5,733 research outputs found

    Pulse-width predictive control for LTV systems with application to spacecraft rendezvous

    Get PDF
    This work presents a Model Predictive Controller (MPC) that is able to handle Linear Time-Varying (LTV) plants with Pulse-Width Modulated (PWM) control. The MPC is based on a planner that employs a Pulse-Amplitude Modulated (PAM) or impulsive approximation as a hot-start and then uses explicit linearization around successive PWM solutions for rapidly improving the solution by means of quadratic programming. As an example, the problem of rendezvous of spacecraft for eccentric target orbits is considered. The problem is modeled by the LTV Tschauner–Hempel equations, whose state transition matrix is explicit; this is exploited by the algorithm for rapid convergence. The efficacy of the method is shown in a simulation study.Ministerio de Economía y Competitividad DPI2008–05818Ministerio de Economía y Competitividad MTM2015-65608-

    Trajectory Planning for Spacecraft Rendezvous with On / Off Thrusters

    Get PDF
    18th World CongressThe International Federation of Automatic ControlMilano (Italy) August 28 - September 2The objective of this work is to present a trajectory planning algorithm for spacecraft rendezvous that is able to incorporate Pulse-Width Modulated (PWM) control signals. The algorithm is based on linearization around a previously computed solution. To initialize the algorithm, a first solution needs to be obtained. To do so, the trajectory planning problem is solved using Pulse-Amplitude Modulated (PAM) control signals; these are then converted to PWM signals, which are used as an initial guess. Iterating, the solution is refined until an optimal value is reached. Simulations show that this method converges after a few iterations. The algorithm is simple and fast, hence it could be implemented online or used together with a Model Predictive Controller

    Model Predictive Control for Spacecraft Rendezvous in Elliptical Orbits with On/Off Thrusters

    Get PDF
    IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles. 08/06/2015. SevillaIn previous works, the authors have developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive problem first and then, using explicit linearization and linear programming, the solution is refined until a (possibly local) optimal value is reached. However, trajectory planning cannot take into account orbital perturbations, disturbances or model errors. To overcome these issues, in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC saves time recomputing the trajectory by applying the iterative linearization scheme of the trajectory planning algorithm to the solution obtained in the previous time step. The efficacy of the method is shown in a simulation study where it is compared to MPC computed used an impulsive-only approach

    Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach

    Get PDF
    This paper deals with design of feedback controllers for knee joint movement of paraplegics using functional electrical stimulation (FES) of the paralyzed quadriceps muscle group. The controller design approach, virtual reference feedback tuning (VRFT), is directly based on open loop measured data and fits the controller in such a way that the closed-loop meets a model reference objective. The use of this strategy, avoiding the modeling step, significantly reduces the time required for controller design and considerably simplifies the rehabilitation protocols. Linear and nonlinear controllers have been designed and experimentally tested, preliminarily on a healthy subject and finally on a paraplegic patient. Linear controller is effective when applied on small range of knee joint angle. The design of a nonlinear controller allows better performances. It is also shown that the control design is effective in tracking assigned knee angle trajectories and rejecting disturbances

    Trajectory Planning for Spacecraft Rendezvous in Elliptical Orbits with On / Off Thrusters

    Get PDF
    The 19th World Congress of the International Federation of Automatic Control 2014 Cape Town, SudáfricaIn a previous work, the authors developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, assuming that the target was moving in a circular Keplerian orbit. In this paper we extend the algorithm to the case of an elliptical target orbit with arbitrary eccentricity. Since the orbit is elliptical, the linear time-varying Tschauner-Hempel model is used, whose exact solution is possible by using true (or eccentric) anomaly instead of time (which is directly related to both via Kepler's equation). Unlike in the circular case, computing the PWM solution itself requires numerical integration. However, explicit linearization around the computed solution turns out to be possible and is exploited for rapidly improving the solution using linear programming (LP) techniques. The algorithm is initialized by solving the impulsive problem first; the impulses are converted to PWM signals, which are used as an initial guess. Using the explicit linearization and LP, the solution is refined until a (possibly local) optimal value is reached. The efficacy of the method is shown in a simulation study where it is compared to the impulsive-only approach

    A comparative study of several control techniques applied to a boost converter

    Get PDF
    In this paper a comparison among three control strategies is presented, with application to a boost DC-DC converter. The control strategies are developed on the switched boost circuit model and validated on the nonlinear model by use of simulations. The classical PID, a 2dof-IMC (two degree of freedom internal model controller) and an alternative controller - MAC (uprocessor advanced control) are applied, tested and compared on the nonlinear system. Additional tests show the robustness of the controllers on the highly nonlinear circuit
    • …
    corecore