pp. 495-502,1983.

[10] K. S. N arendra and R. M. Thathachar, 'On the behavior of a learning automaton

in a changing environment with application to telephone traffic routing', IEEE

Trans. Syst. Man Cybern., Vol. SMC-10, No. 5, May 1980, pp. 262,269.

[11] R. J. Gibbens, F. P. Kelly and P. B. Key, 'Dynamic Alternative Routing- Mod

elling and Behaviour', ITC12, Turino Italy, June 1988, Paper 3.4A.3.

[12] M. L. Tsetlin, 'On the behaviour of finite automata in random media', A vtomatika

i Telemekhanika, Vol. 22, No. 10, Moscow, April 1961, pp. 1345-1354.

[13] V. I. Varshavskii and I. P. Vorontsova, 'On the behaviour of stochastic automata

with variable structure,' Automaton and Remote Control, Vol. 24, No. 3, October

1963, pp. 327-333.

[14] K. S. Narendra and M. A. L. Thathachar, 'Learning automata-a survey', IEEE

Trans. Syst. Man Cybern., Vol. SMC-4, No. 4, July 1974: pp323-324.

[15] S. Lakshmivarahan, 'Learning algorithms-theory and applications', New York:

Springer-Verlang, 1981.

[16] M. F. Norman, 'Markov processes and learning models', Academic press, New

York.

[17] P. R. Srikanta Kumar and K. S. Narendra, 'A Learning model for routing in

telephone networks', Siam J. Control and optimization, Vol. 20, No. 1, January

171

1982, pp. 34-57.

[18) G. Gordon, 'System simulation', Prentice-Hall, Inc., New Jersey, 1978.

[19] M. Schwartz, 'Telecommunication networks', Addison-Wesley, 1987.

[20] J. Banks and J. S. Carson, 'Discrete-event System simulation', Prentice-Hall, Inc.,

New Jersey, 1984.

[21] R. R. Stacey and D. J. Songhurst, 'Dynamic Alternative routing in the British

Telecom Trunk Network', Int Switching Symposium, March 1987, Phoenix, pp.

B12.4.1-B12.4.5.

[22] K. S. Narendra, E. A. Wright, L. G. Mason, 'Application of Learning Automata

to Telephone Traffic Routing and Control', IEEE Trans. on SMC, Vol. SMC-7,

No.ll, November 1977, pp. 785-792.

[23] K. S. Narendra and D. M. McKenna, 'Simulation Study of Telephone Traffic

Routing Using Learning Algorithms - Part I', Yale University, New Haven, Ct.,

Technical Report S & IS 7806, December 1978.

[24] K. S. Narendra, P. Mars and M. S. Chrystal, 'Simulation Study of Telephone

Traffic Routing Using Learning Algorithms- Part II', Yale University, New Haven,

Ct., Technical Report S & IS 7907, October 1979.

[25] M. S. Chrystal, 'Adaptive Control of Communication Networks using Learning

Automata', PhD thesis, Robert Gordon's Institute of Technology, Aberdeen, 1982.

[26] R. S. Krupp, 'Stabilization of alternate routing networks', IEEE International

Conference on Communications, Philadelphia, June 1982, pp. 31.2.1-31.2.5.

[27] J. M. Akinpelu, 'The overload performance of engineered networks with non-

172

hierarchical and hierarchical routing', AT&T Bell Laboratories Technical Journal,

Vol. 63, No. 7, September 1984, pp. 1261-1281.

[28] R. G. Gibbens, 'Dynamic Routing In Circuit-Switched Networks: The Dynamic

Alternative Routing Strategy', PhD thesis, Cambridge University, July 1988.

[29] W-Y. NG, 'Dynamic Routing in Circuit-switched Networks: Simulation of the

Routing Rule of Least Busy Alternative with Trunk Reservation', Part II Project,

Dept of Engineering, University of Cambridge, 1985.

[30] Y. Nakagome and H. Mori, 'Flexible routing in the global communication net

work', Seventh International Teletraffic Congress, Stockholm, June 1973, paper

426.

[31] R. G. Ackerley, 'Hysterisis-type behaviour in networks with extensive overflow ',

Br. Telecom Technol. J., Vol. 5, No. 4, October 1987, pp. 42-50.

[32] U. Korner and B. Walstrom, 'On symmetrical two-link routing in circuit-switched

networks.', ITC 11, Kyoto 1985, pp. 855-860.

[33] M.A. L. Thathachar and B. R. Harita, 'Learning automata with changing number

of actions', IEEE Trans. on SMC, Vol. SMC-17, No. 6, Nov/Dec 1987, pp. 1095-

1100.

[34] M.A. L. Thathachar and K. R. Ramakrishnan, 'A hierarchical system oflearning

automata', IEEE Trans. on SMC, Vol. SMC-11, No. 3, March 1981, pp. 236-241.

173

Appendix 1

Simplified equations for B1 and Q2

To simplify the expressions for B1 and Q2 we first simplify the equation for PO·

(4- 12)

1 m vi lim (A A 2 A e-m)
- = -+- + + +
Po j~j! m! (m+1) (m+1)(m+2) ··· (m+1)(m+2) ... c

B1 is given by:

(4 - 10)

lim A e-m

B1 = 1 (Po m.(m+ 1) m+2) ... c

Replacing the expression for Po into the above equation and dividing both nu-

merator and denominator by vm /m! we get:

A A A A
Bl = _ ___:m.:.::,+,:....;l::....;mc:..::.+..!-'2=-.:m:..:..::....!..+3:::....._. ·_·:::cc____

"m vi
L....j=O 7! + "e-m IJi A

,_,m L....i=l k=l (m+k)
mr

174

IIe-m A
Bl = ---:-k_=_l___,_(m_+.:....k....:..) __ _

"m vi
L.,.,j=O 7 + "e-m IIi A

vfn L.,.,i=l k=l (m+k)
m!

Let:

vm

E(v m) = mr .
'. m vJ

Lj=O j!

The expression for B becomes:

Q2 is given by:

IIe-m A
B _ k=1 (1n+k)

1 - 1 "e-m IIi A
E(v,m) + L.,.,i=1 k=l (m+k)

· m-1 j

Q2 = L ~ 1 Po
j=O J.

The expression for Q2 can be simplified as follows:

Replacing the expression for Po into the above equation:

"m vi vm
L.,.,j=O j! - m!

Q2 = "m vi vm "e-m IIi A
L.,.,j=O j! + m! X L.,.,i=1 k=l (m+k)

dividing both nemerator and denominator by EJ!=o]T we get:

Q
_ 1- E(v,m)

2 - 1 E() "e-m IIi A + v, m X L.,.,i=1 k=1 (m+k)

175

(4-11)

Appendix 2

The BT network specification

10 node capacity matrix

2 3 4 5 6 7 8 9 10

1 30 30 60 90 90 120 30 810 420

2 0 60 90 90 90 90 30 720 240

3 0 0 30 60 90 60 30 90 60

4 0 0 0 90 120 30 30 60 120

5 0 0 0 0 510 120 90 120 180

6 0 0 0 0 0 180 30 150 240

7 0 0 0 0 0 0 60 120 120

8 0 0 0 0 0 0 0 60 90

9 0 0 0 0 0 0 0 0 60

176

10 node morning traffic matrix

2 3 4 5 6 7 8 9 10

1 0.00 19.84 27.09 96.87 105.95 50.49 23.87 763.56 398.04

2 0.00 18.33 32.67 97.21 108.38 52.93 28.14 694.98 232.54

3 0.00 0.00 0.00 18.72 34.53 0.00 8.75 23.02 15.77

4 0.00 0.00 0.00 31.34 60.22 0.00 6.08 38.02 66.84

5 0.00 0.00 0.00 0.00 477.30 48.45 62.86 165.86 239.40

6 0.00 0.00 0.00 0.00 0.00 85.80 0.00 203.69 224.15

7 0.00 0.00 0.00 0.00 0.00 0.00 17.42 65.78 79.25

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.40 87.06

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 node evening traffic matrix

2 3 4 5 6 7 8 9 10

1 0.00 41.70 67.39 61.45 82.24 112.05 19.96 662.27 251.57

2 0.00 32.18 81.90 64.46 83.69 125.11 27.00 588.81 146.13

3 0.00 0.00 0.00 28.30 70.11 0.00 17.48 48.61 9.91

4 0.00 0.00 0.00 84.72 144.79 0.00 25.63 85.61 42.05

5 0.00 0.00 0.00 0.00 204.10 108.20 42.08 111.52 150.28

6 0.00 0.00 0.00 0.00 0.00 198.62 0.00 156.66 141.65

7 0.00 0.00 0.00 0.00 0.00 0.00 40.38 145.63 49.93

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.31 54.81

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mean Call holding time * = 1 time unit / call

177

Appendix 3

The Bell network specification

10 node capacity matrix

2 3 4 5 6 7 8 9 10

1 43 52 12 10 3 15 0 19 0

2 0 40 17 1 11 0 20 17 8

3 0 0 13 26 1 12 0 0 0

4 0 0 0 0 18 8 11 0 0

5 0 0 0 0 172 148 28 28 8

6 0 0 0 0 0 13 11 0 5

7 0 0 0 0 0 0 18 8 6

8 0 0 0 0 0 0 0 72 36

9 0 0 0 0 0 0 0 0 49

178

'fraffic matrix I

2 3 4 5 6 7 8 9 10

1 .706 .001 .001 1.066 .42 1.319 .642 1.966 .534

2 0.00 .165 .001 .848 .186 .696 .958 1.241 .473

3 0.00 0.00 .001 .588 .489 1.057 .406 .001 .001

4 0.00 0.00 0.00 .425 .84 .763 .588 .225 .219

5 0.00 0.00 0.00 0.00 16.93 12.407 2.366 2.289 .634

6 0.00 0.00 0.00 0.00 0.00 .346 1.173 .001 .567

7 0.00 0.00 0.00 0.00 0.00 0.00 1.577 .471 .609

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.762 1.274

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.399

'fraffic matrix II

2 3 4 5 6 7 8 9 10

1 .001 2.074 .001 1.019 .53 1.092 .001 1.179 .61

2 0.00 3.526 .001 1.399 .353 .074 .00 2.77 .669

3 0.00 0.00 .687 .48 1.007 .001 .227 .308 .158

4 0.00 0.00 0.00 .472 1.09 1.242 .743 .168 .222

5 0.00 0.00 0.00 0.00 9.372 11.313 1.061 2.447 .691

6 0.00 0.00 0.00 0.00 0.00 .362 1.287 .001 .57

7 0.00 0.00 0.00 0.00 0.00 0.00 .78 .378 .338

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.684 1.186

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.754

179

Traffic matrix III

2 3 4 5 6 7 8 9 10

1 .825 3.715 .001 1.919 .001 1.323 .631 1.922 1.166

2 0.00 1.406 .001 .48 .001 .001 .407 1.02 .455

3 0.00 0.00 .001 .568 1.271 .001 .669 .15 .001

4 0.00 0.00. 0.00 .001 1.761 1.26 1.091 .011 .416

5 0.00 0.00 0.00 0.00 6.425 6.79 .484 .477 .468

6 0.00 0.00 0.00 0.00 0.00 .363 1.235 .001 .921

7 0.00 0.00 0.00 0.00 0.00 0.00 2.483 .001 1.171

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.71 .555

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.943

Mean Call holding time i = 10 time units / call

180

Appendix 4

Simulation package I

181

C***
C This program allows simulation of a fully connected network of up to
C 10 nodes.
C Any of the following routing schemes can be selected:
C 1-FR 2-DAR 3-LRI 4-LRP S-AAR 6-RR 7-LBA
C***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

NO,ND,PROB

TRAFIC

CAPAC

LD

NACEPT

NRJECT

PLA

TDAR

STR
OVF
RN

TR
TINT
UNIT
TRP
RW
PN
SCH

NN

Arrays used in deciding identity of arriving calls,
such that probability that the arriving call being
for origin-destination pair NO(L) and ND(L) is
PROB(L)-PROB(L-1)
TRAFIC(L) is the call arrival rate in Erlang for
origin-destination pair NO(L) and ND(L)
CAPAC(I,J) is the number of channels between nodes
I and J.
LD(I,K,J) is the current number of calls on
origin-tandem-destination combination I,K,J
NACEPT(I,K,J) is the number of accepted calls for
origin-tandem-destination combination I,K,J
NRJECT(I,J) is the number of rejected calls for
origin-destination pair I,J
PLA(L,I,J) for LRP and LRI schemes is ~he probability
of selecting the Lth alternative for 0-D pair I,J
TDAR(I,J) for DAR scheme is the current tandem node
for 0-D pair I,J
Total traffic
Overload factor
Time to output results (results are outputed every
unit as RN is incremented by one each time)
Time of call arrival
Inter-arrival time
Maximum simulation time
Trunk Reservation Prameter
Reward parameter
Penalty parameter
Routing scheme code number:
FR=1 DAR=2 LRI=3 LRP=4 AAR=S RR=6 LBA=7
Number of nodes

DIMENSION N0(45), ND(45), LD(10,0:10,10),PROB(45)
DIMENSION NRJECT(9,10), NACEPT(9,0:10,10)
DIMENSION PLA(8,9,10),TRAFIC(45)
INTEGER SEED(3)
INTEGER TDAR(10,10)
INTEGER CAPAC(10,10),TRP,NN,NODP,SCH
DOUBLE PRECISION RN,TR,UNIT
INTEGER ORIG, DEST
INTEGER TLOAD,AAR,RANODE,DAR,RR,TEST
DATA TR,RN/0.0,1.0/
DATA NRJECT,NACEPT/1080*0/
DATA LD/1100*0/
DATA CAPAC/100*0/
DATA TRAFIC/45*0/
DATA N0/45*0/
DATA ND/45*0/
DATA PROB/45*0/
DATA PLA/720*0/

- 182 -

C************************** Main Program *******************************
CALL INPUT{NN,NODP,OVF,X,SCH,CAPAC,TRAFIC,TRP,UNIT,IREF,

1 RW,PN,SEED)
CALL SETUP{NN,SCH,NODP,PROB,NO,ND,PLA,TDAR,SEED{3),TRAFIC,STR)

10 CALL ARIVAL{TR,TINT,ORIG,DEST,NO,ND,PROB,STR,SEED{1),NODP)
IF (TR.GE.RN) THEN

1

END IF

CALL OUTBP{NACEPT,NRJECT,RN,NN)
RN=RN+1.

IF{RN.GT.UNIT) GO TO 1000
CALL DEPART{LD,TINT,SEED{1),0RIG,DEST,NN)
CALL ROUTE{LD,CAPAC,SEED{2),SEED{3),PLA,TDAR,NN,SCH,NACEPT,

NRJECT,RW,PN,TRP,ORIG,DEST)
GOTO 10

1000 WRITE{8,*)'End of simulation.'
END

C***
C Returns a random number between 0 and 1.
C***

FUNCTION UNIF{IS)
REAL UNIF
IS=IS*65539
IF {IS.LT.O) IS=IS+2147483647+1
UNIF=IS*4.656613E-10
RETURN
END

C***
C This subroutine calculates: 1-origin and destination NI and NJ for the
C next call arrivall and 2-the interarrival time SR.
C***

c

c

SUBROUTINE ARIVAL{TR,SR,NI,NJ,II,JJ,P,SUMLD,IX,NTR)
DIMENSION II{45),JJ(45),P(45)
DOUBLE PRECISION TR
INTEGER IX

RAND=UNIF(IX)
SR=-1*LOG{RAND)/SUMLD
TR=TR+SR

RAND=UNIF(IX)
DO 10 L=1,NTR

IF (RAND.LT.P(L)) GOTO 20
10 CONTINUE
20 NI=II(L)

NJ=JJ(L)
RETURN
END

C***
C Clears down calls.
C***

c

SUBROUTINE DEPART(NX,SR,IW,NI,NJ,NN)
DIMENSION NX(10,0:10,10)

DO 10 I=1,NN-1
DO 20 J=I+1,NN

DO 30 K=O,NN
IF {K.EQ.I.OR.K.EQ.J) GOTO 30
IF (NX(I,K,J) .EQ.O) GOTO 30

- 183 -

40

RLMDA=NX(I 1 K1 J)*SR
P=EXP ((-1) *RLMDA)
Q=1.0
II=O
RAND=UNIF (IW)
Q=Q*RAND
IF(Q.GE.P) THEN

II=II+l
GOTO 40

END IF
NX(I 1 K1 J)=NX(I 1 K1 J)-II
NX(I 1 K1 J)=MAX(0 1 NX(I 1 K1 J))
NX(J 1 K1 I)=NX(I 1 K1 J)

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

C***
C Returns total load carried on link (NI 1 NJ).
C***

INTEGER FUNCTION TLOAD(NX 1 NI 1 NJ 1 NN)
DIMENSION NX(10 1 0:10 1 10)
INTEGER NXIJ
!=MIN (NI I NJ)

J=MAX (NI I NJ)

NXIJ=NX(I 1 0 1 J)

DO 10 L=I+l 1 NN
IF(L.EQ.J) GOTO 10
NXIJ=NXIJ+NX(I 1 J 1 L)

10 CONTINUE
DO 20 L=1 1 J-1

IF(L.EQ.I) GOTO 20
NXIJ=NXIJ+NX(L 1 ! 1 J)

20 CONTINUE
DO 30 L=1 1 I-1

NXIJ=NXIJ+NX(L 1 J 1 I)
30 CONTINUE

DO 40 L=J+1 1 NN
NXIJ=NXIJ+NX(J 1 I 1 L)

40 CONTINUE
TLOAD=NXIJ
RETURN
END

C***
C This subroutine routes the call directly if possible and if not tries
C to route the call alternately using a dynamic routing scheme.
C***

c

SUBROUTINE ROUTE(NX 1 C1 IY 1 IZ 1 A1 TDAR 1 NN 1 SCH 1 NACEPT 1 NRJECT 1

1 RW 1 PN 1 TRP 1 NI 1 NJ)
DIMENSION NX(10 1 0:10 1 10) 1 A(8 1 9 1 10)
DIMENSION NACEPT(9 1 0:10 1 10) 1 NRJECT(9 1 10)
INTEGER C(10 1 10) 1 TRP 1 SCH 1 TDAR(l0 1 10)
INTEGER AAR 1 TLOAD 1 DAR 1 RR
INTEGER IZ 1 IY

NXIJ=TLOAD(NX 1 NI 1 NJ 1 NN)
IF (NXIJ.LT.C(NI 1 NJ)) THEN

- 184 -

c
ELSE

END IF
RETURN
END

NX(NI 1 0 1 NJ)=NX(NI 1 0 1 NJ)+1
NACEPT(NI 1 0 1 NJ)=NACEPT(NI 1 0 1 NJ)+1

IF(SCH.EQ.1)THEN
KK=-1

ELSEIF(SCH.EQ.2)THEN
KK=DAR(NI 1 NJ 1 NX 1 C1 TRP 1 IZ 1 TDAR 1 NN)

ELSEIF(SCH.EQ.3)THEN
KK=LRI(NI 1 NJ 1 NX 1 C1 TRP 1 IY 1 A1 RW 1 NN)

ELSEIF(SCH.EQ.4)THEN
KK=LRP(NI 1 NJ 1 NX 1 C1 TRP 1 IY 1 A1 RW 1 PN 1 NN)

ELSEIF(SCH.EQ.S)THEN
KK=AAR(NI 1 NJ 1 NX 1 C1 TRP 1 NN)

ELSEIF(SCH.EQ.6)THEN
KK=RR(NI 1 NJ1 NX 1 C1 TRP 1 IZ 1 NN)

ELSEIF(SCH.EQ.7)THEN
KK=LBA(NI 1 NJ 1 NX 1 C1 TRP 1 NN)

END IF
IF (KK.EQ.-1) THEN

NRJECT(NI 1 NJ)=NRJECT(NI 1 NJ)+1
ELSE

NX(NI 1 KK 1 NJ)=NX(NI 1 KK 1 NJ)+1
NX(NJ 1 KK 1 NI)=NX(NI 1 KK 1 NJ)
NACEPT(NI 1 KK 1 NJ)=NACEPT(NI 1 KK 1 NJ)+1

END IF

C***
C Returns a tandem node using DAR strategy.
C***

INTEGER FUNCTION DAR(I 1 J 1 NX 1 C1 TRP 1 IZ 1 TDAR 1 NN)
DIMENSION NX(10 1 0:10 1 10) 1 N(8)
INTEGER C(10 1 10) 1 TRP 1 TDAR(10 1 10)
INTEGER TLOAD 1 RANODE
INTEGER IZ
L=O
DO 10 K=1 1 NN

IF(K.EQ.I.OR.K.EQ.J) GOTO 10
L=L+l
N(L)=K

10 CONTINUE
M=TDAR (I I J)
K=N(M)
NXIK=TLOAD(NX 1 I 1 K1 NN)
Nl=C(I 1 K)-NXIK
NXKJ=TLOAD(NX 1 K1 J 1 NN)
N2=C(K 1 J)-NXKJ
MM=MIN (Nl I N2)
IF (MM.LE.TRP)THEN

DAR=-1
TDAR(I 1 J)=RANODE(NN 1 IZ)

ELSE
DAR=K

END IF
RETURN
END

- 185 -

C***
C Returns a tandem node using LRI strategy.
C**~**************

c

FUNCTION LRI(I,J,NX,C,TRP,IZ,A,RW,NN)
DIMENSION NX(10,0:10,10),N(8),A(8,9,10)
INTEGER C(10,10),TRP
INTEGER TLOAD
INTEGER IZ

L=O
DO 10 K=1,NN

IF(K.EQ.I.OR.K.EQ.J) GOTO 10
L=L+l
N(L)=K

10 CONTINUE

c

M=LANODE(IZ,A,I,J,NN)
K=N(M)

NXIK=TLOAD(NX,I,K,NN)
N1=C(I,K)-NXIK
NXKJ=TLOAD(NX,K,J,NN)
N2=C(K,J)-NXKJ
MM=MIN (N1 I N2)
IF (MM.LE.TRP) THEN

C PUNISH:
LRI=-1

ELSE
C REWARD:

30

LRI=K
S=O.
DO 30 IL=1,NN-2

IF(IL.EQ.M) GOTO 30
A(IL,I,J)=(1-RW)*A(IL,I,J)
S=S+A (IL, I I J)

CONTINUE
A(M,I,J)=1.-S

END IF
RETURN
END

C***
C Returns a tandem node using LRP strategy.
C***

FUNCTION LRP(I,J,NX,C,TRP,IZ,A,RW,PN,NN)

c

DIMENSION NX(10,0:10,10),N(8),A(8,9,10)
INTEGER C(10,10),TRP
INTEGER TLOAD
INTEGER IZ

L=O
DO 10 K=1,NN

IF(K.EQ.I.OR.K.EQ.J) GOTO 10
L=L+1
N(L)=K

10 CONTINUE

c

M=LANODE(IZ,A,I,J,NN)
K=N(M)

NXIK=TLOAD(NX,I,K,NN)

- 186 -

N1=C{I,K)-NXIK
NXKJ=TLOAD(NX,K,J,NN)
N2=C{K,J)-NXKJ
MM=MIN(N1,N2)
IF (MM.LE.TRP)THEN

C PUNISH:

3

LRP=-1
S=O
DO 3 IL=1, NN-2

IF(IL.EQ.M) GOTO 3
A(IL,I,J)=A{IL,I,J)+PN*A(M,I,J)/(NN-3)
S=S+A (IL, I, J)

CONTINUE
A(M,I,J)=1.-S
GOTO 44

ELSE
C REWARD:

LRP=K
S=O.
DO 30 IL=1,NN-2

IF(IL.EQ.M) GOTO 30
A(IL,I,J)=(1-RW)*A(IL,I,J)
S=S+A (IL, I, J)

30 CONTINUE
A(M,I,J)=1.-S

END IF
44 RETURN

END
C***
C Returns a tandem node using AAR strategy.
C***

c

INTEGER FUNCTION AAR(I,J,NX,C,TRP,NN)
DIMENSION NX(10,0:10,10),N(8)
INTEGER C(10,10),TRP
INTEGER TLOAD

AAR=-1
1=0
DO 10 K=1,NN

IF(K.EQ.I.OR.K.EQ.J) GOTO 10
1=1+1
N(L)=K

10 CONTINUE
DO 1 M=1,NN-2

K=N(M)
NXIK=TLOAD(NX,I,K,NN)
N1=C(I,K)-NXIK
NXKJ=TLOAD(NX,K,J,NN)
N2=C(K,J)-NXKJ
MM=MIN (N1, N2)
IF (MM.GT.TRP) THEN

AAR=K
GOTO 43

END IF
1 CONTINUE

AAR=-1
43 RETURN

END

- 187 -

C***
C Returns a tandem node using RR strategy.
C***

INTEGER FUNCTION RR(I,J,NX,C,TRP,IZ,NN)
DIMENSION NX(10,0:10,10),N(8)
INTEGER C(10,10),TRP
INTEGER TLOAD,RANODE
INTEGER IZ
L=O
DO 10 K=1,NN

IF(K.EQ.I.OR.K.EQ.J) GOTO 10
L=L+1
N(L)=K

10 CONTINUE
M=RANODE(NN,IZ)
K=N(M)
NXIK=TLOAD(NX,I,K,NN)
N1=C(I,K)-NXIK
NXKJ=TLOAD(NX,K,J,NN}
N2=C(K,J)-NXKJ
MM=MIN(N1,N2}
IF (MM.LE.TRP)THEN

RR=-1
ELSE

RR=K
END IF
RETURN
END

C***
C Returns a tandem node using LEA strategy.
C***

INTEGER FUNCTION LBA(I,J,NX,C,TRP,NN}
DIMENSION NX(10,0:10,10},N(10}
INTEGER C(10,10),TRP
INTEGER TLOAD
DO 10 L=1,NN

N(L)=O
10 CONTINUE

DO 20 K=1,NN
IF(K.EQ.I.OR.K.EQ.J)GOTO 20

NXIK=TLOAD(NX,I,K,NN}
N1=C(I,K)-NXIK
NXKJ=TLOAD(NX,K,J,NN}
N2=C(K,J}-NXKJ
N (K) =MIN (N1, N2}

20 CONTINUE
MM=MAX(N(1} ,N(2} ,N(3) ,N(4} ,N(5} ,N(6} ,N(7} ,N(8) ,N(9) ,N(10)}
DO 30 K=1,NN

IF(K.EQ.I.OR.K.EQ.J}GOTO 30
IF(MM.EQ.N(K))GOTO 40

30 CONTINUE
40 IF (MM.LE.TRP)THEN

LBA=-1
ELSE

LBA=K
END IF
RETURN
END

- 188 -

C***
C Selects a random node for LRP or LRI.
C***

FUNCTION LANODE(IZ,A,IO,ID,NN)
DIMENSION A(8,9,10), AP(8)
RAND= UN IF (I Z)
SUM=O
DO 1 I=1,NN-2

SUM=SUM+A(I,IO,ID)
IF(RAND.LT.SUM) GOTO 3

1 CONTINUE
WRITE(8,*)'ERROR'

3 LANODE=I
RETURN
END

C***
C Returns a random node.
C***

INTEGER FUNCTION RANODE(N,IY)
DIMENSION DUMMY(8)
INTEGER IY
RAND=UNIF (IY)
I=RAND* (N-2)
RANODE=I+1
RETURN
END

C***
C Reads number of nodes, capacity matrix, traffic matrix and routing
C scheme code number for a nonsyrnrnetric network, from a file.
C***

SUBROUTINE INPUT(N,NODP,OVF,X,SCH,C,TRF,TRP,UNIT,IREF,RW,PN,SEED)
INTEGER C(10,10),SCH,TRP
INTEGER SEED(3)
DOUBLE PRECISION UNIT
DIMENSION D(10,10)
DIMENSION TRF(45)
CHARACTER *60 TEXT
READ(8,101)TEXT
READ(8,*)SCH,OVF,X,UNIT,TRP
OPEN (UNIT=S, FILE='DATSIMT' ,STATUS='OLD')
READ(5,101)TEXT
READ(5,*)N,RW,PN,SEED(1),SEED(2),SEED(3)
WRITE(8,*)'N,RW,PN,SEED1,SEED2,SEED3,SCH,OVF,X,UNIT,TRP'
WRITE(8,*)N,RW,PN,SEED(1),SEED(2),SEED(3),SCH,OVF,X,UNIT,TRP
READ(5,101)TEXT

101 FORMAT(A60)
WRITE(8,*)TEXT
READ(5,101)TEXT
WRITE(8,*)TEXT
NODP=O
DO 1 I=1,N-1

NODP=NODP+I
1 CONTINUE

DO 2 I=l,N-1
K=I+1
READ(S,*) (C(I,J),J=K,N)
WRITE (8, *) (C (I, J), J=K, N)

2 CONTINUE

- 189 -

DO 30 I=1,N-1
DO 40 J=I+1, N

C (J, I) =C (I, J)
40 CONTINUE
30 CONTINUE

DO 3 I=1,N-1
K=I+1
READ (5, *) (D (I, J), J=K, N)
WRITE (8, *) (D (I, J), J=K,N)

3 CONTINUE
K=1
DO 4 I=1,N-1

DO 5 J=I+1,N
TRF(K)=OVF*D{I,J)
K=K+l

5 CONTINUE
4 CONTINUE

RETURN
END

C**~**************

C This subroutine initializes P, PLA and TDAR.
C P(I) =probability that a call arrives for the Ith 0-D pair.
C PLA(K,I,J) =Probability of selecting the Kth tandem node for 0-D pair
C {I,J) for LRP or LRI.
C TDAR{I,J) =the current tandem node for 0-D pair {I,J) for DAR.
C***

c

c

SUBROUTINE SETUP{N,SCH,NODP,P,II,JJ,PLA,TDAR,IY,TRF,SUMLD)
DIMENSION PLA(8,9,10),II(45),JJ(45),P(45)
INTEGER TDAR(10,10)
DIMENSION TRF{45)
INTEGER N,NODP,SCH
INTEGER RANODE
INTEGER IY

SUMLD=O
DO 11 I=1,NODP

SUMLD=SUMLD+TRF(I)
11 CONTINUE

WRITE(8,*)'TOTAL TRAFFIC=' ,SUMLD

P{1)=TRF(1)/SUMLD
DO 1 I=2,NODP

P(I)=TRF(I)/SUMLD+P(I-1)
1 CONTINUE

IF {P(NODP) .NE.O.) THEN
P(NODP)=1.000
END IF
K=1
DO 2 I=1,N-1

DO 3 J=I+1,N
II (K) =I
JJ(K)=J
K=K+l

3 CONTINUE
2 CONTINUE

C INITIALIZE PLA: SET EQUAL PROBABILITIES
DO 4 I=1,N-1
DO 5 J=I+l,N

- 190 -

DO 6 K=1,N-2
PLA(K,I,J)=1./(N-2)

6 CONTINUE
5 CONTINUE
4 CONTINUE

C INITIALIZE TDAR CHOOSE A RANDOM NODE
DO 7 I=1,N-1
DO 8 J=I+1, N

TDAR(I,J)=RANODE(N,IY)
8 CONTINUE
7 CONTINUE

WRITE (8, 59)
59 FORMAT(2X,'%BP' ,T15,' DIRECT

1 , T60, I UNIT')
RETURN
END

I, T30, I CARRIED I, T45, I PDC'

C***
C This subroutine calculates and prints the percentage of the overall
C blocking probability, total calls routed directly, total calls carried
C and proportion of directly routed calls at the end of each time unit.
C***

c

SUBROUTINE OUTBP(NACEPT,NRJECT,RN,NN)
DIMENSION NACEPT(9,0:10,10),NRJECT(9,10)
INTEGER OFFERD,DIRECT,CARRID,REJECT

N=INT(RN)
DIRECT=O
CARRID=O
REJECT=O
DO 10 I=1,NN-1

DO 20 J=I+1,NN
REJECT=REJECT+NRJECT(I,J)
NRJECT(I,J)=O
DIRECT=DIRECT+NACEPT(I,O,J)
DO 30 K=O,NN

IF (K.EQ.I.OR.K.EQ.J) GOTO 30
CARRID=CARRID+NACEPT(I,K,J)
NACEPT(I,K,J)=O

30 CONTINUE
20 CONTINUE
10 CONTINUE

OFFERD=CARRID+REJECT
BP= 100*(REAL(REJECT)/REAL(OFFERD))
PDC= REAL(DIRECT)/REAL(CARRID)
WRITE(8,50)BP,DIRECT,CARRID,PDC,N

50 FORMAT(1X,F8.4,T15,I6,T30,I6,T45,F8.5,T60,I4)
RETURN
END

- 191 -

Appendix 5

Simulation package II

192

1**1
I* graphics Front End *I
I* This program draws a window on the screen and allows the user to *I
I* draw and edit a network in that window and to enter the *I
I* necessary parameters for simulation. The left and midddle mouse *I
/* buttons provide a menu each and the right mouse button is
I* reserved for drawing purposes. To simulate a network, this
I* program calls another module named pro.c.

*I
*I
*I

I** I
#define NMAX 10
#define TMAX 45
#include <suntoollsunview.h>
#include <suntoollcanvas.h>
#include <suntoollscrollbar.h>
#define RAD 20
#define PI 3.1415927
I************************** I
extern void simulate();
static void my_event_proc();
void number_node();
void num_node_start();
void draw_node();
void circle(),line(),bar();
void draw_line_between_two_nodes();
void draw_link(),write_string();
int xy_is_near_node();
double sin(),cos(),sqrt();
void init_array();
void move_node();
void delete_node(),delete_link();
void get_traffic();
void get capacity();
void print_node_connections(),write_link_data();
void load_tandem_link(),set_scheme(),sim_menu();
char *ecvt(), *itoa();
void help(),set_flags_to_zero(),set flag_to_one();
struct {

int num;
int x;
int y;
int con (NMAX];

} node (NMAX+1];
struct {

int orig;
int dest;
int tandem(NMAX-1];
int capac;
float traffic;
double prob;
int scheme;

} link (TMAX+1];
Menu menu;
Menu menu2;
Pixwin *pw;
Frame frame;
Canvas canvas;
Event *event;
int number of OD_pairs;

- 193 -

int nurnber_of_nodes=O;
int nurnber_of_node_nurnbers=O;
/**/
main()
{

init_array ();
frame= window_create(NULL, FRAME,

FRAME_LABEL, "<<Graphics-front-end>>",
WIN_X, 500,
WIN_Y,
WIN_WIDTH,
WIN_HEIGHT,
0) ;

0,
600,
900,

canvas= window_create(frame, CANVAS,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_WIDTH, 2000,
CANVAS_HEIGHT, 1000,
WIN_CONSUME_KBD_EVENT,
WIN_ASCII_EVENTS,
WIN_CONSUME_PICK_EVENT,
WIN_MOUSE_BUTTONS,
WIN_EVENT_PROC, my event_proc,
WIN_HORIZONTAL_SCROLLBAR,
scrollbar_create(SCROLL_PLACEMENT, SCROLL_SOUTH,O),
0) ;

menu2=menu_create(MENU_STRINGS,"print node connections",
"print link data","simulation info",
"LRP", "LRI", "DAR",
"RR", "AAR", "FR" I 0, 0);

menu=menu_create(MENU_STRINGS,"node","link",
"number node", "delete node", "move nocie",
"delete link","capacity","traffic",
"simulate",O,O);

pw=canvas_pixwin(canvas);
window_main_loop(frame);
exit(O);
}

/**~~**************/

/* This void detects an event on the graphics window. Two menus are */
/* displayed, one for left mouse button and the other for right */
/* mouse button events. The user can select options from these */
/* menus. When an option is selected then this void calls the */
/* appropriate routine. The right mouse button is for drawing. When */
/* right mouse button event is detected, the current option is */
/* checked and an appropriate drawing routine is called. */
/**/
static void
Canvas canvas;
Event *event;

my_event_proc(canvas,event)

static int node_flag=O, link_flag=O,move_flag=O,
num_flag=O,num_start=O,del_node flag=O,
start_link_flag=O,del_link_flag=O,del_link_start=O;

static int seq_num=O,asci_count;
char *string;
static int TRP=O;

- 194 -

static float unit=lO.O,t_inc=l.O;
static float rw_para=.l, pn_para=.l;
static int seed[3]={123456789,100876521,111345703};
string = NULL;
switch (event_id(event))

case MS LEFT:
switch((int)rnenu_show(rnenu,canvas,event,O))
{
case 1:
set_flags_to zero(&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
set_flag_to_one(&node_flag);
help("Node"," ");
break;

case 2:
set_flags_to zero(&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
set_flag_to_one(&link_flag);
help("Link"," ");
break;

case 3:
set_flags_to zero(&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
set_flag_to_one(&nurn_flag);
nurn_start=l;
help("Press a Node"," ");
break;

case 4:
set_flags_to zero(&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
set_flag_to_one(&del_node_flag);
help("Delete a Node"," ");
break;

case 5:
set_flags_to_zero(&node_flag,&link_flag,&nurn_flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
rnove_flag=l;
help("Press the node","to be moved");
break;

case 6:
set_flags_to_zero(&node_flag,&link_flag,&nurn_flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
set_flag_to_one(&del_link_flag);
help("delete link"," ");
break;

case 7:
set_flags_to zero(&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
help("Enter capacity","");
get_capacity();
load_tandern_link(nurnber_of nodes,nurnber_of_OD_pairs);

- 195 -

break;

case 8:
set_flags_to_zero{&node_flag,&link_flag,&nurn_flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
help{"Enter traffic"," ");
get_ traffic{);
break;

case 9:
set_flags_to zero{&node flag,&link flag,&nurn flag,
&del_node_flag,&rnove_flag,&start_link_flag,&del_link_flag);
help{"Sirnulation"," ");
nurnber_of_OD_pairs=get_nurnber_of_OD_pairs{);
load_tandern_link{nurnber_of_nodes,nurnber_of_OD_pairs);
sirnulate{nurnber_of_nodes,nurnber_of_OD_pairs,TRP,

unit,t_inc,seed,rw_para,pn_para);
break;

I****** I
default :
break;
} /* end of switch{rnenu_show) */

break;

case MS RIGHT:

if{event_is_down{event))
{

if {node flag==l && nurnber_of_nodes<NMAX)
draw_node{event_x{event),event_y{event));

if {nurn_flag==l)
{

nurn node start{event_x{event),event_y{event),
&nurn_flag,&seq_nurn);

nurn start=O;
if {nurn_flag==l)
{

help{"Enter Node Nurnber","Press Return");

if {rnove_flag==l)
move node{event_x{event),event_y{event));

if {link_flag==l)
draw_link{event_x{event),event_y{event),&start_link_flag);

if (del_link_flag==l)
delete_link(event_x(event),event_y(event),&del_link_start);

if(del_node_flag==l)
delete_node(event_x(event),event y(event));

break;
} /* end case MS RIGHT */
/********/
case MS MIDDLE:

switch((int)rnenu_show(rnenu2,canvas,event,0))

case 1:
print_node connections();

- 196 -

break;
case 2:

write_link_data();
break;
case 3:

sim_menu(&TRP,&unit,&t_inc,&rw_para,&pn_para,seed);
break;
case 4:

set_scheme('4' ,"LRP");
break;
case 5:

set_scheme('3',"LRI");
break;
case 6:

set_scheme('2' ,"DAR");
break;
case 7:

set scheme('1' ,"RR");
break;
case 8:

set scheme('S' ,"AAR");
break;
case 9:

set scheme('O' ,"FR");
break;
default:
break;

break;
default:
break;

/* end of switch(id_event) */
if(event id(event)>='O' && event_id(event)<='9' && n~~_flag==1

&& num_start==O)

window_set(canvas,WIN_IGNORE_PICK_EVENT,WIN_MOUSE_BUTTONS,O);
number_node(seq_num,event_id(event),asci count);
asci count+=1;

if(event_id(event)==l3)
{

window set(canvas,WIN_CONSUME_PICK_EVENT,WIN_MOUSE_BUTTONS,O);
asci count=O;
help("Press a Node","");

/**/
void draw_node(x_node,y_node)
int x_node, y_node;

int node_sequence_number;

if(xy is near node(&x node,&y_node,60.0,&node_sequence_number) !=1)

number_of_nodes+=1;
node[number_of_nodes] .x=x_node;
node[number_of_nodes] .y=y_node;

- 197 -

circle(node[number_of_nodes] .x,node[number_of_nodes] .y,1);
}

}

/**/
void line(x1,y1,x2,y2,attrib)
int x1,y1,x2,y2,attrib;
{

pw_vector(pw,xl,yl,x2,y2, PIX_SRC,attrib);

/**~*************/

void circle(xc,yc,attribute)
int xc, yc,attribute;

int xl,yl,x2,y2,xd,yd;
int i,x[13],y[13];
double ang;
float r;
ang=O.;
r= (float) RAD;
for(i=O; i<13; ++i)

x[i]= r*sin(ang);
y[i]= r*cos(ang);
ang=ang+PI/6.;

x[O]=x[O]+xc;
y[O]=y[O]+yc;
for(i=1; i<13; ++i)

{

x[i]+=xc;
y[i]+=yc;
x1=x[i-1];
y1=y[i-1];
x2=x[i];
y2=y[i];
line(x1,y1,x2,y2,attribute);

/**/
void draw_link(x_link,y_link,sline)
int x_link,y_link,*sline;
{

static int xl[3],yl[3];
int n,i;
static int origin;
int destination;
int sequence_number;
if(xy_is_near_node(&x_link,&y_link, (float)RAD,&n))

{

sequence_number=n;
*sline +=1;
xl[*sline]=x_link;
yl[*sline]=y_link;
switch(*sline)

{

case 1:
origin=sequence_number;
break;

- 198 -

case 2:

*sline=O;
destination=sequence_number;
if(origin!=destination)

{

draw_line_between_two_nodes(xl[l),yl[l),xl[2],yl[2),1);
for(i=l; i<number_of_nodes; ++i)

{

if(node[origin) .con[i)==destination)
break;

if(node[origin) .con[i)==O)
{

node[origin) .con[i)=destination;
break;

for(i=l; i<number_of_nodes; ++i)
{

if(node[destination) .con[i)==origin)
break;

if(node[destination) .con[i)==O)
{

node[destination) .con[i)=origin;
break;

break;
defult:break;

else *sline=O;

/**/
void delete_link(x_link,y_link,sline)
int x_link,y_link,*sline;
{

static int xl[3),yl[3);
int n,i;
static int origin;
int destination;
int sequence_number;
if(xy_is_near_node(&x_link,&y link, (float)RAD,&n))

{

sequence_number=n;
*sline +=1;
xl[*sline)=x_link;
yl[*sline)=y_link;
switch (*sline)

{

case 1:
origin=sequence_number;
break;
case 2:

*sline=O;

- 199 -

destination=sequence_number;
if(origin!=destination)
{

draw_line_between_two_nodes(xl[l),yl[l),xl[2],yl[2),0);
for(i=l; i<number_of_nodes; ++i)

{

if(node[origin) .con[i)==destination)
{

node[origin) .con[i)=O;
break;

for(i=l; i<number_of_nodes; ++i)
{

}

}

if(node[destination) .con[i]==origin)
{

node[destination) .con[i]=O;
break;

break;
defult:break;

}

else *sline=O;

/***********************************~********************************/

void draw_line_between_two_nodes(xl,yl,x2,y2,att)
int xl,yl,x2,y2,att;

int xO,yO,dummy;
double rl;
dummy=((x2-xl)*(x2-xl)+(y2-yl)*(y2-yl));
rl= (double) (RAD) I sqrt ((double) dummy);
xO= rl*(x2-xl);
yO= rl*(y2-yl);
line(xl+xO,yl+yO,x2-xO,y2-yO,att);
}

/**/
xy_is_near_node(x,y,range,node_sequence_nurnber)
int *x, *y, *node_sequence_nurnber;
double range;
{

int i, dummy, flag;
double rl;
flag=O;
*node sequence_number=O;
for (i=l; i<number_of_nodes+l; ++i)

{

dummy=((*x-node[i) .x)*(*x-node[i] .x)+
(*y-node[i) .y)*(*y-node[i) .y));

rl=sqrt((double) dummy);
if(rl <=range)

{

flag=l;
*x=node[i) .x;

- 200 -

}

*y=node[i] .y;
*node_sequence_nurnber=i;
break;

return(flag);
}

/**/
void num_node_start(x,y,num_flag,seq_num)
int x,y,*num_flag,*seq_num;

int nn;
if(xy_is_near node(&x,&y, (float)RAD,&nn))

{

*seq_num=nn;
write_string(x-4,y+4,"1 ");

else
*num flag=O;

/**/
void number_node(seq_nurnber,asci_code,asci_count)
int seq_nurnber,asci_code,asci_count;

int node_nurnber;
char c;
char s[3];
static char sd[3];
int x,y;
c=asci_code;
if(asci_count==O)

{

number of node_numbers+=l;
s[O]=c;
s[l]=O;
sd [0 J =s [0) ;
x=node[seq_number) .x;
y=node[seq_number] .y;
write_string(x-4,y+4," ");
write_string(x-4,y+4,&s[0));
node_nurnber=atoi(~);

node[seq_number] .num=node_number;

if(asci_count==l)
{

s [0] =sd [0] ;
s [1] =c;
s[2]=0;
printf("s=%s\n",&s[0));
x=node[seq_number] .x;
y=node[seq_number] .y;
write_string(x-4,y+4," ");
write_string(x-4,y+4,&s[0]);
node_number=atoi(s);
node[seq_nurnber] .num=node_number;

/**/

- 201 -

atoi(s)
chars[];
{

int i,n;
n=O;
for (i=O; s[i]>='O' && s[i]<='9'; ++i)

n=lO*n + s [i] - '0';
return (n);

/***w************/
void write_string(xs,ys,st)
int xs,ys;
char *st;

pw_text(pw,xs,ys,PIX_SRC,O,st);

/**~~************/

void init_array()
{

int i,j;
for (i=O; i<NMAX+l; ++i)

{

node[i] .num=O;
node[i] .x=O;
node[i] .y=O;
for(j=O; j<NMAX; ++j)

node[i] .con[j]=O;

for (i=O; i<TMAX+l; ++i)

link [i) .orig=O;
link [i] .dest=O;
link[i] .capac=O;
link[i] .traffic=O;
link[i] .scheme='4'; /* LRP *I

/**/
get_number_of_OD_pairs()
{

int i,k,j;
int number_of_OD_pairs=O;
for (i=l; i<number_of_nodes; ++i)

number_of_OD_pairs+=i;
k=l;
for(i=l; i<number_of_nodes; ++i)

for(j=i+l; j<number_of_nodes+l; ++j)
{

link [k] . orig=i;
link [k) . dest=j;
k+=l;

return(number_of_OD_pairs);

/**/
void move_node(x,y)

- 202 -

int x,y;

int i;
char *s;
static int x_old, y_old,nn;
static int move_start=O;
if{move_start==O)

{

if(xy_is_near_node(&x,&y, (float)RAD,&nn))
{

move_start=l;
x_old=x;
y_old=y;
circle(x,y,O);
write_string(x-4,y+4," ");
for(i=l; i<number_of_nodes; ++i)

{

if(node[nn].con[i] !=0)
draw_line_between_two_nodes(x,y,node[node[nn) .con[i]] .x,

node[node[nn] .con[i]] .y,O);

help("press the mouse on","the destination");

else
move start=O;
return;

if(move_start==l)
{

}

}

circle(x,y,l);
s~itoa((double)node[nn] .num);
s[2]=0;
write_string(x-4,y+4,s);
node[nn] .x=x;
node (nn] . y=y;
for(i=l; i<number of nodes; ++i)

if (node (nn]. con [i] !=0)
draw_line_between_two_nodes(x,y,node[node[nn] .con(i]] .x,

node[node[nn] .con[i]] .y,l);

move_start=O;
help ("Press the node", "to be moved"};

/**/
void bar(x_start,y_start,width,att)
int x_start,y_start,width,att;
{

line(x_start,y_start,x_start+width,y_start,att);
line(x_start+width,y_start,x_start+width,y_start+width,att);
line(x_start+width,y_start+width,x_start,y_start+width,att);
line(x_start,y_start+width,x_start,y_start,att);

/**/
void delete_node(x_delete,y_delete)
int x_delete,y_delete;
{

- 203 -

int del_node;
int i,j,k;
int dummy[NMAX];
int xl,yl,x2,y2;
if(xy_is_near_node(&x_delete,&y_delete, (float)RAD,&del_node))

{

circle(x_delete,y_delete,O);
write_string(node[del_node) .x-4,node[del_node).y+4," ");
/**/
xl=node[del_node] .x;
y1=node[del_node] .y;
for(i=1; i<number_of_nodes; ++i)

if(node[del_node) .con[i] !=0)
{

x2=node[node[del_node] .con[i]] .x;
y2=node[node[del_node] .con[i]] .y;
draw_line_between_two_nodes(x1,yl,x2,y2,0);

/**/
node[del_node) .nurn=O;
node[del_node) .x=O;
node[del_node] .y=O;
for(i=1; i<number_of_nodes; ++i)

node[del_node] .con[i]=O;
/**/
for(i=del_node+1; i<nurnber_of_nodes+1; ++i)

node[i-1]=node[i];
for(i=1; i<number of nodes; ++i)

{

/**/

k=1;
for(j=1; j<number of nodes; ++j)

dumrny[j)=O;
for(j=l; j<nurnber_of_nodes; ++j)

{

if(node[i] .con[j)==del_node)
node[i) .con[j)=O;

if(node[i] .con[j]>del_node)
node[i] .con[j]-=1;

if (node [i) . con [j) ! =0)
{

dummy[k]=node[i] .con[j];
k+=1;

for(j=1; j<nurnber_of_nodes; ++j)
{

node[i] .con[j]=dummy[j];
dummy [j) =0;

node[number_of_nodes] .num=O;
node[nurnber_of_nodes] .x=O;
node[number_of_nodes) .y=O;
for(i=1; i<number_of_nodes; ++i)

node[number_of_nodes] .con[i]=O;
/**/
number_of_nodes-=1;

- 204 -

number_of_OD_pairs=get_number_of_OD_pairs();
number_of_node_nurnbers-=1;

/**/
void get_capacity()
{

int i,j,k,m;
nurnber_of_OD_pairs=get_number_of_OD_pairs();
k=l;
printf("\n Enter Link Capacities");
for(i=l; i<number_of_nodes; ++i)

{

}

}

for(j=i+l; j<number_of_nodes+l; ++j)
{

for(m=l; m<number_of_nodes; ++m)
if(node[i] .con[m]==j)

{

k+=l;

printf("\n C(%d %d)=",node[i] .num,node[j) .num);
scanf("%d",&link[k] .capac);

/**/
void get_traffic()
{

int i,j,k,m;
number_of_OD_pairs=get_number_of_OD_pairs();
k=l;
printf("\n Enter Traffic Arrivals");
for(i=l; i<number_of_nodes; ++i)

{

}

}

for(j=i+l; j<number_of_nodes+l; ++j)
{

printf("\n TRF(%d %d)=",node[i).num,node[j].num);
scanf("%f",&link[k) .traffic);
k+=l;

/**/
void load_tandem_link(N,NODP)
int N,NODP;

int i,k,j;
for(i=l; i<NODP+l; ++i)

k=O;
for(j=l; j<N+l; ++j)

{

if(j!=link[i] .orig && j!=link[i] .dest)
{

k+=l;
link[i] .tandem[k]=j;

- 205 -

/**/
void set_scheme(scheme,string)
int scheme;
char *string;
{

int i;
help(string," ");
for (i=l; i<TMAX+l; ++i)

link[i) .scheme=scheme;

/**/
void print_node_connections()
{

int i,j;
help("Connections"," ");
for(i=l; i<number_of_nodes+l; ++i)

printf("node[%d).num=%d\n",i,node[i).num);
for(j=l; j<number_of_nodes; ++j)
printf("node[%d) .con[%d]=%d\n",i,j,node[node[i] .con[j]] .num);

/**/
char *itoa(Number)
double Number;
{

char *st;
int ndigit,decpt,sign;
ndigit=4;
st=ecvt(Number,ndigit,&decpt,&sign);
*(st+decpt)=O;
return(st);
}

/**/
void help(stringl,string2)
char *stringl,*string2;
{

write_string(10,15,"
write_string(10,35,"
write_string(lO,lS,stringl);
write_string(10,35,string2);
}

") ;

") ;

/**/
void set_flags_to_zero(flagl,flag2,flag3,flag4,flag5,flag6,flag7)
int *flagl,*flag2,*flag3,*flag4,*flag5, *flag6,*flag7;
{

help("","");
*flagl=O; *flag2=0; *flag3=0; *flag4=0; *flag5=0;
*flag6=0; *flag7=0;
}

/**/
void set_flag_to_one(flag)
int *flag;
{

*flag=l;
}

- 206 -

/**/
void sim_menu(trunk_res_para,max_time,time_interval,

rw_para,pn_para,seed)
int *trunk_res_para;
float *max_time,*time_interval;
float *rw_para, *pn_para;
int seed[3];

int option = -1;
int dummy;
float fdummy;
help(" "");
print£(\n 1- trunk reservation parameter= %d\n",*trunk_res_para);
print£(\n 2- maximum simulation time =%5.1£\n",*max_time);
print£(\n 3- time between displaying results= %3.1£\n",*time_interval);
print£(\n 4- reward parameter= %6.4£\n",*rw_para);
print£(\n 5- penalty parameter= %6.4£\n",*pn_para);
print£(\n 6- seed[1)=%d seed[2]=%d seed[3]=%d\n",seed[O],seed[1],seed[2]);
print£ (\n 0 - No change and exit \n");
while(option!=O)

{

print£ (" \n Enter an option=") ;
scanf("%d",&option);
switch(option)

{

case 1 :
printf("\n Enter trunk reservation parameter=");
scan£ ("%d", &dummy);
*trunk_res_para=dummy;

break;
case 2 :

printf("\n Enter maximum simulation time=");
scanf("%f",&fdummy);
*max_time=fdummy;
break;

case 3 :
printf("\n Enter time between displaying results=");
scanf("%f",&fdummy);
*time_interval=fdummy;
break;

case 4 :
printf("\n Enter reward parameter=");
scan£ ("%£", &fdummy);
*rw_para=fdummy;
break;

case 5 :
printf("\n Enter penalty parameter=");
scanf("%f",&fdummy);
*pn_para=fdummy;
break;

case 6 :
printf("\n Enter first seed value=");
scanf("%f",&fdummy);
seed[O]=fdummy;
printf("\n Enter second seed value=");
scanf("%f",&fdummy);
seed[1]=fdummy;
printf("\n Enter third seed value=");

- 207 -

scanf("%f",&fdummy);
seed[2]=fdummy;
break;

defult:
break;

/**/
void write_link_data()
{

int i,j,k;
help(" "," ");
number_of_OD_pairs=get_number_of_OD_pairs ();
for(i=l; i<number_of_OD_pairs+l; ++i)

printf("orig=%d dest=%d capacity=%d traffic=%5.2f scheme=%c\n",
link[i] .orig,link[i) .dest,link[i) .capac,
link[i) .traffic,link[i) .scheme);

printf ("\n");

/**/

- 208 -

/**/
/* Simulation Module */
/* This module should be called from the program graph.c. */
/* This module simulates a fully connected network of any size. All */
/* necessary information for simulation is passed to this module by */
/* program graph.c. Simulations can be performed for the following */
/* routing policies: 1-FR, 2-DAR, 3-LRI, 4-LRP, S-AAR, 6-RR, 7-LBA. */
/**/

#define MIN (x, y)
#define MAX(x,y)
#define FR , 0'
#define RR ' 1'
#define DAR '2'
#define LRI '3'
#define LRP ' 4'
#define AAR '5'
#define NMAX 10
#define TMAX 45
double rand2 () ;

(((X)

(((x)

int ranode(), lanode();
void simulate();

< (y)) ? (x)
> (y)) ? (x)

void clear_calls(), output(),set_up();
void outBP();
int generate_call(),total_load_on_ODP();
void route_call();
int direct_is_possible();
void accept_call(),reject_call();

(y))
(y))

int FR_scheme(),RR_scheme(),DAR_scheme(),LRI_scheme();
int LRP_scheme(),AAR_scheme();
extern struct {

int orig;
int dest;
int tandem[NMAX-1);
int capac;
float traffic;
double prob;
int scheme;

} link [TMAX+1);
/**/
void simulate(num_of_nodes,nurn_of_OD_pairs,TRP,max_simulation_time,

t_inc,seedO,rw_para,pn_para)
int nurn_of_nodes,num_of_OD_pairs,TRP;
float max_simulation_time,t_inc;
int seed0[3);
float rw_para,pn_para;
{

float time_of_call_arrival=O.O, time_to_output_result=l.O;
float inter_arrival_time=O.O;
float sumld=O.;
int c[NMAX+1) [NMAX+1);
float P_LA[NMAX-1) [NMAX) [NMAX+1);
int T_DAR[NMAX] [NMAX+1];
int current_calls [NMAX] [NMAX+1] [NMAX+l);
int nrject[NMAX] [NMAX+1],nacept[NMAX] [NMAX+1] [NMAX+l];
int ODP;
int seed[3];
/**********/

- 209 -

set_up(P_LA,T_DAR,nurn_of_OD_pairs,nurn_of_nodes,&sumld,
current_calls,nacept,nrject,c,seed,seedO);

start:
ODP=generate_call(&tirne_of_call_arrival,&inter_arrival_tirne,

surnld,nurn_of_OD_pairs,seed);
if(tirne_of_call_arrival>=tirne_to_output_result)·

{

outBP(nacept,nrject,tirne_to_output_result,num_of_nodes);
tirne_to_output_result + = t_inc;
}

if(tirne_to_output_result>rnax_sirnulation_tirne)
goto end;

clear_calls(current_calls,inter_arrival_tirne,nurn_of nodes,seed);
route_call(nurn_of_nodes,ODP,current_calls,P_LA,T_DAR,c,

rw_para,pn_para,nacept,nrject,seed,TRP);
goto start;

end:
printf("unit=%f\n",rnax_sirnulation_tirne);

/**/
double rand2(SEED)
int *SEED;

double ra;
*SEED= *SEED * 65539;
if (*SEED<O)

*SEED += 2147483647 +1;
ra= *SEED * 4.656613e-10;
return(ra);

/**/
ranode (N, seed)
int N;
int seed [3] ;
{

double ra;
int i;
ra=rand2(&seed[2]);
i=ra*(N-2);
return(i+l);

/**/
lanode(orig,dest,P_LA,N,seed)
int orig,dest,N;
float P_LA[NMAX-1] [NMAX] [NMAX+1];
int seed[3];
{

double ra;
float sum;
int i;
ra=rand2(&seed[1]);
surn=O;
for(i=1; i<N-1; ++i)

{

surn+=P_LA[i] [orig] [dest];
if(ra<surn)

break;

- 210 -

return(i);
}

/**/
int generate_call(tr,sr,sumld,NODP,seed)

float *tr, *sr;
float sumld;
int NODP;
int seed [3] ;

int i;
double log();
double ra;
ra=rand2(&seed[0]);
*sr= -1 * log(ra)/sumld;
*tr= *tr+ *sr;
ra = rand2(&seed[0]);
for (i=l; i<NODP+l; ++i)

if(ra < link[i] .prob)
break;

return(i);

/**/
void clear_calls(nx,sr,N,seed)

int nx[NMAX] [NMAX+l] [NMAX+l],N;
float sr;
int seed[3];

int i,j,k,ii=O;
float p, q;
double exp {) ;

for(i~l; i<N; ++i)

con:

br:

for{j=i+l; j<N+l; ++j)
{

for{k=O; k<N+l; ++k)
{

if {k==i I I k==j l
goto br;

if{nx[i] [k] [j]==O)
goto br;

p=exp (-sr * nx[i] [k] [j]);
q=l. 0;
ii=O;

q=q * rand2{&seed[0]);
if{q>=p)
{

ii=ii+l;
goto con;

nx[i] [k] [j]=nx[i] [k] [j] - ii;
nx [i] [k] [j] =MAX { nx [i] [k] [j] , 0) ;

print£{'"');

- 211 -

/**/
int total_load_on_ODP(orig,dest,nx,N)
int orig, dest;
int nx[NMAX] [NMAX+l] [NMAX+l],N;

int i,j,l;
int nxij;
i=MIN(orig,dest);
j=MAX(orig,dest);

nxi j = nx [i] [0] [j) ;
for(l=i+l; l<N+l; ++1)

{

if(l != j)
nxi j += nx [i] [j) [1] ;

for(l=l; l<j; ++1)
{

if(l != i)

nxi j += nx [1] [i J [j] ;

for(l=l; l<i; ++1)
nxi j += nx [1) [j] [i) ;

fo~(l=j+l; l<N+l; ++1)
nxij+= nx[j) [i) [1);

return(nxij);
}

/**/
void route_call(N,ODP,nx,P_LA,T_DAR,c,

rw_para,pn_para,nacept,nrject,seed,TRP)
int nx[NMAX) [NMAX+l) [NMAX+l],N,ODP;
float P_LA[NMAX-1) [NMAX) [NMAX+l);
int T_DAR[NMAX) [NMAX+l);
int c[NMAX+l) [NMAX+l);
float rw_para, pn_para;
int nrject[NMAX) [NMAX+l),nacept[NMAX) [NMAX+l) [NMAX+l);
int seed[3);
int TRP;

int ni,nj,tnode,nxij;
ni=link[ODP) .orig;
nj=link[ODP) .dest;
if(direct_is_possible(ni,nj,nx,N,c))

else
accept_call(ni,nj,O,nx,nacept);

switch(link[ODP) .scheme)
{

case FR:
tnode= -1;

break;
case RR:

tnode=RR_scheme(N,ODP,c,nx,seed,TRP);
break;
case DAR:

- 212 -

tnode=DAR_scheme(N,ODP,c,nx,T_DAR,seed,TRP);
break;
case LRI:

tnode=LRI_scheme(N,ODP,c,nx,rw_para,P_LA,seed,TRP);
break;
case LRP:

tnode=LRP_scheme(N,ODP,c,nx,rw_para,pn_para,P_LA,seed,TRP);
break;
case AAR:

tnode=AAR_scheme(N,ODP,c,nx,TRP);
break;
defult:
break;

if (tnode==-1)
reject_call(ni,nj,nrject);

else
accept_call(ni,nj,tnode,nx,nacept);

/**/
int direct_is_possible(ni,nj,nx,N,c)
int ni,nj, nx[NMAX] [NMAX+l] [NMAX+l],N;
int c[NMAX+l] [NMAX+l];

int nxij,flag=O;
nxij=total_load_on_ODP(ni,nj,nx,N);
if (nxi j<c [ni] [nj])

flag=l;
return(flag);

/**/
void accept call(ni,nj,tandem,nx,nacept)
int ni,nj,tandem;
int nx[NMAX] [NMAX+l] [NMAX+l],nacept[NMAX] [NMAX+l] [NMAX+l];
{

nx[ni] [tandem] [nj]+=l;
nacept[ni] [tandem] [nj]+=l;

/*********************************~**********************************/

void reject_call(ni,nj,nrject)
int ni,nj,nrject[NMAX] [NMAX+l];
{

nrject[ni] [nj]+=l;

/**/
void set_up(P_LA,T_DAR,NODP,N,sumld,nx,nacept,nrject,c,seed,seedO)
int NODP,N;
float P LA[NMAX-1] [NMAX] [NMAX+l];
int T_DAR[NMAX] [NMAX+l];
float *sumld;
int nx[NMAX] [NMAX+l] [NMAX+l], nrject[NMAX] [NMAX+l];
int nacept[NMAX] [NMAX+l] [NMAX+l], c[NMAX+l] [NMAX+l];
int seed[3],seed0[3];

int i,k,j,ni,nj;
for(i=O; i< 3; ++i)

seed[i)=seedO[i);

- 213 -

/***initialize pla for LRP and LRI***/
for (i=1; i<NODP+1; ++i)

for(k=1; k<N-1; ++k)
{

ni=link[i] .orig;
nj=link[i] .dest;

P_LA [k] [nil [nj J =1. 0/ ((float) (N-2));
}

/*** initialize Tandem for DAR ***/
for (i=1; i<NODP+1; ++i)

{

ni=1ink[i] .orig;
nj=link[i] .dest;

T_DAR[ni] [nj]=ranode(N,seed);
}

/*** total load ***/
for(i=1; i<NODP+1; ++i)

*sumld= *sumld+link[i) .traffic;
printf{"total traffic =%10.2f\n",*sumld);

/*** prob of each OD pair ***/
link[1) .prob=link[1] .traffic/ *sumld;
for{i=2; i<NODP+1; ++i)

{

link[i) .prob=link[i) .traffic/ *sumld +link[i-1) .p=ob;
}

/***** initialize nx, nrject, nacept *******************~*/
for(i=1; i<N; ++i)

{

for(j=i+1; j<N+1; ++j)
{

nrject [i] [j]=O;
for{k=O; k<N+1; ++k)

if(k!=i && k!=j)
{

nacept[i) [k) [j]=O;
nx [i) [k) [j) = 0 ;

/************ load capacity matrix ************************/
{or{i=1; i<NODP+1; ++i)

{

ni=link[i) .orig;
nj=link[i] .dest;

c[ni) [nj]=link[i) .capac;
c[nj) [ni)=c[ni) [nj);

/**/
int RR_scheme(N,ODP,c,nx,seed,TRP)
int N,ODP,TRP;
int c[NMAX+l] [NMAX+l), nx[NMAX) [NMAX+l) [NMAX+l);
int seed[3);

int l,tnode;
int ni,nj,cl,c2,cmin;
ni=link[ODP) .orig;

- 214 -

nj=link[ODP] .dest;
l=ranode(N,seed);
tnode = link[ODP] .tandem[l];
c1=c[ni] [tnode]- total_load_on_ODP(ni,tnode,nx,N);
c2=c[tnode] [nj]- total_load_on_ODP(tnode,nj,nx,N);

cmin=MIN(c1,c2);
if (cmin<=TRP)

tnode = -1;
return(tnode);

/**/
int LRI_scheme(N,ODP,c,nx,rw_para,P_LA,seed,TRP)
int N,ODP,TRP;
int c[NMAX+1] [NMAX+1], nx[NMAX] [NMAX+1] [NMAX+1];
float P_LA[NMAX-1] [NMAX] [NMAX+1];
float rw_para;
int seed [3] ;
{

int l,tnode,c1,c2,cmin,ni,nj,i;
float sum;
ni=link[ODP] .orig;
nj=link[ODP] .dest;

l=lanode(ni,nj,P_LA,N,seed);
tnode = link[ODP] .tandem[l);

c1=c[ni] [tnode]- total load_on_ODP(ni,tnode,nx,N);
c2=c[tnode] [nj]- total_load_on_ODP(tnode,nj,nx,N);
cmin=MIN(c1,c2);

if (cmin<=TRP)
tnode = -1;

else
{

sum=O.;
for(i=1; i<N-1; ++i)
if(i != 1)

{

P_LA[i] [ni] [nj]*=(1-rw_para);
sum+=P_LA[i] [ni] [nj];

P_LA[l] [ni] [nj]=l.O-sum;

return(tnode);
}

/**/
int LRP_scheme(N,ODP,c,nx,rw_para,pn_para,P_LA,seed,TRP)
int N,ODP,TRP;
int c[NMAX+1) [NMAX+1), nx[NMAX) [NMAX+1) [NMAX+1);
float P_LA[NMAX-1] [NMAX] [NMAX+l);
float rw_para,pn_para;
int seed[3];
{

int l,tnode,c1,c2,cmin,ni,nj,i;
float sum;
ni=link[ODP] .orig;
nj=link[ODP] .dest;
l=lanode(ni,nj,P_LA,N,seed);
tnode = link[ODP] .tandem[l];
c1=c[ni) [tnode]- total load on_ODP(ni,tnode,nx,N);
c2=c[tnode] [nj]- total_load_on_ODP(tnode,nj,nx,N);

- 215 -

crnin=MIN(c1,c2);
if (cmin<=TRP)

{

tnode = -1;
sum=O.;
for(i=1; i<N-1; ++i)
if(i != 1)

{

P_LA[il [nil [njl+=P_LA[ll [nil [njl*pn_para/(N-3);
sum+=P_LA[il [nil [njl;

P_LA[ll [nil [njl=l.O-sum;

else

sum=O.;
for(i=1; i<N-1; ++i)

if(i != 1)

{

P_LA[il [nil [njl *= (1-rw_para);
sum+=P_LA[il [nil [njl;

P_LA[ll [nil [njl=1.0-sum;

return(tnode);
}

/**/
int DAR_scheme(N,ODP,c,nx,T_DAR,seed,TRP)
int N,ODP,TRP;
int c[NMAX+1l [NMAX+1l, nx[NMAXl [NMAX+1l [NMAX+1l;
int T_DAR[NMAXl [NMAX+1l;
int seed[3l;

int l,tnode,c1,c2,cmin,ni,nj;
ni=link[ODPl .orig;
nj=link[ODPl .dest;
l=T_DAR[nil [njl;
tnode = link[ODPl .tandem[ll;
cl=c[nil [tnode]- total load on_ODP(ni,tnode,nx,N);
c2=c[tnodel [njl- total_load_on_ODP(tnode,nj,nx,N);
cmin=MIN(c1,c2);

if(cmin<=TRP)
{

tnode = -1;
T_DAR[nil [njl=ranode(N,seed);

return (tnode);

/**/
int AAR_scheme(N,ODP,c,nx,TRP)
int N,ODP,TRP;
int c[NMAX+1] [NMAX+1l, nx[NMAX] [NMAX+1] [NMAX+l];

{

int l,tnode,c1,c2,cmin,ni,nj,nxij;
int i;
ni=link[ODP) .orig;
nj=link[ODP] .dest;
for(i=1; i<N-1; ++i)

- 216 -

tnode = link[ODP] .tandern[i];
cl=c[ni] [tnode]- total load on_ODP(ni,tnode,nx,N);
c2=c[tnode] [nj]- total_load_on_ODP(tnode,nj,nx,N);
crnin=MIN(cl,c2);
if(crnin>TRP)

break;

if(crnin<=TRP)
tnode= -1;

return (tnode);

/***~~*************/

void outBP(nacept,nrject,rn,N)
int nacept[NMAX] [NMAX+l] [NMAX+l],nrject[NMAX] [NMAX+l],N;
float rn;

int time;
inti,j,k;
int total_directly_routed=O, total carried load=O, total rejected=O;
float overall_blocking_probability;
tirne=(int)rn;

}

for(i=l; i<N; ++i)
{

for(j=i+l; j<N+l; ++j)
{

total_directly_routed+=nacept[i] [0] [j];
total rejected+=nrject[i] [j];
nrject[i] [j]=O;
for(k=O; k<N+l; ++k)

if(k!=i && k!=j}
{

total_carried_load+=nacept[i] [k] [j];
nacept [i] [k] [j)=O;

overall_blocking_probability=lOO.O*((float)total_rejected)/
((float)total_rejected+(float)total_carried_load);
printf("BP[%d]=%f\n",tirne,overall_blocking_probabilic.y);

- 217 -

Papers

1- N.Eshragh and P.Mars, 'Performance evaluation of decentralized routing strategies

in circuit-switched networks.', Fourth UK Teletraffic Symposium, Bristol, May 1987.

2 - N .Eshragh and P.Mars, 'Study of dynamic routing strategies in circuit-switched

networks.', Third UK computer and Telecomunication Performance Engineering Work

shop, Edinburgh, Sept 1987.

218

Performance Evaluation of Decentralized Routing Strategies

in Circuit Switched Networks

N.Eshragh and P.Mars

School of Engineering and Applied Science

University of Durham

Abstract

The paper considers a comparative evaluation of decentralized dynamic routing

strategies in circuit switched networks. Simulation results are presented for sim

ple network configurations deliberately designed to force dynamic routing, using

learning algorithm and the DAR algorithm. It is demonstrated that the learning

algorithm provides superior performance characteristics.

c

1

1. Introduction

In a previous paper [1] simulation studies of telephone traffic routing in simple

networks was considered. Specifically it was shown that a Linear Reward Inaction

(Lru) automaton scheme, when used in a simple network for call routing, performs

at least as well as the optimum fixed rule (FR). The Lru and Linear Reward Penalty

(LRP) schemes were compared to FR. It was concluded that both routing strategies

always perform as well as the optimum FR while in simulations requiring mixed

routing strategies they give superior performance.

A recent report [2] has investigated dynamic routing of fully connected circuit

switched networks. The routing policy used is Least Busy Alternative (LBA) with

Trunk Reservation (TR). It was concluded that LBA with TR is as good as FR but

with the advantage of flexibility and spreading out of local overload. Subsequent

research has critically compared LBA with Random Routing (RR), Fixed Routing

(FR), Learning Automata and Dynamic Alternative Routing (DAR) [3] for a five

node fully connected network. It has been shown that DAR and Learning Automata

algorithms provide the best dynamic routing strategies [4]. In this paper the per

formance of the Learning Automata is compared by simulation with DAR. The

algorithms are simulated on small networks with link capacities and traffic patterns

chosen to force dynamic routing.

2. Routing Strategies

For all of the follwing routing policies except FR, calls are directly routed if

possible, and if not an alternative is examined according to the policy of the im

plemented routing algorithm. Fig.l shows what it means by direct and alternatives

for a five node network.

Fixed Routing (FR)

Calls are routed directly and if blocked no alternative path is tried.

Least Busy Alternative (LBA)

This scheme examines all alternatives and selects the one with the most free

links.

Random Routing (RR)

In this scheme all alternatives have equal probability Pi of being selected and

"2:, pi = 1.
i

Dynamic Alternative Routing (DAR)

This scheme starts on a probabilistic basis: alternatives have equal probability

2

Pi and E Pi = 1 (The same as RR). When a tandem node is chosen and results in
i

call completion, the node will be selected deterministically for the routing of the

next call. If the call is blocked a random tandem node will again be selected.

Linear Reward Penalty (LRP)

In this scheme. every alternative route is considered as an action a::. At every

stage the probability of choosing the ith action O::i is Pi(n) and l:Pi(n) = 1. When
i

a particular action O::i is chosen and results in call completion the probabilities are

updated as follows:

Pi(n + 1) = Pi(n) + E (1- A)Pi(n)
i::f.i

Pi(n + 1) = APi(n)

When the call is blocked:

Pi(n + 1) = BPi(n) 0.0 < B < 1.0

Pi(n + 1) = Pi(n) + (1-B~(n)

Where m=number of actions - 1

A = Learning parameter

B = Penalty parameter

0.0 <A< 1.0

The next action is chosen using the modified probability distribution at stage

(n+1).

Linear Reward Inaction (LR1)

This is a special case of LRP with reward and no penalty. In this scheme every

alternative path is considered ·as an action a::. At every stage the probability of

choosing the ith action lXi is Pi (n) and E Pi (n) = 1. When a particular action a::i is
i

chosen and results in call completion, the probabilities are updated as follows:

Pi(n + 1) = Pi(n) + E (1- A)Pi(n)
i::f.i

Pi(n + 1) = APi(n)

Where A is the learning parameter.

0.0 <A< 1.0

When the call is blocked the probabilities remain unchanged.

Recent work [4] has critically compared the above first five routing strategies

for a five node fully connected network. Under dynamic conditions the DAR and

learning automata were shown to provide superior performance. The present paper

further compares DAR and the Lru algorithm for simple networks designed to force

dynamic routing. Lru is selected because it outperforms LRP for the cases studied.

3

3. Experimental Results

Simulations were carried out for four and five node networks as shown in figures

2, 3 and 4. Network 1 is a four node network; network 2 is a five node fully

connected network used elsewhere [5] and network 3 is a five node with links 1-3

and 3-5 being failed. Calls between nodes i and j are described by a Poisson process

and exponential holding time. For each experiment the network simulator was

run to equilibrium and then the total network blocking probability was measured

defined as:
B p = Total number of blocked calls

Total number of offered calls

3.1. Tuning Dynamic Algorithms

Some dynamic algorithms have parameters that can influence their performance

significantly. For example the time between updates for delta routing [5]. The

performance of the Lru scheme can be improved by properly tuning the learning

parameter. Fig.5 shows the influence of the learning parameter on the performance

of the algorithm. The test network and its traffic input are shown in the same

figure.

From Fig.5 it can be seen that the blocking probability is very high for A < .99

and drops significantly as A increases with the minimum BP at A=.999. For A>

.999 the blocking probability increases until A=l.O which is actually RR (Random

Routing).

The reason for the poor performance with A < .99 is that the algorithm con

verges to the selection of the path with a higher link capacity, path 1-2-3 (Fig.5)

and as a result the available capacity of the other path, 1-4-3 will not be utilized. In

other words when blocking probabilities are coarsely adjusted the algorithm locks

on one path. The results presented in this paper were obtained for the optimized

algorithm, i.e. where the value of learning parameter was selected to give the best

performance for the problem studied.

3.2. Comparison between DAR and LR1

Figs 6-8 compare the performance of the two algorithms for network 1 with a

single traffic input(.A1s). Three sets of link capacities:

C12 = C2s = so, C14 = Cs4 = 30

4

have been considered with the total useful capacity being constant and >.13 varing

over a range from about 30 to 100.

It can be seen that Lru is superior to DAR for the intermediate range of traffic.

When traffic is small the blocking probability is small for both schemes because

there is sufficient capacity available. When traffic is high a large proportion of calls

will be lost and the two schemes utilize the available capacity. For intermediate

range of >. the routing algorithms play a more important role because the traffic

should correctly be divided between the two paths. The superiority of Lru over this

range suggests that it has a better spread of traffic than DAR.

A Comparison of Figs 6-8 shows that when the ratio of the effective capacity of

the upper to lower path increases the two algorithms perform closer. This reflects

the fact that DAR performs better the higher the ratio of the link capacities of the

two alternate paths. Under theses conditions DAR requires less switching between

alternate paths.

The next series of experiments were carried out for network 2 with two base

traffic matrices given in tables 1-2. The efficiency of the algorithms were inves

tigated under a uniform scaling of the base traffic matrix by a scale factor OVL.

For each value of OVL the network simulator was run to equilibrium and then the

total blocking probability was measured. The results are shown in Figs 9-10 which

illusttrate an improved performance with Lru.

Finally simulations were performed for network 3 with the following base traffic

matrix: >.13 = 10, A35 = 10. The results are given in Fig.ll which shows a significant

superiority of Lru over DAR. Lru performs better for two reasons, first it reduces

the probability of selecting the failed links to zero i.e it learns not to attempt them,

while DAR does not detect the failure and at the time of switching from one path

to another, attempts the failed link and looses some calls. Second the traffic must

be equally split between two possible paths which exists for each traffic source, eg

paths 1-2-3 and 1-4-3 for the node pair 1-3. Under these conditions Lru looses less

calls than DAR when switching from one path to another.

4. Conclusions

The effect of the learning parameter on the performance of a simple four node

network was shown. As the curve in fig.5 indicates the algorithm can be tuned for

an optimal performance. Simulation results for network 1 shows that as the ratio of

the effective capacity of the upper to lower path increases, the advantages of the Lru

scheme are reduced. In the case of DAR a high ratio of link capacities on the two

5

alternative paths is a favorable condition. Under these circumstances less switching

will be required between the alternative paths for the DAR algorithm. It should be

recalled that each time the DAR algorithm switches, a call is lost. Clearly as the

ratio of the capacity of the two alternative paths approaches unity, then increasing

switching will be required and therefore more calls will be lost.

Results on five node networks deliberately designed to force dynamic routing

illustrated an improved performance with Lru. Finally the failure condition exper

iment showed a significant superiority of Lru over DAR for the case studied.

References

[1] K.S. Narendra and P. Mars "The Use of Learning Algorithms in Telephone

Traffic Routing-A Methodology", Automatica, Vol.19, No.5, pp.495-502, 1983.

[2] W-Y NG, "Dynamic Routing in Circuit-Switched Networks: Simulation of the

Routing Rule of Least Busy Alternative with Trunk Reservation", Cambridge

University, Project Report, Feb.1985.

[3] R.J. Gibbens "Some Aspects of Dynamic Routing in Circuit-Switched Telecom

munication Networks", Rayleigh Prize Essay (1986) University of Cambridge.

[4] N. Eshragh, "Simulation studies of telephone traffic routing: comparison of

different routing techniques with Learning Automata", Durham University,

Project Report, July 1986.

[5] A.Girard and S.Hurtubise, "Dynamic Routing and Call Repacking in Circuit

Switched Networks", IEEE Transactions on Communications, VOL.COM-31,

N0.12, Dec 1983.

6

List of Symbols

A

B

BP

cij
DAR

FL

FR

LBA

LR-I

LR-P

OPT

OVL

RR

,\ij

0.0 15.0 15.0 15.0 30.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 0.0

Table 1. Traffic matrix 1.

0.0 15.7 7.7 12.5 2.5
0.0 0.0 18.0 7.3 1.9
0.0 0.0 0.0 10.7 .9
0.0 0.0 0.0 0.0 1.2
0.0 0.0 0.0 0.0 0.0

Table 2. Traffic matrix 2.

Learning parameter

Penalty parameter

Blocking Probability

Link capacity of the node pair (i,j)

Dynamic Alternative Routing

Free Links

Fixed Routing

Least Busy Alternative

Linear Reward Inaction

Linear Reward Penalty

Optimum

Overload factor

Random Routing

Traffic intensity of the node pair (i,j) in call

per unit time

7

2

3

CALL FROM 2 TO 4

DIRECT PATH 2-4

ALTERNATIVE 1 2-1-4

ALTERNATIVE 2 2-3-4

ALTERNATIVE 3 .2-5-4

F1g. 1. Direct and Alternative paths

for the node pair (2,4).

3

Fig. 3. Network 2. Five node

2

c
12

. I

Fig. 2.

c
23

c
14

Network

20
I

3

I \
I \

1.

I I

3

c
34

4

Four node

20

2 ~-----r/ ___ 1_0 __ ','----~ 4

10 10

10

Flg.4. Network 3, Five node

22

~·o·~ 20

18
1

30
4

>- 16 ~ 1-

-' 14
ID
<
ID 12 0
a:
a..
t.:J 10 z -
~8
0
-'
ID
H6

4

2
LEARN!!(; PARAIUER

0

• 9 • 99 • 999 • 9999 I. 00

Flg.S Effect of the Learning parameter on

the performance of the LRI scheme.

28

26

24

22

>- 20
1-

;; 18
ID

a3 16
0

~ 14
t.:J

~ 12
:...;:

~ 10
-'
~8

6

4

2
A CALLS/HIN

0

50 60 70 80 90 100 110 120

FIG. 7 Comparison between LRI and OAR.

Network 1, link capacity ratio 60/20.

28

26

24

22

>- 20
1-

;; 18
ID

a3 16
0

~ 14
t.:J
~ 12
:...;:

~ 10
-' ID
H8

6

4

2

0
ACALLS/H[N

30 40 50 60 70 80 90 I 00 I I 0 I 20

FIG.6 Comparison between LRI and OAR.

Network 1, link capacity ratio 50/30.

28

26

24

22

>- 20
1-

-' 18
ID
< 16 ID
0
a: 14 a..
t.:J z 12
:...;:
u 10 0
-'
ID
H 8

6

4

2

0

30 40 50 60 70 80 90 100 110 120

FIG.B Comparls9n between LRI and OAR.

Network 1, link capacity ratlo=40/40.

6

5

>-
~ 4
...J

10
<
10
0

b:3
t.:l z
~
u
~2
10
H

S OVERLOAD

B

7

>-
~ 6
...J

10
<
10
0

b:5
t.:l z
~
u
~ 4
10
H

3

% OVERLOAD

0 ~--------~~--------~----------~ 2

10 20 30 40 10 20 30 40

Fig. 9 Comparison between LRI and DAR. Fig. 10 Comparison between LRI and DAR.

Network2, 2 traffic 1. Net~ork 2, traffrc 2

15

14

13

12

11
>-.... 10
...J

10
<

9
10
0 B 0:: a.
t.:l 7
z
~ 6
~ 5 ...J
10
H

4

3

2

0
% OVERLOAD

0 10 20 30 40

Frg. 11 Comparison of LRI and DAR under

fa I Lure cond It I ens.

Study of Dynamic Routing Strategies in Circuit Switched

Networks

N.Eshragh and P.Mars

School of Engineering and Applied Science

University of Durham

South Road

Durham DHl 3LE

Abstract

The paper considers a comparative evaluation of decentralized dynamic routing

strategies in circuit switched networks. Simulation results are presented for sim

ple network configurations deliberately designed to force dynamic routing, using

learning algorithm and the DAR algorithm. It is demonstrated that the learning

algorithm provides superior performance characteristics.

1

1. Introduction

In a previous paper [1] simulation studies of telephone traffic routing in simple

networks was considered. Specifically it was shown that a Linear Reward Inaction

(Lru) automaton scheme, when used in a simple network for call routing, performs

at least as well as the optimum fixed rule (FR). The Lru and Linear Reward Penalty

(LRP) schemes were compared to FR. It was concluded that both routing strategies

always perform as well as the optimum FR while in simulations requiring mixed

routing strategies they give superior performance.

A recent report [2] has investigated dynamic routing of fully connected circuit

switched networks. The routing policy used is Least Busy Alternative (LBA) with

Trunk Reservation (TR). It was concluded that LBA with TR is as good as FR but

with the advantage of flexibility and spreading out of local overload. Subsequent

research has critically compared LBA with Random Routing (RR), Fixed Routing

(FR), Learning Automata and Dynamic Alternative Routing (DAR) [3] for a five

node fully connected network. It has been shown that DAR and Learning Automata

algorithms provide the best dynamic routing strategies [4]. In this paper the per

formance of the Learning Automata is compared by simulation with DAR. The

algorithms are simulated on small networks with link capacities and traffic patterns

chosen to force dynamic routing.

2. Routing Strategies

For all of the follwing routing policies except FR, calls are directly routed if

possible, and if not an alternative is examined according to the policy of the im

plemented routing algorithm. Fig.l shows what it means by direct and alternatives

for a five node network.

Fixed Routing (FR)

Calls are routed directly and if blocked no alternative path is tried.

Least Busy Alternative (LBA)

This scheme examines all alternatives and selects the one with the most free

links.

Random Routing (RR)

In this scheme all alternatives have equal probability Pi of being selected and

'LPi = 1.
t

Dynamic Alternative Routing (DAR)

This scheme starts on a probabilistic basis: alternatives have equal probability

2

Pi and E Pi = 1 (The same as RR). When a tandem node is chosen and results in
i

call completion, the node will be selected deterministically for the routing of the

next call. If the call is blocked a random tandem node will again be selected.

Linear Reward Penalty (LRP)

In this scheme every alternative route is considered as an action a. At every

stage the probability of choosing the ith action ai is Pi(n) and 2;: Pi(n) = 1. When

' a particular action ai is chosen and results in call completion the probabilities are

updated as follows:

Pi(n + 1) = Pi(n) + E (1- A)Pj(n)
i:f:.i

Pj(n + 1) = APj(n)

When the call is blocked:

Pi(n + 1) = BPi(n) 0.0 < B < 1.0

Pj(n + 1) = Pj(n) + (I-B!i(n)

Where m=number of actions - 1

A = Learning parameter

B = Penalty parameter

0.0 <A< 1.0

The next action is chosen using the modified probability distribution at stage

(n+1).

Linear Reward Inaction (LR1)

This is a special case of LRP with reward and no penalty. In this scheme every

alternative path is considered as an action a. At every stage the probability of

choosing the ith action ai is Pi(n) and E Pi(n) = 1. When a particular action ai is
i

chosen and results in call completion, the probabilities are updated as follows:

Pi(n + 1) = Pi(n) + E (1- A)Pj(n)
j::j:.i

Pj(n + 1) = APj(n)

Where A is the learning parameter.

0.0 <A< 1.0

When the call is blocked the probabilities remain unchanged.

Recent work [4] has critically compared the above first five routing strategies

for a five node fully connected network. Under dynamic conditions the DAR and

· learning automata were shown to provide superior performance. The present paper

further compares DAR and the Lm algorithm for simple networks designed to force

dynamic routing. Lm is selected because it outperforms LRP for the cases studied.

3

3. Experimental Results

Simulations were carried out for four and five node networks as shown in figures

2, 3 and 4. Network 1 is a four node network; network 2 is a five node fully

connected network used elsewhere [5] and network 3 is a five node with links 1-3

and 3-5 being failed. Calls between nodes i and j are described by a Poisson process

and exponential holding time. For each experiment the network simulator was

run to equilibrium and then the total network blocking probability was measured

defined as:
BP = Total number of blocked calls

Total number of offered calls

3.1. Tuning Dynamic Algorithms

Some dynamic algorithms have parameters that can influence their performance

significantly. For example the time between updates for delta routing [5]. The

performance of the Lru scheme can be improved by properly tuning the learning

parameter. Fig.5 shows the influence of the learning parameter on the performance

of the algorithm. The test network and its traffic input are shown in the same

figure.

From Fig.5 it can be seen that the blocking probability is very high for A < .99

and drops significantly as A increases with the minimum BP at A=.999. For A >

.999 the blocking probability increases until A=l.O which is actually RR (Random

Routing).

The reason for the poor performance with A < .99 is that the algorithm con

verges to the selection of the path with a higher link capacity, path 1-2-3 (Fig.5)

and as a result the available capacity of the other path, 1-4-3 will not be utilized. In

other words when blocking probabilities are coarsely adjusted the algorithm locks

on one path. This experiment has been repeated for another two sets of link ca

pacities shown in Figs 6-7. In Fig.6 where the capacities of the two alternate paths

are equal, the minimum blocking probability is at A=l.OO (Random Routing) as

expected. Fig. 7 shows that the minimum BP is at A=.999, therefore changing the

capacities of alternate paths does not have a significant effect on the optimum value

of the learning parameter.

The results presented in this paper were obtained for the optimized algorithm,

i.e. where the value of learning parameter was selected to give the best performance

for the problem studied.

4

3.2. Comparison between DAR and La1

Figs 8-10 compare the performance of the two algorithms for network 1 with a

single traffic input(>.Ia). Three sets of link capacities:

C12 = C2a = so, C14 = Ca4 = 30

C12 = C2a = 60, C14 = Ca4 = 20

C12 = C2a = 40, C14 = Ca4 = 40

have been considered with the total useful capacity being constant and >.13 varing

over a range from about 30 to 100.

It can be seen that Lru is superior to DAR for the intermediate range of traffic.

When traffic is small the blocking probability is small for both schemes because there

is sufficient capacity available. When traffic is high, a large proportion of calls will

be lost and the two schemes utilize the available capacity. For intermediate range

of >. the routing algorithms play a more important role because the traffic should

correctly be divided between the two paths. The superiority of Lru over this range

suggests that it has a better spread of traffic than DAR.

A Comparison of Figs 8-10 shows that when the ratio of the effective capacity of

the upper to lower path increases the two algorithms perform closer. This reflects

the fact that DAR performs better the higher the ratio of the link capacities of the

two alternate paths. Under theses conditions DAR requires less switching between

alternate paths.

The next series of experiments were carried out for network 2 with two base

traffic matrices given in tables 1-2. The efficiency of the algorithms were investigated

under a uniform scaling of the base traffic matrix by a scale factor OVL. For each

value of OVL the network simulator was run to equilibrium and then the total

blocking probability was measured. The results are shown in Figs 11-12 which

illusttrate an improved performance with Lru.

Finally simulations were performed for network 3 with the following base traffic

matrix: >.13 = >.as = >., 120 < >. < 200. The results are given in Fig.13 which shows

a significant superiority of Lru over DAR. Lru performs better for two reasons, first

it reduces the probability of selecting the failed links to zero i.e it learns not to

attempt them, while DAR does not detect the failure and at the time of switching

from one path to another, attempts the failed link and looses some calls. Second

the traffic must be equally split between two possible paths which exists for each

traffic source, eg paths 1-2-3 and 1-4-3 for the node pair 1-3. Under these conditions

5

Lru looses less calls than DAR when switching from one path to another.

3.3. Effect of Trunk Reservation Parameter (TRP)

In a previous research [4] effect of Trunk Reservation {TR) was studied on the

performance of a five node fully connected network with different traffic matrices.

The traffic matrices have been designed for FR and as a result that scheme gave

the best performance. It was demonstrated that as TRP increased, the blocking

probabilities improved for dynamic routings until a certain TRP for which all dy

namic routings were as good as FR. The reason was that TR reduced the amount

of dynamic routing in the network and above a certain TRP all dynamic routings

behaved very similar to FR.

This experiment investigates the effect of TRP, when the traffic matrix is not

designed for FR. Consider network 2 and traffic matrix 1. The table below shows

steady state blocking probabilities for 0 < TRP < oo and both DAR and LR-I

schemes. It can be seen that blocking probabilities increase as TRP increases until

TRP=oo (which is FR). 'Therefore different traffic patterns can amplify the differ

ence between FR and dynamic routing. For the particular network considered any

attempt to introduce TRP adversly affects the network performance. Clearly by

increasing TRP more traffic will be routed directly and the differential between FR

and dynamic routing will be reduced. However any attempt to introduce TRP for

this class of networks increases blocking probability.

TRP 0 1 5 7 10 00

DAR 1.09 1.23 2.96 4.45 5.83 6.49

LR-1 .80 1.36 3.23 4.23 5.71 6.49

4. Conclusions

The effect of the learning parameter on the performance of a simple four node

network was shown. As curves in Figs 5-7 indicate the algorithm can be tuned for

an optimal performance. Simulation results for network 1 shows that as the ratio of

the effective capacity of the upper to lower path increases, the advantages of the Lru

scheme are reduced. In the case of DAR a high ratio of link capacities on the two

alternative paths is a favorable condition. Under these circumstances less switching

will be required between the alternative paths for the DAR algorithm. It should be

recalled that each time the DAR algorithm switches, a call is lost. Clearly as the

6

ratio of the capacity of the two alternative paths approaches unity, then increasing

switching will be required and therefore more calls will be lost.

Results on five node networks deliberately designed to force dynamic routing

illustrated an improved performance with Lru. The failure condition experiment

showed a significant superiority of Lru over DAR for the case studied. Finally it

was shown that for a traffic matrix not designed for FR, FR resulted in higher

blocking probabilities than dynamic routing and any attempt to introduce TRP

adversly affected the network performance.

References

[1] K.S. Narendra and P. Mars "The Use of Learning Algorithms in Telephone

Traffic Routing-A Methodology", Automatica, Vol.19, No.5, pp.495-502, 1983.

[2] W-Y NG, "Dynamic Routing in Circuit-Switched Networks: Simulation of the

Routing Rule of Least Busy Alternative with Trunk Resen-ation", Cambridge

University, Project Report, Feb.1985.

[3] R.J. Gibbens" Some Aspects of Dynamic Routing in Circuit-Switched Telecom

munication Networks", Rayleigh Prize Essay (1986) University of Cambridge.

[4] N. Eshragh, "Simulation studies of telephone traffic routing: comparison of

different routing techniques with Learning Automata", Durham University,

Project Report, July 1986.

[5] A.Girard and S.Hurtubise, "Dynamic Routing and Call Repacking in Circuit

Switched Networks", IEEE Transactions on Communications, VOL.COM-31,

N0.12, Dec 1983.

7

List of Symbols

A

B

BP

Cij

DAR

FL

FR

LBA

LR-I

LR-P

OPT

OVL

RR

TR

TRP

>.u

0.0 15.0 15.0 15.0 30.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 15.0
0.0 0.0 0.0 0.0 0.0

Table 1. Traffic matrix 1.

0.0 15.7 7.7 12.5 2.5
0.0 0.0 18.0 7.3 1.9
0.0 0.0 0.0 10.7 .9
0.0 0.0 0.0 0.0 1.2
0.0 0.0 0.0 0.0 0.0

Table 2. Traffic matrix 2.

Learning parameter

Penalty parameter

Blocking Probability

Link capacity of the node pair (ij)

Dynamic Alternative Routing

Free Links

Fixed Routing

Least Busy Alternative

Linear Reward Inaction

Linear Reward Penalty

Optimum

Overload factor

Random Routing

Trunk Reservation

Trunk Reservation Parameter

Traffic intensity of the node pair (ij) in call

per unit time

8

2

3

CALL FROM 2 TO 4

DIRECT PATH 2-4

ALTERNATIVE 1 2-1-4

ALTERNATIVE 2 2-3-4

ALTERNATIVE 3 2-5-4

Frg. 1. Orrect and Alternative paths

for the node paIr (2, 4).

3

2 4

12

Frg. 3. Network 2a Five node

2

c
12

c
23

c
14

3

c
34

4

Frg.2. Network 1a Four node

3
I I

200 I \ 200
\

I I
I \

100 \

2 \ 4 I

I \
\

10 100

Frg.4. Network 3. Frve node

22

20

18

5020"' 330

I 30 4

>- 16
1-

...J 14
CD
<
CD 12 0
0: a..
<..:) 10 z
tsa
0
...J
CD
H6

4

2
LEARNING PARAHETER

0
• 9 • 99 • 999 • 9999 1. 00

36

32

28

>-
!:: 24
...J

CD

~ 20
0
0:
a..
<..:) 16 z
~
u
0 12 ...J
CD H

8

4

0
.9

.1 I

I

*---._ LEJ.RNING
~ PARAtiETER

• 99 . 999 . 9999 1. 00

Flg.S Effect of the Learning parameter on

the performance of the LRI scheme.

F1g.6 Effect of the Learning parameter on

the performance of the LRI scheme.

20

18

16

602060 320

I 20 4

>- 14 1-
?

...J

CD 12 <
CD
0
0: 10 a..
<..:)

z
;:;;a
u
0
...J

~6

4

2
LEARNING PARAHETER

0
.9 • 99 • 999 • 9999 1. 00

Fig. 7 Effect of the Learning parameter on

the performance of the LRI scheme.

28

26

24

22

>- 20
1-

:2 18
CD
i;§ 16
a
g: 14
L:J
312
~

g 10
...J

~8

6

4

2

0
A CALLS/HIN

30 40 50 60 70 80 90 1 00 11 0 1 20

FIG.8 Comparison between LRI and DAR.

Network 1, link capacity ratio 50/30.

28

26

24

22

>- 20
1-

...J 18
CD
< 16 CD
a
0:: 14 0..

L:J z 12
~
u 10 a
...J

~ 8

6

4

2

0

30 40 50 60

28

26

24

22

>- 20
1-

:2 18
CD
i;§ 16
a
g: 14
L:J

312
~

g 10
...J

~8

6

4

2

0

70 80

A CALLS/MIN

50 60 70 80 90 100 110 120

FIG.9 Comparison between LRI and OAR.

Network 1, link capacity ratio 60/20.

AcALLSIH!N

90 100 110 120

FIG. 10 Comparison between LRI and DAR.

Network 1, ltnk capacity ratlo=40/40.

6

5

>-=4 ...J

a)

<
a)
0

g:3
t:J z
~
u
:32
a)

"

S: OVERLOAD

8

7

>-=6 ...J

a)

<
a)
0

g:5
t:J z
~
u
:l 4
a)

"
3

: OVERLOAD

0 ~--------~--------~--------~ 2

10 20 30 40 10 20 30 40

Fig. 11 Comparison between LRI and DAR. Fig. 12 Comparison between LRI and DAR.

Network2, 2 traffic 1. Network 2, traffic 2

10

9

8

~7
...J

m6
<
a)
0

g: 5
t:J
z
~4
u
0
...J

~3

2

0
\ALLS/MIN

120 130 140 150 160 170 180 190 200 210 220

Fig. 13 Comparison of LRI and DAR under

fa I lure cond It Ions.

