9,870 research outputs found

    Insights into the feature selection problem using local optima networks

    Get PDF
    The binary feature selection problem is investigated in this paper. Feature selection fitness landscape analysis is done, which allows for a better understanding of the behaviour of feature selection algorithms. Local optima networks are employed as a tool to visualise and characterise the fitness landscapes of the feature selection problem in the context of classification. An analysis of the fitness landscape global structure is provided, based on seven real-world datasets with up to 17 features. Formation of neutral global optima plateaus are shown to indicate the existence of irrelevant features in the datasets. Removal of irrelevant features resulted in a reduction of neutrality and the ratio of local optima to the size of the search space, resulting in improved performance of genetic algorithm search in finding the global optimum

    Adaptive Normalized Risk-Averting Training For Deep Neural Networks

    Full text link
    This paper proposes a set of new error criteria and learning approaches, Adaptive Normalized Risk-Averting Training (ANRAT), to attack the non-convex optimization problem in training deep neural networks (DNNs). Theoretically, we demonstrate its effectiveness on global and local convexity lower-bounded by the standard LpL_p-norm error. By analyzing the gradient on the convexity index λ\lambda, we explain the reason why to learn λ\lambda adaptively using gradient descent works. In practice, we show how this method improves training of deep neural networks to solve visual recognition tasks on the MNIST and CIFAR-10 datasets. Without using pretraining or other tricks, we obtain results comparable or superior to those reported in recent literature on the same tasks using standard ConvNets + MSE/cross entropy. Performance on deep/shallow multilayer perceptrons and Denoised Auto-encoders is also explored. ANRAT can be combined with other quasi-Newton training methods, innovative network variants, regularization techniques and other specific tricks in DNNs. Other than unsupervised pretraining, it provides a new perspective to address the non-convex optimization problem in DNNs.Comment: AAAI 2016, 0.39%~0.4% ER on MNIST with single 32-32-256-10 ConvNets, code available at https://github.com/cauchyturing/ANRA

    Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

    Get PDF
    Transferability captures the ability of an attack against a machine-learning model to be effective against a different, potentially unknown, model. Empirical evidence for transferability has been shown in previous work, but the underlying reasons why an attack transfers or not are not yet well understood. In this paper, we present a comprehensive analysis aimed to investigate the transferability of both test-time evasion and training-time poisoning attacks. We provide a unifying optimization framework for evasion and poisoning attacks, and a formal definition of transferability of such attacks. We highlight two main factors contributing to attack transferability: the intrinsic adversarial vulnerability of the target model, and the complexity of the surrogate model used to optimize the attack. Based on these insights, we define three metrics that impact an attack's transferability. Interestingly, our results derived from theoretical analysis hold for both evasion and poisoning attacks, and are confirmed experimentally using a wide range of linear and non-linear classifiers and datasets

    A multiobjective optimization approach to statistical mechanics

    Full text link
    Optimization problems have been the subject of statistical physics approximations. A specially relevant and general scenario is provided by optimization methods considering tradeoffs between cost and efficiency, where optimal solutions involve a compromise between both. The theory of Pareto (or multi objective) optimization provides a general framework to explore these problems and find the space of possible solutions compatible with the underlying tradeoffs, known as the {\em Pareto front}. Conflicts between constraints can lead to complex landscapes of Pareto optimal solutions with interesting implications in economy, engineering, or evolutionary biology. Despite their disparate nature, here we show how the structure of the Pareto front uncovers profound universal features that can be understood in the context of thermodynamics. In particular, our study reveals that different fronts are connected to different classes of phase transitions, which we can define robustly, along with critical points and thermodynamic potentials. These equivalences are illustrated with classic thermodynamic examples.Comment: 14 pages, 8 figure

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Towards the Inferrence of Structural Similarity of Combinatorial Landscapes

    Full text link
    One of the most common problem-solving heuristics is by analogy. For a given problem, a solver can be viewed as a strategic walk on its fitness landscape. Thus if a solver works for one problem instance, we expect it will also be effective for other instances whose fitness landscapes essentially share structural similarities with each other. However, due to the black-box nature of combinatorial optimization, it is far from trivial to infer such similarity in real-world scenarios. To bridge this gap, by using local optima network as a proxy of fitness landscapes, this paper proposed to leverage graph data mining techniques to conduct qualitative and quantitative analyses to explore the latent topological structural information embedded in those landscapes. By conducting large-scale empirical experiments on three classic combinatorial optimization problems, we gain concrete evidence to support the existence of structural similarity between landscapes of the same classes within neighboring dimensions. We also interrogated the relationship between landscapes of different problem classes
    • 

    corecore