5 research outputs found

    Testing Enabling Technologies for Safe UAS Urban Operations

    Get PDF
    A set of more than 100 flight operations were conducted at NASA Langley Research Center using small UAS (sUAS) to demonstrate, test, and evaluate a set of technologies and an overarching air-ground system concept aimed at enabling safety. The research vehicle was tracked continuously during nominal traversal of planned flight paths while autonomously operating over moderately populated land. For selected flights, off-nominal risks were introduced, including vehicle-to-vehicle (V2V) encounters. Three contingency maneuvers were demonstrated that provide safe responses. These maneuvers made use of an integrated air/ground platform and two on-board autonomous capabilities. Flight data was monitored and recorded with multiple ground systems and was forwarded in real time to a UAS traffic management (UTM) server for airspace coordination and supervision

    Technologies and Operations for High Voltage Corona Detection with UAVs

    Get PDF
    Autonomous UAV transmission line inspection served as a reference mission for NASA demonstration of UAV deployment for economic benefit; this paper reports corona sensing advances in development of that reference mission. Unmanned aerial vehicles can serve as a platform for autonomous sensing and location of high voltage coronal discharge. Simple processing of commercial corona camera imagery can automate discharge localization and documentation. Inexpensive ultraviolet point sensors can sense discharge when carried close to the defect with a UAV. Augmented with a parabolic mirror, point sensor range can be increased to a safe inspection standoff distance, at the cost of a narrowed field of view. Results from a test flight of an augmented UV sensor are described. The imaging approach is superior in sensitivity and acquisition time, while the point sensor approach has superior size, weight, cost and durability advantages

    Collaborative UAV Surveillance

    Get PDF
    Autonomous collaborative robotics is a topic of significant interest to groups such as the Air Force Research Lab (AFRL) and the National Aeronautics and Space Administration (NASA). These two groups have been developing systems for the operation of autonomous vehicles over the past several years, but each system has several critical drawbacks. AFRL’s Unmanned Systems Autonomy Services (UxAS) supports pathfinding for multiple tasks performed by groups of vehicles, but has no formal verification, very little physical flight time, and no concept of collision avoidance. NASA’s Independent Configurable Architecture for Reliable Operations of Unmanned Systems (ICAROUS) has collision avoidance, partial formal verification, and thousands of hours of physical flight time, but has no concept of collaboration. AFRL and NASA each wanted to incorporate the features of the other’s software into their own, and so the CRoss-Application Translator for Operational Unmanned Systems (CRATOUS) was created. CRATOUS creates a communication bridge between UxAS and ICAROUS, allowing for full feature integration of the two system. This combined software is the first system that allows for the safe and reliable cooperation of groups of unmanned vehicles

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Next generation flight management systems for manned and unmanned aircraft operations - automated separation assurance and collision avoidance functionalities

    Get PDF
    The demand for improved safety, efficiency and dynamic demand-capacity balancing due to the rapid growth of the aviation sector and the increasing proliferation of Unmanned Aircraft Systems (UAS) in different classes of airspace pose significant challenges to avionics system developers. The design of Next Generation Flight Management Systems (NG-FMS) for manned and unmanned aircraft operations is performed by addressing the challenges identified by various Air Traffic Management (ATM) modernisation programmes and UAS Traffic Management (UTM) system initiatives. In particular, this research focusses on introducing automated Separation Assurance and Collision Avoidance (SA&CA) functionalities (mathematical models) in the NG-FMS. The innovative NG-FMS is also capable of supporting automated negotiation and validation of 4-Dimensional Trajectory (4DT) intents in coordination with novel ground-based Next Generation Air Traffic Management (NG-ATM) systems. One of the key research contributions is the development of a unified method for cooperative and non-cooperative SA&CA, addressing the technical and regulatory challenges of manned and unmanned aircraft coexistence in all classes of airspace. Analytical models are presented and validated to compute the overall avoidance volume in the airspace surrounding a tracked object, supporting automated SA&CA functionalities. The scientific basis of this approach is to assess real-time measurements and associated uncertainties affecting navigation states (of the host aircraft platform), tracking observables (of the static or moving object) and platform dynamics, and translate them to unified range and bearing uncertainty descriptors. The SA&CA unified approach provides an innovative analytical framework to generate high-fidelity dynamic geo-fences suitable for integration in the NG-FMS and in the ATM/UTM/defence decision support tools
    corecore